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A FURTHER EXTENSION OF THE LEIBNIZ RULE TO FRACTIONAL
DERIVATIVES AND ITS RELATION TO PARSEVAL’S FORMULA*

THOMAS J. OSLERf

Abstract. The familiar Leibniz rule for the Nth derivative of the product of two functions is

DNuv--(l)DC-"uD%.Ageneralization of this formula for fractional derivatives is given as
,!

Duv a -""-uD""+v, where e need not be a natural number and 0 < a _< 1. (The
an +7

special case, a 1, appeared previously.) Further generalizations of the Leibniz rule are also given and
are derived from a generalization ofTaylor’s series given previously by the author. It is shown that these
new series are generalizations of Parseval’s formula from the study of Fourier series. Finally, new series
expansions relating the special functions of mathematical physics are derived as special cases of the
generalizations of the Leibniz rule. These series include a generalized Dougall’s formula, several series
of the Cardinal type, and a series related to a problem of Ramanujan.

1. Introduction. The fractional derivative of order off(z) with respect to
g(z) is written Dtz)f(z) and is an extension of the familiar derivative df(z)/dg(z)
to nonintegral values of . Fractional derivatives have been employed successfully
in finding solutions to ordinary 9], partial I6], [18], and integral 5] equations.
In these applications, the fractional derivative is advantageous because certain
critical operations which are not obvious in a classical formulation are suggested
by the notation itself. Consider, for example, the result

(x t)- f(u)(t u)-1 clu dt
F(oOF(fl F(o + fl)

f(t) ix t) + -1 dr,

Re () > 0, Re (/3) > 0. In the notation offractional derivatives, this last result reads

D;D2f(x) D; f(x),
a result which students of the calculus would guess.

Fractional derivatives are also of value in exploring the properties of the
higher transcendental functions. Consider the known, but not commonly seen,
formula for the Bessel function of order v:

jv(Z (2z)-n-1/2DV-1/2
cos z

Z

When v is 1/2, -3/2, -5/2, this formula shows that J(z) is an elementary
function. Since J(z), and many of the important special functions, can be repre-
sented as fractional derivatives of elementary functions, it seems reasonable that
important properties of the higher transcendental functions could be derived
from a knowledge of rules for manipulating fractional derivatives. This observation
has appeared previously [7], [9], [11], [12], [13], [14]. The author’s papers [11],
12], [13], 14], 15] have been concerned with extending familiar rules for
derivatives from the elementary calculus (chain rule, Leibniz rule, Taylor’s series)
to the higher calculus of fractional derivatives.
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As early as 1859, George Boole [2, Preface] wrote "This question of the true
value and proper place of symbolical methods is undoubtedly of great importance.
Their convenient simplicity--their condensed power--must ever constitute their
first claim upon attention." It is in this spirit that the Leibniz rule from the element-
ary calculus is extended in this paper and used in conjunction with fractional
derivative representations of the special functions. In this way the "simplicity and
condensed power" of the fractional derivative notation is exploited.

We list below successively more complex extensions of the familiar Leibniz
rule,

N
D-DNv nDnv

n

Extension 1. If is not a natural number, the Leibniz rule admits the simple
generalization

(1.1) Du(z)v(z)
n--0

Dz "u(z)D"v(z)

which was known to Grunwald [8] as early as 1867. Other authors have also
considered this formula [1], [11], [12], [15], [16], [19]. A simple derivation employ-
ing complex variable techniques and Taylor’s series is given in the author’s
expository paper [15].

Extension 2. Equation (1.1) has a disturbing feature. If we interchange u and
v, the formula remains unchanged on the left side, while on the right side this is not
obvious since u is differentiated fractionally and v is differentiated in the usual
elementary sense. A generalization of (1.1) in which the interchanging of u and v
appears permissible on both sides is

(1.2) Du(z)v(z)= + 7
D-"-u(z)D+v(z)’

where

r(a fl + 1)r(fl + 1)’

and 7 is an arbitrary real or complex number. This series was first published by
Watanabe [19] in 1931. The region of convergence of the series in the z-plane
was first determined by the author [11], [12].

Extension 3. Our next extension shows that we can also differentiate frac-
tionally with respect to an arbitrary function g(z), and even more, the sum need
not be over the integers n, but can be over a times n, where 0 < a <_ 1"

a
an

Da +
gz) u(z)Dgz) ’v(z).

This result is new.
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Extension 4. By introducing the function 0((; z)= (g(0- g(z))q(O, we can
generalize the previous result to

D(z)u(z)v(z)= a
an

D- + y]g(z) -’[U(Z)q(z)

n,,+ [v(OOg(o(. z)q(O-,,--1]g(O
=z

where again 0 < a =< 1 and 7 is arbitrary. This new result can be simplified provided
v(g-1(0)) 0 as

D)u(z)v(z)= a gz)-[U(Z)q(z)
+7

(1.4a)
an

.an+ -I

Extension 5. The product uv can be replaced by a general function of two
variables. This leads to the generalization

,an +(f(z, z) a
+ ,o(1.5)

an

[f(, OOgo(;z)q(),,,,+q(O-,,,,-- 1;
=z=z

where again 0 < a < 1, and 0( z)= (g(0- g(z))q(O. Here the Dg(o,h(of(, )
means operate on f(, ) with Dh(O holding fixed followed by D() holding
fixed. If we set f(, ) u()v() in (1.5), we obtain (1.4). If, in addition, f(, g- 1(0))

0, (1.5) simplifies to a form corresponding to (1.4a)"

D ,,,, +D(z)f(z,z)= /_., a
an .qt_ , g(),g(O

(1.5a) [fg(o(, )[q()/q()]a,+,]
=z=z

The special case of (1.5) in which q(0 and a (and thus 0g(o(; z) 1) was
given by the author in [11], [12]. All the preceding generalizations of the Leibniz
rule are special cases of (1.5).

While derivations of special cases of our generalized Leibniz rule (1.5) have
been given previously, the derivation presented in this paper is not an extension of
previous methods. An entirely new technique is employed based on the author’s
previous generalization of Taylor’s series to fractional derivatives [14].

The relationship between the generalized Leibniz rule and the familiar Parse-
val’s formula [21, p. 37] from Fourier series is examined. We discover the interesting
fact that Parseval’s formula is a special case of the Leibniz rule in much the same
way that a Fourier series is a special case of a Laurent series.

The paper concludes with an examination of several infinite series expansions
derived from (1.5) by introducing specific functions for f, g, q, 0, and specific
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parameters for , 7, and a. These series which relate the higher transcendental
functions show one way in which fractional derivatives can be exploited in the
study of the special functions.

In summary, then, this paper contributes the following items in mathematical
analysis:

(i) The generalization of Leibniz rule (1.5) as well as its special cases (1.3),
(1.4), (1.4a), and (1.5a) are new.
(ii) The derivation of the generalized Leibniz rule (1.5), based on a generalized
Taylor’s series, is new. (See 4.)
(iii) The observation of the relation between the Leibniz rule and Parseval’s
formula is new. (See 3.)
(iv) Several of the series expansions relating the special functions (see Table
5.2) appear to be new.

2. Fractional derivatives and special functions. In this section we review the
definition of fractional differentiation and give examples of common special func-
tions of mathematical physics represented by fractional derivatives of elementary
functions.

The most common definition for the fractional derivative of f(z) of order
found in the literature is the "Riemann-Liouville integral" [4], 5], [6, 7, 8,
[9], [18]

Df(z) I(-)-1 f(t)(z t) --1 dr,

where Re (e) < 0. The concept of a fractional derivative with respect to an arbitrary
function g(z), D(z)f(z), was apparently introduced for the first time in the author’s
papers [11], [12], while the idea appeared earlier for certain specific functions
g(z) in [6]. The most convenient form of the definition for our purposes is given
through a generalization of Cauchy’s integral formula. A thorough motivation
for the following precise definition is found in [11], [12].

DEFINITION 2.1. Letf(z) be analytic in the simply connected region R. Let g(z)
be regular and univalent on R, and let g-1(0) be an interior or boundary point
of R. Assume also that c f(z)g’(z)dz 0 for any simple closed contour C in
R U {g- 1(0)} through g- 1(0). Then if is not a negative integer, and z is in R, we
define the fractional derivative oforder off(z) with respect to g(z) to be

(2.1) D<z)f(z)
I( + 1)yll +) f()g’()d

2zi ’co) (g() g(z))+1"

For nonintegral e, the integrand has a branch line which begins at z and passes
through g- 1(0). The limits of integration imply that the contour of integration
starts at g- 1(0), encloses z once in the positive sense, and returns to g- 1(0) without
cutting the branch line or leaving R U {g-1(0)}. (See Fig. 2.1).

Ife isa negative integer -N, F(cz + 1) while the integral in (2.1) vanishes.
If we interpret (2.1) as the limit as e approaches N, it then defines the derivative
of order -N, or perhaps we should say the "Nth iterated integral of f(z) with
respect to g(z)."
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.0’- (0).... /

Bronch line for (g(,)-g(z))

Re()

FG. 2.1. Branch line and contour of integration Jbr Definition 2.1 offractional differentiation

It is important to notice that with the restrictions on g(z) as given in Definition
2.1, the substitution w g(z) maintains the equality Df(w) D(z)f(g(z)).

It is particularly interesting to set g(z) z a, for we find that

(2.2) D_af(z)
F(0 + 1)fl2i

f()( z)--1 d.

While ordinary derivatives with respect to z and z a are equal, (2.2) shows that
this is not the case for fractional derivatives, since the value of the contour integral
depends on the point a at which the contour crosses the branch line.

We also require fractional partial derivatives.
DEFINITION 2.2. Letf(z, w) be an analytic function oftwo variables for z and w

in the simply connected region R. Let g(z) be regular and univalent on R, and let
g- 1(0) be an interior or boundary point of R. Assume also-thatc f(z, w)g’(w) dw 0
and c D#g(w)f(z, w)g’(z)dz 0 for any simple closed contour C in R
through g-1(0). Then if 0 and fl are not negative integers, and z and w are in R
we write

Dgz),gw)f(z, w) Dgz)[Deg(w)f(z, w)]

+ 1)v(# + 1)fll +’

(2.3) -492 ,(o) (g(’) g(z))+’

,(w+) f((, ()g,()d d(
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Contour integrals of the type (2.1) occur often in the representations of special
functions. These are particularly convenient for use with the generalized Leibniz
rule (1.5). Fractional derivative representations of special functions are also found
in [11], [12] and can be easily constructed from the tables in [4]. A few examples
follow" F(c)z

F(a, b; c; z) Db-czb- 1(1 z) -a,
F(b)

F(a" c" z)
F(c)z-C

F(a) D ez"-

Z- COS Z
jv(z D-v- x/2

2 z

P (z)
F(v + 1)2 D +__(1 z2).

Having reviewed briefly the definition of fractional differentiation and its
relation to the special functions, we proceed to show a formal correspondence
between our generalized Leibniz rule and a familiar formula from the elementary
study of Fourier series.

3. The Leibniz rule and Parseval’s formula. In this section we formally
examine the special case of the generalized Leibniz rule (1.4). By holding z fixed,
and making a suitable change of variables, we shall see that Parseval’s formula
[21, p. 37], familiar from the study of Fourier series, emerges.

Let us begin by assuming that (1.4) is true. With g(z) z we have

a
Du(z)v(z)

F(z an 7 + 1) D [u(z)q(z)"" + ]
+

1

F(an + 7 + 1)D" [v()q()-""- 10(; z)]
=z

where we recall that 0(; z) ( z)q() and 0 < a _<_ 1. Making use of the contour
integral representation for fractional derivatives (2.2), we get

(3.1)
fl
+) u(t)v(t) dt

2hi (t-z) +1

-a ((z+) u(t)q(t)a.+ dt

v(t)q(t) -a"-- lOt(t; z) dt

We now fix z and select the contours of integration appearing above to coincide
with the curve defined by lO(t; z)l 10(0; z)l; that is, the contour which passes
through the origin (in the t-plane) on which O(t;z) has constant modulus. This
contour we assume is a closed curve which can be parametrized by the variable 4
such that

(3.2) O(t z) IO(O; z)lei4,

with 050 < q5 < bo + 2n. Using (3.2) to change the variable of integration from
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to 0 in (3.1), and writing u(t) u[O], ..., we get

(3.3)

a fo+ 2n/a

f(O)h(c/)) dc/)
2

a /5o+ 2n/a a fo+ 2n/a

f c/) ei""’I’ d - h(c/))e i’"+ dO,

where we have set

uEO]qEO]=+ ’ei(-)4

f(O)

0

for00<0<0o+2n,

otherwise,

and

h(O) ={ for0o<0<0o+2n,

otherwise.

We recognize (3.3)as Parseval’s formula [21, p. 37].
Now consider an analytic function w(t) expanded in a Laurent series w(t)
a,,(t z)". If we restrict to the circle z + Iz[ei4’, the Laurent series becomes

the Fourier series w(z + Izlei+) a,lz["e’4’. Note the similarity between this
and the previous calculation, in which we held z fixed and examined u and v on a
particular closed curve in the t-plane. In fact, if O(t;z) z, the contour of
integration defined by (3.2) is identical to the circle on which the Laurent series
was just examined. We conclude that by holding z fixed, the generalized Leibniz
rule reduces to Parseval’s formula in the same way that Laurent’s series reduces to a
Fourier series..Thus our extended Leibniz rule is a generalization of Parseval’s
formula.

4. The extended Leibniz rule. In formally examining the special case of the
extended Leibniz rule (1.4) in the previous section, we have seen that it is related to
the Parseval’s formula familiar from the study of Fourier series. We now proceed
to derive the extended Leibniz rule rigorously. We shall see that the derivation of
the Leibniz rule follows from the generalized Taylor’s series in much the same way
that the Parseval’s relation follows from the Fourier series.

We begin by stating and proving the special case of the extended Leibniz
rule in which g(z) z.

THEOREM 4.1. (i) Let R be a simply connected region in the complex plane having
the origin as an interior or boundary point.

(ii) Let f(, ) satisfy the conditions of Definition 2.2 for the existence of
D:f(, ) andDf(z, z)for , , and z in R.

(iii) Let 0(; z) ( z)q() be a given function such that q() is analytic for
R, and q() is never zero on R.
(iv) Assume that the curves C(z) {110(; z)l 10(0; z)l are simple and closed

for each z such that C(z)c R {0}. Assume also that each curve defined by
{110(; z)l const.} interior to C(z) is simple and closed.

(v) Call S {zlC(z) RU {0}}.
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Then for z S, 0 < a < 1, and all z and 7 such that

Df(z,z) a
an

an
is defined,

+7

[f(, O0(;z)q()a"+q()-""-- 1]1=;=
where 0((; z) dO( z)/d.

Proof. The C(z) are the curves in the complex -plane which pass through the
origin, over which the amplitude of O(;z) is constant. For example, if O(;z)

z, then C(z) is the circle centered at z passing through the origin. By
restricting z to S (described in (v)), we insure that the curves C(z) are contained in
the region R U {0} on whichf(, ) is sufficiently regular for manipulations which
follow. In particular, f(, ) can be expanded in a generalized Taylor’s series for
e C(z) in powers of 0(; z) since (ii), (iii) and (iv) are all that is required for its

validity [14]. We obtain

f(, ’) aD +f(, O0(;z)q(O- 1]l=z(q(’)( z))an+7

F(an + 7 + 1)

Multiply both sides of this last expression by F( + 1)( z) 1 and set
=.

(4.2)

F(a + 1) f(,)
2hi ( z)+l

+

Since (4.2) converges for on the curve C(z) in the complex -plane, we can inte-
grate both sides along the contour C(z) with respect to starting and ending at

0. It is clear that we can integrate term by term along the contour C(z), since
(4.2) is really a Fourier series in the variable b when we replace 0(; z) by 10(0;
z)lei4

F(a + 1) ( f(, )de aV( + )
2i 3c() -- gv =.=Z_ r(an + + 1)2hi

( q()a"+D"+[f(, )O(;z)q()-a"--’]l= d
( Z),-a.-+

Comparing the integrals above with the definitions of fractional differentiation
(2.2) and (2.3) we see at once that the generalized Leibniz rule (4.1) is obtained.

Equation (4.1) can be simplified to

,an+(4.3) Df(z, z) a D, [f(, ()[q()/q(()] +qle==zan+ 7

if we add the restriction that f(, 0) 0.
COROLLARY 4.1. With the hypothesis of Theorem 4.1 and f(, O) O, the rela-

tion (4.3) is valid.
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Proof. Comparing (4.1) and (4.3) it is clear we must show that

E D ,an +
.; [f(, ()O((;z)q()an+eq(() 111;==

D,-a,,-,,,.+-1[f(, )[q()/q()]a+][==.
The left-hand side of this last relation can be written as

using (2.2) and (2.3). Integrating by parts we get

E= D-a"-Iq()""+F(an+7)fi+)2rci f;(’)O(;z)-an-dl [=z’
where thejump term vanished becausef(, 0) 0. Rewriting this last integral using
the definitions of fractional differentiation (2.2) and (2.3), and 0(; z) ( z)q(),
we see at once that the corollary is proved.

We complete our derivation by extending the Leibniz rule to the case in which
we differentiate with respect to an arbitary function g(z).

COROLLARY 4.2. Assume the hypothesis of Theorem 4.1 and the additional
conditions

(i) g(w) is regular and univalent for w g- I(R),
(ii) F(s, t) f(g(s), g(t)),

(iii) E(s; w) O(g(s) g(w)) (g(s) g(w))Q(s),
(iv) q(g(s))= Q(s).

Then

(4.4)
D(w)F(w, w) a

an AI- g(s),g(t)

dE(t; w)IF(s, t)
L dg(t)

for w g-1(S), 0 < a =< 1, and all o and 7 for which

If in addition we have
(v) F(s, g- ’(0)) 0,

then (4.4) can be simplified to

an
is defined.

(4.5)
Dg(w)F(w, w) a

an

O
]) ,,an +

_[_ ] g(s),g(t)

FaF(s, t) + ]L g(t)
[e(s)/Q(t)]a"

Proof. The proof of this corollary follows at once upon replacing z by g(w) in
Theorem 4.1 and Corollary 4.1, since Df(z) =_ D(w)f(g(w)).
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Remark. In Theorem 4.1 and the above corollaries, the Leibniz rule is valid
for all and 7 for which

F( + 1)
(4.6)

an +7 F(a-an- 7 + 1)F(an + 7 + 1)

is defined. Since F(z) is analytic except for poles at z 0, 1, -2, ...; and since
1/F(z) is entire, the only values of for which (4.6) is suspect are e 1, 2, 3,

It is well known that when is a negative integer, a 1, and 7 0, the bino-
mial coefficient (4.6) is defined; however, if is a negative integer and 7 #- 0, then
(4.6) is not defined for every integer n. A glance at (4.2) shows that the troublesome
F(c + 1) appears in the numerator on both sides of the equation. If we divide both
sides of our Leibniz rule by F(a + 1), this difficulty disappears. Thus we conclude
that the restrictions on e and 7 for the validity of the generalized Leibniz rule are

needed only because the notation is convenient. When we use the Leibniz
an+7

rule in the next section, to derive series expansions relating the special functions, we
will divide by F(0 + 1) and conclude that restrictions on e and 7 are unnecessary.

We have completed our rigorous examination of the generalized Leibniz
rule, and now turn to examples of infinite series relating special functions which are
derived from it.

5. Examples. Before ending our discussion, it seems appropriate to examine
direct consequences of our new formulas. We select specific functions for f(, ),
g(z), q(), and specific parameters for , 7 and a in our generalized Leibniz rule
(1.5). A list ofthe selections is given in Table 5.1. The fractional derivatives encount-
ered can be computed with the help of the extensive table in [4, vol. 2, pp. 181-200]
and also with the short table of fractional derivative representations for special
functions in [12, p. 668]. The results of this simple procedure appear in Table 5.2. A
similar table, restricted to the special case of (1.5) in which q() 1 and a 1,
appeared in [11], [12]. The notation for the special functions used is that of
Erdhlyi et al. [3], [4].

We call particular attention to the following series from Table 5.2.
Extension of Dougall’s formula. Series 9 is a generalization of "Dougall’s

formula" [3, vol. 1, p. 7]. Dougall’s formula is the special case of series 9 in which
a-- 1.

Series of the Cardinal type. Series 2 through 8 are of the Cardinal type [20, pp.
62-71]. A Cardinal series gives the values of a function f(a) when the values of
f(cz) are known only at an + 7, where 0 < a < and y are fixed and n 0,
+ 1, +_2,.... If we set u(z) in (1.3), we obtain

g(z)g(z) D(z)v(z) a sin rc(z an 7) g(z)"" + na, + v(z)
F( + 1) t( an 7) F(an + 7 + 1)

Thus if f(e) is of the form

f(a)
g(z)D()v(z)
r( + )
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TABLE 5.1

Choices for functions and parameters in the generalized Leibniz rule (1.5)from which the
series in Table 5.2 are derived

Series
No.

10

12

13

14

(cos )/

(cosh )/

(sin )/

(sinh )/

(1 2)v

B+ C- 2A D-

eA BP

AB- lrFs(al ,’’’, ar.
bl, ,b’O

q(O g(z)

eB Z

z

z

Z

z

z

z

1--z

z

z

z

N 1,2,3,...

B-C

A-B

-v- 1/2

-v 1/2

-v- 1/2

-v- 1/2

A+C-2

b+B-d-D

C-A-!

eC z Ot

+A z a

k .q_ pk 2

exp(k) z

z 0

A-C

-l/2- B

-1/2 B

-1/2- B

-1/2 B

A-1

B-D

C-1

then (5.1) yields the Cardinal series

f(a)=
asinrc(a-an-7)
re(e-an-7)

f(an + 7).

A problem of Ramanujan. The series 12 is a generalization of the series

q)(z)-- e
(n + 1)n(ze

n=O n!

considered by Ramanujan [17, p. 332, Question 738]. Ramanujan set as a portion
of a problem the demonstration that q0(z) for 0 <__ z <__ 1. This problem can be
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TABLE 5.2
Series expansions derived from the generalized Leibniz rule

Note" Unless otherwise stated, 0 < a < in all series

Series
No. Series Expansion

NAU- (A + Bn)N-’(- Bn)’- I, N 1,2,3 ...,
n=l n a--

nzFI(A,B’C’z) sin ((an + V + C- B)n)2FI(A,B’B- v an’z)
aF(C)F(B C + 1) ,=_o (an + V + C- B)F(an + V + 1)F(B-v- an)

Re(z)< 1/2, 0<Re(B)

nlFI(A" B" z) sin ((an + B C)n)IFI(A" C an" z)
aF(B)F(A B + 1) n=- (an + B C)F(an + A C + 1)F(C an)’

Re (A) > 0

4

through
7

o%(z)
aF(1/2- v)(z/2)v-B sin ((an + B)n)_,,,(z)[z]

where Jr, Iv, Hv and Lv, respectively, for series 4, 5, 6, and 7

nP(z) sin ((an +
aF(v + p + l) ,,=_ (an+v-v-p) r(an--l)(-z)

-1 <Re(v), 0<Re(z)

t)/2

F(A +B+ C+D-3)
aF(A + C- 1)F(A + D- 1)F(B + C 1)F(B + D- 1)

F(an + A)F(an + B)F(C an)F(D an)’

<Re(B+ C), <Re(A +D), 3 < Re(A + B+ C+D).

10
F(b + B- 1)2F(e + E,b + B- l’d + D l’z)
aF(d + D 1)F(b + B d D + 1)F(b)F(B)

2Fl(e, b" d + an" z)2FI(E B" D an" z).=_ F(an + B- D - 1)F(an + d)F(b d- an + 1)F(D an)’
0<Re(b), 0<Re(B), 1/2> Re(z), < Re(b+B)

11 F(C+D-A-B-1)3F2IF (C+D-A-B-1)/2, (C+D-A-B)/2"--Z21B)/2, (O- B + 1)/2
ar(C- A)r(C- B)r(D- A)r(D- B)

3F2IE, C- B,D- A" -z21D + an, B- an

F(an + C)F(an + D)F(1 A an)F(1 B an)’

0 < Re(D-A), Re(C- B), < Re(C +D-A- B)

12 1FI(P’P a’(A B)z) e -(c+B)z o (-a)"IFI(P’P (z + n;(A + Cn)z)
(e- ).,,!(c,, + + ?-)-"--(z--:%-=-"’

a= in(1.5), Re(P)>0
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TABLE 5.2 (Cont.)

Series
No. Series Expansion

(2n)!(-oO,(-Az)"(z + A)-Z"zFI(-n,B’B- + n"-z/A)
-=22 (B ),(n!)2

a= lin(1.5)

14
r(A + B)

aF(A + B- )[’( + 1)F(A)F(B + l)

V-an 7, A/k, (A +l)/k,...,(A + k -1)/k; --zk/P -]
k+lFL(an+A+7-a)/k (an+A+7-+l)/k ., (an+A+7-a+k-1)/k

F(an +7 + 1)F(an + A + y-a)F(a- y-an + 1)F(B- y- an + 1)

[-an + y, B/k, (B+ 1)/k, (B + k 1)/k" --zk/Pk-]
k+ lFk I(B- an- y + 1)/k,. (B- an- y + k)/k

-1 <Re(A), 0<Re(B), k= 1,2,3,...

15
F(A + B)

aF(A + B- )F(a + 1)F(A)F(B + 1)

[-B/k, (B + 1)/k,..., (B + k- 1)/k" -(an +
kFkL( _an_7 + 1)/k,(B-an--7+2)/k,...,(B-an-7 +k)/k
F(an +A +7-a)F(an+7 + 1)F(a-7-an+ 1)F(B-7-an + 1)

(A + 1)/k, (A + k 1)/k; (an + y)z -]
FL(an + A + 7-a)/k (an + A + 7-o + l)/k, ..., (an + A + 7-o + k-1)/k

-1 < Re(A), 0 < Re(B), k 1,2,3,...

A + B, al,..-,ar;z
F(A + B)r +1F+1

A + B-,b ...,b
aF(A + B- )r(a + 1)F(A + 1)F(B)

[B,a,...,a;z1Fs+
LB ’ an, bl, b

=,,=_F(an + y + 1)F(an + A- + y + 1)F(-y-an + 1)F(B-7- an)’

-1 <Re(A), 0<Re(B)

solved easily from series 12 if we set a 1, B 0, C 1, and A P + and
obtain

1FI(P; P + 1; (P + 1)z)
(5.2)

e-"
(n + 1)"(ze z), n!

1),IFI(P; P + n + ;(P + n + 1)z)
(P +n=0

where Re (P) > 0. If we could set P 0 on both sides of (5.2), we would answer
Ramanujan’s question at once since 1F1(0: c: x)= 1. However, the restriction
Re (P) > 0 does not permit us to set P 0. Instead, we show that for fixed z,
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0 Z < 1, the series (5.2) converges uniformly in P, for 0 __< P =< 1. This uniform
convergence permits us to let P approach zero term by term in (5.2) and thereby
solve Ramanujan’s problem. As n approaches infinity, for fixed z, 0 < z =< 1, and
all P such that 0 =< P =< 1,

1FI(P;P + n + 1;(P + n + 1)z)

p(p + )
=(1 -z)-e 1-2(p+ n+ 1)

+ O(IP + n + 11-2)1,
[3, vol. 1, p. 280]. Thus

n
(+
IFI(P;P + n + ;(P + n + 1)z)

is bounded and the series (5.2) converges uniformly in P, for 0 _<_ P <= 1, by the
familiar test of Weierstrass. Thus we have shown that q(z) for 0 =< z < and
have answered Ramanujan’s question.

Note on restrictions in Table 5.2. The restrictions obtained from the hypo-
thesis of Theorem 4.1 for the validity of the series in Table 5.2 are sometimes too
strong. Consider, for example, series 9. It is known that only the restriction
Re(A +B+ C+D)> 3 is necessary. The restrictions Re(B+ C)> and
Re (A + D) > are not needed and emerge from item (ii) of the hypothesis of
Theorem 4.1 in which we require that bD’,f(, ) be defined. Since Table 5.2 is
provided to illustrate our general expansions, all restrictions emerging from the
theorems of this paper are listed.

6.1. Concluding thoughts. In 1695 Leibniz [10], in a letter to J. Bernoulli,
expressed his interest in the fact that the binomial series

(A + B)u= Z
n=0

and the rule for the derivative of a product

N

DNuv DN-nuDnv

look so similar:
"There are yet many things latent in these progressions of summation and

differentiation, which will gradually appear. There is thus notable agreement
between the numerical powers ofbinomial and differential expansions and believe
that I do not know what is hidden there."

Bernoulli answered" "Nothing is more elegant than the agreement which
you have observed between the numerical power of the binomial and differential
expansions; there is no doubt that something is hidden there."

Indeed the giants of analysis were correct. At the time of these letters, Newton
had invented an extension of the binomial theorem to fractional powers, but the
extension of the product rule had to await the invention of the fractional calculus.
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Furthermore, the binomial series admits the generalization [14]

(6.1) (A + B)= a
an+7

where 0 < a <= 1 and IA/BI 1. Equation (6.1) resembles our generalized Leibniz
rule (6.2)"

(6.2) Duv
an+ 7

Moreover, (6.1) is a special case of the generalized Taylor series from which (6.2)
is derived in this paper. Thus a reason for the similarity in the two series is made
evident.

It is already clear, however, that even further results "lay hidden." The
Leibniz rule for functions of the operator D more general than D was given as
early as 1930 by Emil Post [_16]. Undoubtedly Post’s form of the product rule can
be generalized to reveal further connections prophesied by Leibniz.

Acknowledgments. The author wishes to thank the referees for several
remarks which have improved the paper and for the reference to Ramanujan’s
problem. Thanks are due to Professor Joaquin B. Diaz of Rensselaer Polytechnic
Institute for informative discussions concerning the Cardinal series.

REFERENCES

[1] M.A. BASSAM, Some properties ofthe Holmgren-Riesz transform, Ann. Scuola Norm. Sup. Pisa, 15
(1961), no. 3, pp. 1-24.

[2] G. BOOLE, Treatise on Differential Equations, Cambridge Univ. Press, Cambridge, 1859.
[3] A. ERDILYI, W. MAGNUS, F. OBERHETTINGER AND F. G. TRICOMI, Higher Transcendental Functions,

3 vols., McGraw-Hill, New York, 1953, 1955.
[4] --, Tables ofIntegral Transforms, 2 vols., McGraw-Hill, New York, 1954.
[51 A. ERDLI, An integral equation involving Legendrefunctions, J. Soc. Indust. Appl. Math., 12

(1964), pp. 15-30.
[6] --, Axially symmetric potentials andfractional integration, Ibid., 13 (1965), pp. 216-228.
[7 I. M. GEL’VANO AYO G. E. SHILOV, Generalized Functions, vol. 1, Academic Press, New York and

London, 1964.
[8] A. K. GRUNWALO, Ober Begrenzte Derivation-und deren Anwendung, Zeitschrift ftir Mathematik

und Physik, 12 (1867), pp. 441-480.
[9] T. P. HIGGNS, The use offractional integral operators for solving nonhomogeneous differential

equations, Document D1-82-0677, Boeing Scientific Research Laboratories, Seattle, Wash.,
1967.

[10] G. LEIBNIZ, Mathematics Schriften, vol. 1, Part 2, C. I. Gerhardt, ed., Halle, 1858, pp. 377-382.
111 T. L. OSLER, Leibniz rule, the chain rule and Taylor’s theorem for fractional derivatives, Doctoral

thesis, New York Univ., 1970.
12] --, Leibniz ruleforfractional derivatives generalized and an application to infinite series, SIAM

J. Appl. Math., 18 (1970), pp. 658-674.
I13] --., Thefractional derivative ofa compositefunction, this Journal, (1970), pp. 288-293.
14] --, Taylor’s series generalizedforfractional derivatives and applications, this Journal, 2 (1971),

pp. 37-48.
[15] , Fractional derivatives and Leibniz rule, Amer. Math. Monthly, 78 (1971), pp. 645-649.
[16] E. L. POST, Generalized differentiation, Trans. Amer. Math. Soc., 32 (1930), pp. 723-781.



16 THOMAS J. OSLER

[17] S. RAMANUJAN, Collected Papers ofSrinivasa Ramanujan, Chelsea, New York, 1962.

[18] M. RIESZ, L’intOgrale de Riemann-Liouville et le problOme de Cauchy, Acta. Math., 81 (1949), pp.
1-233.

[19] Y. Watanabe, Notes on the generalized derivative of Riemann-Liouville and its application to

Leibnitz’sformula, I and H, Tohoku Math. J., 24 (1931), pp. 8-41.
[20] J. M. Whittaker, Interpolatory Function Theory, Stechert-Hafner Service Agency, New York and

London, 1964.
[21] A. ZYGMUND, Trigonometric Series, vol. I, Cambridge University Press, New York, 1959.



SIAM J. MATH. ANAL.
Vol. 3, No. 1, February 1972

SCHUR’S THEOREM FOR HURWITZ POLYNOMIALS*

NORMAN LEVINSON? AND RAY REDHEFFER

Abstract. This paper contains a short proof of a theorem of Schur which may be used to decide
recursively whether or not a given polynomial is a Hurwitz polynomial. The analysis is based on a new
equivalence theorem for Hurwitz polynomials which has independent interest.

A polynomial with complex coefficients

Zf(z) aoz" + a + + a,, ao :/: 0,

such that all its zeros lie in the left half-plane, is said to be a Hurwitz polynomial.
Let

(1) f*(z) (- 1)"/(- Y),
so that

Z Z 2(2) f*(z)

The following theorem is a reformulation of a theorem of I. Schur I3].
THFOREM 1. Let c be a complex number such that Re c > 0. Then if f of degree

n > 2 is a Hurwitz polynomial, so is the polynomial fl of degree n 1, where

fl(z) f(z)[o(Z c) il] f*(z)ao(z c) +

Moreover, Re (al/ao) > O. Conversely, if Re (al/ao) > 0 and fl is a Hurwitz poly-
nomial, then f is a Hurwitz polynomial.

By repeated use of this theorem with convenient choices of c, the problem of
deciding whether a polynomial is Hurwitz is reduced to the determination of the
signs of a sequence of complex numbers (of the form a l/ao). The procedure can
easily be programmed on a computer.

A special case of Schur’s theorem in which c al/ao is proved in Fuchs and
Levin 2]. A generalization of Schur’s theorem due to Benjaminowitsch [1] asserts
that f(z) and fl(z) have the same number of zeros in Re z > 0, whether or not they
are Hurwitz.

Our objective is to get a short proof ofTheorem by use of Theorem 2 below,
which is very easy to prove, but seems not to have been stated heretofore. The
method also applies to Benjaminowitsch’s generalization, though details are not
given here.

LEMMA. Let C C denote the semicircular contour z Rez, -z/2 __< 0
=< zr/2, together with the segment -R <= y <= R of the imaginary axis. Let K K
be any continuous curve joining z 0 to z 1. Suppose p and q are polynomials
such that, for some arbitrarily large R,

(3) [p(z) + 2q(z)[ > 0, (2, z)6 K x C.

Then p and p + q have the same number of zeros in the right half-plane.

* Received by the editors August 19, 1970, and in revised form April 7, 1971.

" Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massa-
chusetts.

: Department of Mathematics, University of California, Los Angeles, California 900124.
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For proof let K be given by z 2(0, 0 < __< 1, where 2 2R is continuous
and 2(0) 0, 2(1) 1. If R is any value for which (3) holds, the integral

fcp’(z) 4- 2(t)q’(z)
I( t) - p(z) 4- 2(t)q(z)

dz

is a continuous function of which is integer-valued and hence is constant. Thus
I(0) I(1). But I(0) is the number of zeros of p within C and I(1) is the number of
zeros of p + q within C. Since R can be arbitrarily large, the result follows.

THEOREM 2. Let A(z)= zz" + ..., B(z)= fiz" + ..., C(z)= 7z" + be
polynomials of degree m, rn, and n, respectively, where the leading coefficients , fl,
and 7 are not zero. Suppose

(4) IA(iy)[ > IB(iy)[, -o < y < ,
and suppose z7 + =/= O. Then if either of the polynomials

A(z)C(), A(z)C(z) + (z)C*(z)

is Hurwitz, so is the other.
For proof, apply the lemma with p AC and q BC*, so that

p(z) + Zq(z)= (cz7 + Zfl)zm+" +
Let K of the lemma be any curve which lies in the disk Izl _-< 1 and avoids the point
z -eT/flP. Then

where 6 > 0 is constant. This shows that p + 2q satisfies the hypothesis of the
lemma on the curved part of CR for all sufficiently large R. Since (1) gives

IC(iy)l---IC*(iy)l, - < y < ,
any imaginary zero of C is also a zero of C*, and hence is excluded if either of the
polynomials considered in Theorem 2 is Hurwitz. Thus (5) and (4) give

Ip(iy)l > Iq(iy)l, - < y < .
Since 121 =< on K, this shows that p + 2q satisfies the hypothesis of the lemma on
the straight part of C. Thus Theorem 2 follows.

The following deduction of Theorem 1 from Theorem 2 is based, in part, on
[1] and [3]. Iff(z) is Hurwitz, then Re(al/ao) > 0, since -al/ao is the sum of the
roots. For the rest of the proof it is convenient to assume ao 1, which is permis-
sible because dividing f by ao has the same effect as dividing fl by a0fio. Hence, we
can take ao 1, Real > 0.

When ao 1, an elementary calculation gives

fl(z) )Zn-1 4- "’’, where 4- " --(C 4- g)(a 4- 1),

and hence fl has degree n 1. By (1) it follows that

(6) (fg)* f’g*, (f + g)* f* + g*,
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where the first of these relations holds for all polynomials f and g and the second
holds if f and g have the same degree. By (6),

f(z) f*(z)(z + + a l) f(z)(z + ).

This and the original equation for fl (with ao 1) can be solved for f to give

-(c + g)(a + fix)f(z)= (z + + al)fl(z) + (z c + a)f(z).

We use Theorem 2 with n replaced by n 1 and with

A(z) z + -t- a 1, B(z) z c + a l, C(z) f(z).

From Re c > 0 and Re a > 0 follows

]Re A(iy)] > ]Re B(iy)], Im A(iy) Im B(iy),

and hence [A(iy)[ > [B(iy)[. Since e7 + fl 7 + - 0, Theorem 2 shows that
f(z) is Hurwitz if and only if (z + + al)fl(z) is Hurwitz. The latter is Hurwitz if
and only iffl(z) is, since Re (g + al) > 0. This completes the proof.
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TRANSFORM METHODS FOR OBTAINING ASYMPTOTIC
EXPANSIONS OF DEFINITE INTEGRALS*

FRANK STENGER"

Abstract. With the condition j’x Idh(t)l < , asymptotic approximations are obtained to the
integral .Rf(Odh(2t) over the real line R as 2 , (a) by approximating (x)= .Rei’t dh(t) in a

neighborhood of x 0 and (b) by using a basis {k(t)}= 1, where in contrast to the usual case ffk(t)
need not be equal to k-

1. Introduction. In this paper we derive some new methods of obtaining
asymptotic approximations of integrals of the form

I(f, 2) f f(t) dh(2t).

In (1.1) R denotes the real line, 2 is a large parameter,f C.(R), that is, f is
continuous and bounded on R, and h(t) is of bounded variation on R.

In most applications dh(t)= e dt, or dh(t)= {0 if t=< 0; t-le -tdt if
> 0}, where > 0. In these cases the usual procedure is to expand f(t) in a

power series in about 0 and to perform termwise integration. In the general
case this usual procedure fails to yield an asymptotic approximation to arbitrary
high order of accuracy when"

(a) f only has a finite number of derivatives at 0;
(b)

(1.2) tt fR k- dh(t)

exists only for k 1, 2, ..., n;
(c) it is not possible to obtain #k explicitly.
A new approach is given for approximating I(f, 2) by use of Fourier trans-

forms of dh, that is,

(1.3) (x) f ex’ dh(t).

Instead of proceeding in the usual manner, that is, expanding f at 0 and per-
forming termwise integration, we approximate h(x) in a neighborhood of x 0.
In this way we obtain a class of asymptotic approximations, including that obtain-
able by expansion off at --0 and termwise integration. We thus propose to
overcome partially the difficulties (a) and (b) above by use of Fourier transforms
whenever it is possible to express h(x) explicitly.

Received by the editors June 2, 1970, and in revised form April 16, 1971.- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
The results of this paper were first announced in 1].
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Even if it may not be possible to express #k explicitly, it may be possible to do
this for

(1.4) Vk(2) fR Ok(t) dh(2t)

when k 1, 2, 3, We describe a procedure which, under suitable conditions
on the 0k, enables us to use the sequence {vk(2)} to obtain an explicit asymptotic
approximation for I(f, 2).

Handelsman and Lew [2] are currently studying the use of Mellin transforms
for approximating integrals of the type (1.1). In their work, the residues at the
poles of the Mellin transform of h(t) determine the coefficients of the asymptotic
expansion of I(f, 2). We also mention the recent work of Jones [8] which has
appeared since the present work was first submitted, and which also makes it
possible to handle the difficulties of the type (b) mentioned above.

2. The use of Fourier transforms. Let W denote the class of all functions g(t)
of bounded variation on R, that is,

(2.1) V(g) fn Idg(t)[ < oo,

and let if/denote the isomorphic class of all transforms of dg defined by

(2.2) (x) f eix’ dg(t).

Let (P)C, (R) denote the class of all functions whose pth derivative is continuous and
bounded on R.

Recently [5] the author showed that if

,(x)
(2.3)

(1 e-iX)"
(x)

(n) Rfor all xl _-< 2, where ,, 8 e if/, then for everyfe C, f"l C,(R) we have

(2.4) ;1 f(t) dg(2t) 0(2-")

as/t --, oo. This result leads us to the following theorem.
THEOREM 2.1 (Approximation theorem). Let , ,, , and let

(2.5) h(x)- (x)= x"8(x)

for all x in the interval (-s, s), where s > O. Then

(2.6) fR J’(t) dh(2t) fR
as n oo, for all j’ C,(R) f"l C,(")(R).

f(t) dg(2t) + 0(2-")
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Proof. Let us set/-}(x) ft(sx/4), a(x) p,(sx/4), R(x) #(sx/4). Then clearly
/, ( and/ e if, since, for example,

(2.7) ff-I(x)=ft(s--)=feZ"dh()and f
and therefore,

(2.8)

dh

ft(x)- 6(x)= x"

for all [xl <= 4. Let us write the right-hand side of (2.8) in the form

(2.9) x" R(x) (1 e-

The function x"/[1 e-i’]"(s/4)" is clearly infinitely differentiable on the interval
[-4, 4], and since any twice differentiable function of compact support is in
there exists an element #, e W such that

(2.10)
e -’x

(l(X)

for all Ix[ _<_ 4. Furthermore, by the ring property of W we have #(x)R(x)
Consequently, by (2.5), (2.6) and (2.7) we obtain

(2.11) ff(t)dh 4t)- ff(t)dg 4t)- + O )-n
as 2 m, which is equivalent to (2.6).

COROllARY 2.2. Let h, g, and be defined as in Theorem 2.1. If
(2.12) h(x)- (x) x"Up(x) +
where p and q are power series in x that converge in a neighborhood of x O, then

for all f C.(R) C")(R).
Proof Clearly x coincides with an element of in some interval (-s, s),

s > 0. Furthermore, since Ixl e e if, it follows that (x)xl e e if, where is
any twice differentiable function defined on R such that (x)= ex on (-s, s),
(x) 0 on R- (-2s, 2s). This function satisfies (x)lxl e Ixl on the
interval (-s, s). The remainder of the proof of Corollary 2.2 now follows from
Theorem 2.1.

3. A more general basis. Let us set

(3.1) # #(2) fR tk- dh(At)

for k 1, 2, 3,.-., and let vk(2) be defined by (1.4).
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DEFINITION 3.1. A set of n functions 1, "’", , is said to have Property A,,
if given any polynomial P(t), there exist constants Cl, "", c, such that

(3.2) P(t)- c#/(t)= O(t")
k=l

as t--, 0.
TEOREN 3.2. Let q(t) be any function such that

(3.3) qo(t) akt + O(t")
k=0

as --, 0, where ak :/: 0 for k 0, 1, ..., n 1. If the n numbers b l, ..., b, are dis-
tinct, then the sequence {Ok},= with Ok(t) qO(bkt has Property A,.

Proof It suffices to show that given any polynomial
n-1

(3.4) P,_ 1(t) pkt,
k=O

there exist constants c l, "", c, such that

(3.5) /o l(t) cq)(bkt) O(tn)
k=l

as 0, that is,
n-1 n-1

(3.6) p/J- cajbP= O(t")
j=O k=lj=O

as --, 0. This equation will be satisfied if the ck can be chosen such that

(3.7) Ckb p/aj, j O, 1,... n 1.
k=l

The system (3.7) is a Vandermonde system whose determinant is not zero. Con-
sequently Cl, "., c, are uniquely determined.

THEOREM 3.3. Let {Ok},= have Property A, and let tl, t, be any set of n
distinct points on R. Then there exists a positive number 2o such that whenever
2 > 2o, then the determinant of the n x n matrix2 [Ok(tj/2) is not zero.

Proof Let the n x n matrix [bij] be determined such that

(3.8) it- 1]_ [b33[,(t)3 / [3(t),
where e(t) O(P) as -, O,j 1, 2,..., n. Then we have

(3.9) [t,j.-1/2-1] [bk][g/(ti/2) + [(ti/2)l"

Since e(t) O(t") as 0, we have det [(ti/2) 0(2 -"2) as 2 --, . The deter-
minant of the matrix on the left of (3.9) satisfies

(3.10) det [t,J. 1/2-1] 2-,(,+ 1)/2 det Iti- 1].

The notation [aij denotes a matrix with i, jth element aij" the notation [b] denotes a vector
with ith element bi.
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Hence,

(3.11) det([bkj-][Ok(ti/)c)-]) ).-"("+l)/2det [ti-l](1 + O(2-1)),

which implies that det [bkj :/: O, and det [Ok(ti/2)] :/: 0 for all 2 sufficiently large.

4. Quadrature schemes. Let numbers /k, k 1, 2, ..., n, be defined by
(1.2), and let us set/ (/tl, ..., #,)r, where the superscript T denotes the trans-
pose of a vector. Let the points l, ..., t, e R be distinct and let w (co l, ..., co,)r
be the solution of the system of equations

(4.1)

Then we have

(4.2) P(t) dh(t) ’ ogjP(tj)
j=l

for every polynomial P(t) of degree n- in t. Depending upon the choice of
{t,]}= 1, (4.2) may be exact for all polynomials of degree m 1, where n =< m __< 2n.
If we let P(Jl t) denote the polynomial of degree n which interpolates3 fat the
points l, .", t,, we have

(4.3) fR P(f’ t)dh(t) (Djf(lJj).
j=l

The reader should consult Davis and Rabinowitz [4] for further details concerning
the construction of quadrature schemes.

Now suppose that Je C,(R) 0 (")C, (R). Then the following result established
in [5] is valid.

THEORFM 4.1. Let f C,(R) f’l (n)C, (R). Then

(4.4) fR f(t)dh(2t)
j=l

Now let {Ok},= have Property A and let v v(2) (u1, Un)T be deter-
mined so that

(4.5) [j(ti//)]U-- Y,

where v (v l, v,)r and vi(2)is given by (1.4).
THEOREM 4.2. Let {Ok},=l have Property A and let

where (p(t) is a nonnegative function such that qo(t)ldh(2t)= O(1) and

f Rltl"q)(t)ldh(Rt)l O(2 -n) as 2 v. Iff e C,(R) C,(")(R), then

(4.6) f #(t) dh(,t) vjf(tj/2) O(,-n).
j=l

Proof Suppose that for any polynomial P of degree =< n we have

(4.7) P(t) dh(2t) vjP(tj/2) O(2 -n), R j=l

The polynomial P satisfies P(f, tj) f(tj) for j 1, 2, ..-, n.
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as 2 ---, . Let P(fx, t) be the polynomial of degree n which interpolates f(t)
at the points t/2, j 1, 2,..., n. We shall also assume without loss of generality
that the numbers l, "’, t, are the same as those in (4.4). If (4.7) holds, then

f(t/;) dh(t) v;f(tj/fl)
j=l

[f(t/2)- P(fz, t)] dh(t)- vs[f(ts/2 P(fx, ts) + 0(-").
j=l

But since P(fx, tj) f(tj/fl), and

(4.9) fR P(fx, t)dh(t) cojj’(tj/fl),
j=l

where coj is defined as in (4.4), the left-hand side of (4.8) is bounded by the right of
(4.6).

It remains to show that (4.7) holds. To this end we recall from the property
of the 0k that there exist constants c l, C such that for all R, 2 > 0,

(4.10) IP(t/2)- c;O;(t/2)l <= Klt/Rl"qo(t/R),
j=l

where K is a constant. Also, we have

(4.11)
j=l k=l j=l

so that the left of (4.7) is equal to

fR [P(t/2) j=l C(t/2)l dh(t)
(4.12)

provided that Vk O(1) as 2 --, o. Let us set T [tj-1//i-1, [i(tj//)], and
B [bkjl, where bkj is defined as in (3.8),

]2 R (1, t, 1)T dh(2t), V f (l(t), ln(t))T dh(2t).

Then

(4.13) Tw l /v v,

and from (3.9),

(4.14) T B + e,

where I111 O(2-n), I1" denoting any suitable and compatible matrix norm
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corresponding to a vector norm. From (3.8) we also have

(4.15) # By + rl, tl f, (el(t),’", e,(t))r dh(2t),

and so IIr/ll O(-n). Eliminating in the second of equations (4.13) we get

(4.16) B-(T e)v B-( ),

which, in view of the first of equations (4.13) and the above bounds on e and q,
yields

(4.17) v=w+6,

where 11611 0(2-1)(since Ilwll O(1)). This completes the proof.

5. Examples. In this section we illustrate the application of Corollary 2.2
and Theorem 4.2. One application has already been made in [5]: corresponding to
numbers t R we found numbers such that (x)- = eitx O(xn) as

Consider the following two integrals:

(5.1) H(u, 2) f. f(u + t)dh(2t)

and4

(5.2)

where

K(u, ) fn f(u + 0 dk(2t),

h(t) _1 r|t du
7"C _ool "qt" bl

2’

(5.3)

if, si;u)
2

We shall apply Corollary 2.2 to determine the asymptotic behavior of one of H or
K from the other, as 2 .

Using the notation of (1.3) we have

h(x) e-’t,
(5.4) (x)=0 if xl > 2,

1-lx if Ix[ 2.
Thus

t(x)- -Ixlp(x)+ x2q(x),

4 The function U(, r/) H(, l/r/) is a harmonic function which has the property that U(, r/) f()
as r/ 0 at each point of continuity off. The integral (5.2) is analogous to F6jer’s integral in the
theory of Fourier series.

The functions H and K are also related in 7, pp. 28-301, through Cauchy’s singular integral.
However, the order relations obtained here are more accurate than those in [7].
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and also

(5.6)
(x) 2/7c(x) + 1/2x2 --]xl3p2(x) -1- x3q2(x) or

(x)- 2/(x) + 1/2(eix + e -i’) Ixl3p3(x) -t-- x3q3(x),

where the p’s and q’s denote power series in x that converge in a neighborhood
of x 0. More generally, if real numbers al, a2,’", % are chosen such that
0 < al < a2 <’.. < am, then we have the system of linear equations"

al a2

al-:- a2m-1

)41

2

The system (5.7) is obtained if we set

j=l

where e(x)= O(]xl m) as x --, 0, and equate equal powers of x on each side. It is
easily seen that either

(5.9) e(x) xmp4(x) or e(x) --Ixlmq,,(x),

where P4 and q4 are power series in x that converge for all finite x.
By Corollary 2.2 we thus have from (5.5) that

(5.5a)
H(u, 2) f(u) + 0(2-1),
K(u, 2)= f(u) + 0(2-1)

as 2 --, o iffe C*(R) CI C(,I)(R). Similarly, using Corollary 2.2 on (5.6), we get

(5.6a) H(u, 2)= 2K(u, 2)- 1/2[f(u + 1/2) + f(u 1/2)] + O(/ -3)

as 2 , provided that fe C,(R)fl (3)C, (R). Finally, Corollary 2.2 applied to
(5.8) and (5.9) yields

(5.8a) K(u, 2) AjH(u, aj2) + O(2-m)
j=l

as 2 o, provided thatf C,(R) CI (m)
--* C, (R). Note that while we have not been

able to express explicitly the coefficient of 2- in either of the equations (5.5a),
the representation (5.6a) enables us to side-step this problem, since the coefficient
of 2-t in H(u, 2) is the same (whatever it may be) as that in 2K(u, 2).
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Forexample, if > 0, Im zl.,Im Z2 < 0, the integral (5.2) withf(t) (t z1)
(t z2) seems difficult to evaluate. However, using residues, we can evaluate

(5.1) to obtain

H(u, 2)
2 dt. (U + t-- zx)(tt + t-- z2)(1 + 22t2)

(5.0)

(u + i/R- z)(u + i/2- z2)

By use of (5.8a) and (5.10) we can therefore obtain an approximation to

(5.11) K(u 2)=lf(sin2t2- 2dr
2t (u + t- z)(u + t- z)’

for which the error is O(2 -m) as 2 .
We mention that the device used to obtain (5.8a) generalizes the procedure

used to derive the Romberg integration method [6]. These approximations are
quite remarkable; moreover, attempts to obtain them by expansion off about

0 and by use of termwise integration have proved unsuccessful.

5.2. An example using a more general basis. Let v, and be real, and let

fl > 0. Let us start with the well-known identity

(5.12) e-a’J(t) dt (2 + 2)- 1/2

f12 1/2( + +
and note by Theorem 3.2 that the sequence {e-}= has Property A, (defined
in Definition 3.1), provided that the 7 are distinct. Taking 7 1, 7z 2, t 1,

2 2, we obtain , 2 by solving the system

-a/ e -2/ o [2+(1+)2]-/2
(.3) / +(1 + )3/ +

-2/ e / 2 + (2 + )2]/2 +
2 + (2 + )2]

Applying Theorem 4.2 with (t) e3 we find that iff C.(R) C3)(R), then

(5.14) e-J(et)f(t)dt of(1/) + of(2/e) + e,

where

(5.15) O(- 3) as .
6. Summary. In this paper we have developed two different methods of

obtaining an asymptotic approximation to the integral

(6.1) H(f, 2) f f(t) dh(2t),
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where h is of bounded variation on R, and for purposes of this summary, f is
infinitely differentiable and bounded on R.

The first method depends on knowing

K(f ) fR f(t) dk(2t),

t (x) fn eixt dh(t) and
(6.2)

[c(x) fn el:" dk(t),

where k is also of bounded variation on R. If we can furthermore find constants
0 < a < a2"" < am and A, A2, A, such that

I Xnp(X)
(6.3) f(x)- Afc(x/aj)= l or

= Ix "p(x),

where p is twice differentiable in a neighborhood of x 0, then

(6.4) H(f, 2)= ArK(f, at2)+ O(2-")
j=l

as 2 --* o.
The second method of approximating (6.1) depends on being able to express

explicitly the integrals

(6.5) vr(2) fu Or(t) dh(2t),

where the functions r, J 1, 2, ..., m, have the property that given any poly-
nomial P there exist constants Cl, c2, .’-, Cm, such that

(6.6) n(t)- , crffr(t) O(W)

as 0. If 0 < t < 2 < < tin, We can then also solve the system of equations

(6.7) [@i(tj/})]W V

.., Win)r, where v (Vl,V2,..’, Vm)r. We then have thefor the vector w (w l,

approximation

(6.8) H(f, 2)= , wrf(tr// + 0(/ -m)
j=l

as 2--, oo.
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LIE THEORY AND GENERALIZED HYPERGEOMETRIC
FUNCTIONS*

WILLARD MILLER, JR.’

Abstract. In this paper the foundations are laid for a study of generalized hypergeometric and
G-functions based on the representation theory of Lie groups and algebras. It is shown that many
fundamental series identities and Mellin-Barnes integrals for these functions can be derived simply
and elegantly using group theory.

Introduction. In this paper we define a Lie group G.,q which is closely related
to the differential recurrence formulas for the generalized hypergeometric functions
pFq. Then we demonstrate that the representation theory of Gp,q yields significant
information about the properties of the pF.

In 1 and 3 the Lie algebraic techniques described in 1] are applied to
compute basic addition theorems and generating functions for the pF. Weisner’s
method [2 figures significantly in this approach. In 2 Vilenkin’s method of
integral transforms 3] is applied to derive some Mellin-Barnes integral representa-
tions for the G-function /-2q+ 1,p

t.p,q +
Here, the emphasis is on the group theoretic methods themselves, and no

attempt is made to list all possible special function identities obtainable by these
methods.

The techniques of this paper also apply to G-functions. In a future paper we
shall discuss the insights into Mellin-Barnes integrals for general G-functions, and
integrals of products of G-functions which are provided by group theory.

1. The group Gp,qo Let Np,q be the (2(p + q) + 1)-dimensional complex Lie
algebra with basis N, ,j 1, ..., p, Aak,,k, k 1, ..., q, and , and nonzero
commutation relations.

All other commutators between basis vectors are zero. The connected, simply
connected complex Lie group Gp, with this Lie algebra consists of elements

g(aj, b,,c;yj,,)= exp(ajNj + bkk + c//)exp ( 7j + k),
(1.2)

aj, b,c,7j,eC,
with group product

g(a, b, c ,’7, )g(a; b; c’ 7; )
(1.3)

g(aj + ae,b + be-,c + c’e’+’"+"; 7j + 7, + ).
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The identity element is g(0, 0, 0; 0, 0) e and

(1.4) g-l(aj, bk, C;Tj,k) g(--aje-j, --bkek, -ce-’ q; -7, --k).

A simple model of cSp,q is given by the generalized Lie derivatives

R= t, S= t + , C, j= 1,...,p,
Otj

(1.5) L u; Uk + ilk, flk C, k= 1, q,
Uk

V tx’" tpU ...Uq,

acting on the space @,q of analytic functions f(t,..., tp, u,..., uq) f(tj, u)
which are defined for all nonzero values of tj and u. A basis for ,q is provided
by the functions

ml fmptl U(1.6) f,,(tj, u) tp v -x

where the mj and nk run over all integers. The action of the operators (1.5) on this
basis is

if j -# j’,
Rj’fmj,,k fa,,,, rfij

mj,+ ifj=j’,

Sjf,j,, (mj, + aj,)f,,,
if k k’,

n,- 1 ifk

fm,n (rig, + flk’)fm,.u,
Vfmj,m, --fmj+ 1,m, +1"

Expressions (1.7) define an algebraic representation P(aj, fik) of ,,q on p,q.
Here p is reducible but not completely reducible. Due to the isomorphisms
P(j, ilk) P(j + aj, flk + bk), where j, b are arbitrary integers, we can make
the restrictions 0 =< Re aj < 1, 0 < Re fik < 1. Note the identity

(1.8) C =- R1R2 ""Rp- VLIL2... L O.

Using standard Lie theory techniques we can extend the Lie algebra repre-
sentation p(aj, ilk) to a group representation of Gv, on ov, (see 1]). The induced
group action is defined by operators T(g) such that

[T(g)f](tj, uk) exp I ajtj + bk/u + ct tvul u

+ o7 + flkk]j’(tje, Ukek),

f ffv,q. These operators necessarily satisfy the group homomorphism property
T(g)T(g’) T(gg’).
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rWe define the matrix elements m’.,(g),,j,k of T(g) with respect to the basis
fmj,nk by

mm,a m,nl,
m),n,

or

(1.11)
exp IE altj + Z b/u + Cl Uq -Jl- 20j’j -1

t- Z
(/71eYl)ml (Uqeq)nq E Tgr’]m)ni’m’l unq

Expanding the left-hand side of(1.11) in a power series and computing the coefficient
of t7 u we find

rn)nT(g),,, exp 7j(e + mfi + 2 k(flk +

r= 1,k=1 b-nF(mr- mr + 1)F(1 nk +

pFq(m m; n + nk; cbl bq/(al ap)).

See [4] or [5] for the definition ofpFq. Note that the matrix elements are polynomials
in at, bk and c. (If the parameters mr, m), nk, n, are allowed to take complex values,
the right-hand side of (1.12) is an entire function of these parameters. The matrix
element is equal to this entire function evaluated on the integers. Thus, (1.12) is
zero whenever m m/< 0 for some j.)

Since the operators T(g) define a representation of Gp,q we immediately
obtain the addition theorem

(1 13) m’.n m’.n’T(gg )mink M/VT(g )minT(g)’
MiNk-

valid for all g, g’ e Gp,q. Substitution of (1.3) and (1.12) into (1.13) leads to a wide
variety of identities for the generalized hypergeometric functions.

Let .(Gp,q) be the space of all entire functionsf(g) defined on the group Gp,q.
The right regular representation is defined on this space by

(1.14) [o(g’)f](g) f(gg’), g, g’ e Gp,q, f a-(Gp,q).

It is easy to check that defines a representation of Gp,q. Moreover, for fixed

m), n, the subspace of -(ap,q) spanned by the functions

(1.15) fm,n(g) T(g),", 00 mj, rt

transforms according to the representation p(xr, k). Indeed, (1.13)-(1.15) imply

(1.16) [(g )fm,nk](g) fm,n(gg) T(g )m/k fMjNk(g)"
MiNk
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Using standard techniques in Lie theory [1, Chap. 2], we can compute the
Lie derivatives corresponding to the representation

(117) Rj=ej-, Sj=--, Lk e --, Tk= V =e
cOa; C37j Cbk k C"

It follows that the operators (1.17) and basis functions (1.15) must satisfy relations
(1.7). It is a straightforward (though tedious) computation to verify that these
relations imply the following identities for the pFq:

dz + m;, pFq(m; nk Z) m;,pF(; rig; Z),

d
F(mj n z) (n, 1)pk](mj, h(1.18) z+n,- p

d
pF(mj; n; z) ml mp

dz n
pF(mj + 1, n + 1, z).

Here j and h are given by (1.7) and mj, n take on all integer values such that the
polynomials pF(mj; n; z) are defined. These three relations are obtained from
the operator identities for Rj, L, V, respectively. Relation (1.8) implies the
differential equation

(1.19) Zzz + mx (z;+
for the generalized hypergeometric functions.

d
+nl-1 Zz+nq-

pFq(mj;nk; z) 0

Now that we have obtained these identities for integral values of the para-
meters, we can easily verify from the power series definition of pFq that they remain
valid for complex mj, nk, z ifp < q + 1, ([zl < 1 ifp q + 1). This in turn suggests
another model of p(ej, ilk)" Namely, we set

zCzzRj tj + Sj,, Sj tj-. + j,

+ +

V ...tp U "’’UqZ
It follows from our previous identities that the operators (1.20) and the functions

F(ml + 1)"’" F(mp + p)
f,(z, tj, Uk)

r(nl + fl,).., r(n. + G)
(1.21)

pFq(m2 + " nk + ilk" z)t7 """p 1

define a model of p(ej, ilk) for p N q + 1. (Here, for simplicity, we consider only the
case p < q + so that f,(z, t2, Uk) is an entire function of z. Also we require
0 <Re,j< 1,0 <Reflk< 1.)
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The Lie derivatives (1.20) define a local multiplier representation of Gp,q on
functions f(z, tj, Uk). This action is determined by operators

[Q(g)f](z, tj, Uk) exp ( 7jej + kflk)

"1-I (1 a2t2)- I-I (1 / bk/Uk)-k

(1.22)

.fI(z + ctl u)(l + bl/U,)...(l + b/u) tje’ ,(u + b)e](1 axt) (1 aptp) 1 ajtj

lajtjl < 1, Ibk/Ukl < 1, g Gp,q.

The matrix elements

(1.23) Q(g)fmj,k
rn),n

for this model are necessarily identical with (1.12). Thus, substituting (1.12), (1.21)
and (1.23) and simplifying, we obtain

[F(mj + aj) j’’""-kH LF(Hk + ilk)(1 --ajtj)m+(1 + bk/Uk)nk+flk-1
j,k

pFq(mj + Hk -- flk
(z + ct Uq)(1 + b/ua)... (1 + bq/u)’

(1 altl)... (1 aptp)

(1.24)

pFq(mj nt- orj, n if- fig, Z), lajtjI < 1, Ibdul < 1.

If g exp (aN1), this formula reduces to the well-known expansion

(1 a)-rpFq

a F(o-__+h) pFq(a q- h, (x2 fl, z), lal < 1,
h’ r(o-)h=O

where a, aj, flk are noninteger complex numbers. Similarly, if g exp (b_p), the
formula reduces to

(1 + b) lpFq(oj; "c, ilk; z(1 -]- b))

b F(’c)
pFq(ej r h fig; Z),h=o2 h’F(. h) Ibl < 1.
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For g exp (cU)we have

pFq(oj + h; flk -I- h; z).

Setting tj eiJ,uk eik, multiplying both sides of (1.24) by e-iMl’

e -iNqq and integrating we obtain

(2re)p+ o (1 ajeiq")

(1.25)

pFq(ma+ j;nk+fik;
(Z + cei(’++q))(1 + ble-i’) (1 + bqe-i")

(1 a lei*) (1 apeip)

do dq)pdO dOq

F(Mj + j) F(nk + ilk) at’-’’ ]I-Ij,k r(mj + ej) r(Nk + ilk)bk-" r(mj M + 1)r(1 Nk + k)

pFq m Mr; 1 N + nk;

pFq(Mj + oj; Nk + k Z),

a ap

laJ < 1, Ib,l < 1.

The method of Weisner [11, [2] can also be used to derive identities for the
pFq from (1.20) and (1.22). For example, we search for a simultaneous eigenfunction
h(z, t.i, uk) of the commuting operators R1, S.i, 2 <= j <= p, T, 1 <= k <= q, which
satisfies Ch 0 (see (1.8))"

Rph h, Sjh o@, <= j <= p 1,
(1.26)

Th flkh, <= k <= q, Ch =0.

(For simplicity we set ej flk 0 in (1.20).) The general solution of the first
p + q equations is

(1.27) h(z, t, uk) r(z/tp) exp (--t; ’)t]’ t;-u’ u,
where r is an arbitrary function. Requiring Ch 0 we obtain

(1.28) r(x) p_ 1Fq(oj; ilk; x)

as the only solution bounded in a neighborhood of x 0 for general complex
(Zj, k"

The function [Q(g)h](z, tj, Uk), g Gp,q, is also annihilated by the operator C
and can be expanded in a Laurent series in terms of t,..., tp, U l, Uq. The
coefficients in this series are necessarily of the form pFq:
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p-1 q

H (1- ajtj)- U (1 / bk/blk)#k-lexp (--t; )
j=l k=l

(1.29) .p_lFq[e; flk;(z/tp + Ct p Uq)(1 -+- bl/Ul)’’’ (1 -+- bq/uq)
(1 air1)... (1 ap_ltp_l)

Z Z Jm,,mp,nu(g)
m,i,m 0 nk

pFq(ea + mj,-mp; flk + nk;z)t71"’" tgeqlt m"u]’’’"

]ajtjl < 1, 1 j p- 1, Ib/ul < 1.

(Indeed, the term J(g, z)t7... u. in this expansion is annihilated by C and is a
simultaneous eigenfunction of the Sj and .) Setting z 0 on both sides of this
identity we obtain the generating function

p--1

( a/)-" ( + b/u)- exp(- t; )
j=l k=l

(1.30) p- Fq Ctl ;p... Uq(1 + bl/Ul) (1 + bq/uq)’
(1 air1) (1 ap_ ltp_ 1)

Z Z Jmj,mv,n/c(g)t’
m=O., n/c

tp_lmP-it;inPuT1.. unqq

for the Jmj,n/c(g). Here we assume la/jl < 1, [bk/Uk[ < 1. Comparing this expression
with (1.24) we find

k=l r%)r(n, +/,)r(1 m)r(1 nk

p- 1Fq -mj; 1 rig;
-Cbl "bq (-1)mp

::. [t-] F(mv + 1)"

In the case g e, (1.29) simplifies to

(1.3) e
_

F(/,/’, zr) F,(j,
m--O

It is easy to obtain many similar identities by considering [Q(g)h](z, tj, uk) in
regions where g is bounded away from e, e.g., lajtjl > 1. We shall present some
examples of such identities shortly.

The above analysis can be generalized through the construction of a simul-
taneous eigenfunction h(z, tj, uk) of the commuting operators Sj, <_ j =< p’;
RI, p’ + 1 <= < p; Tk, 1 < k <= q’ Li, q’ + 1 <= < q which satisfies Ch O"

(1.32)
Sjh czjh, 1 j p’, Rlh h, p’ + 1 <__ p,

Th=kh, 1 <=k<=q’, Lih=h, q’ + 1 <i<=q, Ch O.
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(We set cz; l k 0, fli 1 in (1.20).) Here p’ can take values 0, 1, ..., p and
q’ can take values 0, 1,..., q. (For simplicity we require p’ =< q’.) For fixed p’ and
q’ the solution h of equations (1.32) bounded near z 0 for arbitrary complex
;,/?k is, to within a multiplicative constant:

h-- r
tp, + tpblq, +

+ + uq t, t+1 1)
Uq

(1.33)

r(x) ,r,,%; fl; x).

Again the function Q(g)h is annihilated by C and can be expanded in a Laurent
series in tl,..., Uq such that the coefficients in the expansion are of the form
pFq

p’ q’

H (1- at2)- [-I (1- bffuk)ilk-1
j=l k=l

exp (- t-, 1+1 t-1 -- b/q,+ -- -1- Uq)

(1.34)

{ [ z
p,Fq, oj; flk tv’+ tpUq,+ Uq

-]- ct tp,bt Uq,1
(1 altl)- (1 ap,tp,)- 1 +

Jmj,mt,m,,ni(g)Z F(ni + 1)mj,ml,k, ni

pFq(oj nu mj, ml; flk ’]-- nk, ni -+- z)

Jt k i

lajtjI < 1, Ibfful < 1.

We can obtain a simple generating function for the Jm,m,nk,n,(g) by setting z 0
in (1.34). Comparing this expression with (1.24) we find

(1.35)

q’ F(mj + %)F(flk)a bkJm,,m,,n,n,(g)
=1 r(aj)r(n + fl )r(1 m2)r(1 nk)

p,Fq, mj n
bq, )m

al’" l-p’+l F(ml + 1)

if ni _-> 0 for all i. Moreover, a more careful analysis shows that (1.35) is valid even
if some of the ni are negative.

If p’ p, q’ q, these expressions reduce to (1.25). If p’ q’ 0, they reduce
to (1.11), (1.12).
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We can consider many more identities of this same type by considering
Q(g)h for g bounded away from e. For example, let p’= p, q’=q and
g exp (1. p). Then

z)Q(g)h [tp/(1 tp)]peFq , % k tp

If Itpl > 1, then

so we can expand (1.36) as a power series in t-1. The coefficient of t in this
expansion will be a multiple of pFq(j, m; z)

(1 r)-fq ,;/;
(.7t

j. F(, -m;/ zl<, Irl < 1, t .
m=O

Setting z 0 on both sides of this equation we find

F(p -+- m)
F(ep)m

2. Vilenkin’s method. We apply Vilenkin’s integral transform method as
set forth in [3] to compute some Mellin-Barnes integral formulas for the hyper-
geometric functions. Let Dp,q be the subdomain of Rp+ consisting of points
(tj, u) such that 0 < tj, u < and let @p, be the space of infinitely-differentiable
functions on Dp, with compact support. Finally let G, be the (2(p + q) + 1)-
dimensional real Lie group defined by (1.3) where now the parameters aj, b, c, 7j,
are all real. Then the operators T(g), (1.9) define a representation T of G,q on

Iff(tj, uk) p,, we define the Mellin transform (zj, 2) offby
ff(rj, 2) f/f(rj, 2)

(2.1) f(tj, u)t]’-1 t]p- Xu’-1 UZqq- dt duq.

It is well known that

f(tj, uk) /f/- l(tj, u)

(2.2)
1 pj+ia3 f6k+ioo(2rti)p+q pj-io ./J-i

(Tj, 2)tTM tp

u]-Z’ u-Z" dr1 d2q,

where the p + q constants pj, are any real numbers.
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The operators T(g) induce a representation S on the space of Mellin trans-
forms, defined by

(2.3) S(g) =/f/T(g)-1

Thus, if ,Jf is a Mellin transform, then S(g)- is the Mellin transform of
T(g)f"

[S(g)](z;, 2) (2ri)v+
(2.4)

pj+ io0 6k + io0

T(g) (vj, k)t; 1 uOq dv dq.
pj--i

If the 2(p + q)-fold iterated integral is absolutely convergent, we can interchange
the order of integration and write

pj +

(2.5) [S(g)(, 2) K(g r 2 v, o) (v, o) dv doq.

Thus S(g) is an integral operator with kernel function

K(g zj, 2k; Vj, k) (2i)"+

(2.6)
+ctl tpUl Uq

t]’-v’- u.-.- dt du.
In particular, (2.5) and (2.6) are valid if the group parameters satisfy any of the
following conditions"

(a) aj < 0;c 0, all j, k.
(b) ap O, aj < O, 1 j p 1; bk < O, all k c < O.
(c) a<0, allj;bq=0, bk<0,1 kq- 1;c<0.
(d) ap < 0;all other parameters zero.
(e) b < 0; all other parameters zero.

In the last two cases the integration is carried out over only one variable. For
example, in case (d) with g g(0, ap, O, 0; 0;0) we have

(2.7)
+

[S(g)o](zj, Zp 2k) K(g; Zp; Vp)(zj, Vp 2k) dvp,
pp-- i

Re (%- pp) > O, where

e,ttp- Vp- dtp
(- ap)vp

(2.8) K(g; Zp vp)
2zi

Re (% v) > 0, and F(z) is the gamma function [43.

r(Zp v),
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Since the S(g) define a representation of G,q, the kernel functions satisfy the
addition theorems

K(gg’

(2.9)
K(g "/Sj, /k Vj, Ogk)K(g’ Vj, 0) Tj, 2k) dv dogq

,pj--io3 dbk--i3

provided the integral converges absolutely. Rather than compute the kernel
functions (2.6) directly we shall obtain them indirectly through the use of (2.9).

Consider g(aj, bk, C

where

g g(0, ap, 0,0;0, 0),

g2 g(al,O, bk, c;O,O), < < p 1.

The kernel function for g is given by (2.8), and it follows easily from the definition
of the gamma function that

Tj, /k Vj, O)k) F(qTp ];p)
(- c)Vp-ZP P[iK(g2
(27ti)p- Xk=l(--a)-+-v

(2.10) "(--bk)Zk-k+VP-rPF(VP- "V + Zl- Vl)F(’fp- Vp + 0) 2k)

Re(zp- Vp) > 0, Re (vp- zp + z- v) > 0, Re(zp- vp + COk- )k) > O.

Then (2.9) yields

K(g; zj, 2k j,

(2rci)p+q+ (-ap)’’ (-a)’-"’(-bk)"-’F(’cp s)
"--i k=

(2.11) F(s "c;)F(s "cp + r/)F(’cp s /uk) cbt’"bq( 1)p+q+ ds,
a aq

Re-cp>7>Rezp, Re(zp-/Zk)>7>Re(zp-r/t),

Thus, the kernel function is a G-function,

K(g" zj, 2k Zj, 2k)

(2.12)

q+ p(Cbl bq(_ 1)p+q+Gp’q+’I a ap
1- + zp,... 1- qp + Zpl
"Cp- /2,..., Zp- lUq,

a linear combination of q + hypergeometric functions pFq (see [4 or [5]).
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Formulas (2.9) now yield a variety of Mellin-Barnes integrals for the
Gq+l,p For example, if gl g(aj bk c’0, 0) g2 (a 0,0"0,0) with aj < 0,p,q + 1"

bk < 0, c < 0, a’ a < 0, a} 0 forj 2,..., p, then the relation

g(aj + aj, bk, c ;0, 0) gig2

implies

al a)p-l +

Gq,+ql,p cbl...bq (-1)p+q+ 1 na Tp, ’’’, /p /
+1 (al + a)a2 % Zp- g,..., Zp- gq, Zp

1 f+ioo (-aY"-’+(-ay;-SF(s- i)
2i

_
(2.13) cbl bq

(_ 1)p+q+
ala2 ap

T -- S 1- Tp, rl2 + Zp,..., rip + Zpl ds,
Tp ill,’’" Tp ].lq, T,p

Re r’l < 7 < Re (r tk)"
We omit the routine listing of these formulas.

3. Generating functions. Here, we further demonstrate the power and
simplicity of the Lie algebraic method by explicitly computing three identities of
a different type than those obtained in 1.

We choose the generators of p,q in the form

Sj= tj--, Rj= tj z + <j<p
ttj

(z(31) Tk =uk--uu, Lk =u-1 yzz + u---

V l... tpU "’’Uqz,

l<k<q,_

and let

(3.2) C R1R2... Rp- VLIL2 Lq.
For our first example we require that h be a simultaneous solution of the

equations
(S --1- S2)h h, Sjh ojh, j 3,..., p,

(3.3) (R1 + R2)h =0, Th flkh, k= 1, q,

Ch =0.

(Here [$1 + $2,R1 + R2] R q’- R2soS -k- $2 leaves the null space of R1 + R2

invariant even though these operators do not commute.) The first p + q equations
imply

h(z tj, Uk) (1 z)-f
zz

t(1 ) t ;u,’ ,
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where z t2/tl, and Ch 0 implies

z +1 _4zf (1 :)2 pF -, --, 3, 0p k (1 77)2

unique to within a multiplicative constant. Expanding h(z, t, u) in powers of z we
find

(’+2 -4z_(1 v)- pF, %;fl’(1 T)2

(3.4)
c, pF(-n, + n,%;;z)z",

n=O

p-lq, Irl < 1.

The constants c, can be evaluated by setting z 0"

F(e + n)
c,

F(e)n
see [6, p. 137].

In our second example we look for a solution h of the equations

RRh h, Sjh ejh, j= 3, p,

(3.5) (S S)h eh, h flkh, k= 1, q,

Ch =0.

Note that the operators RRe, Sj (3 N j N p), S $2 and commute with one
another. The first p + q conditions are satisfied by

h(z, tj, u)= oF( + 1; r)k(z)tt; t;u u,
where t t . The requirement Ch 0 implies

k(x)
_
F( ;x).

Expanding h in a power series in z we find

(3.6) oF(a + 1;r)p_zF(%;fl;zr)= c,.pFq(-n,-a- n,%;fl;z)".
n=O

To make sense of this expansion we must require p N q + 1. The series converges
for allrifp<q + landforlzrl < lifp=q+ 1. To compute the c, wesetz=0"

F( + 1)
C ntF(+n+ 1)

For our final example we compute a solution of the equations

(V+ Rx)h =0, ($2- Sj)h -ajh, 3 j p,

(3.7) (S )h -h, k q, Slh h,

Ch =0.
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Here, [$1, V + R1] V + R1 so the null space of V+ R is invariant under S.
The first p + q equations are satisfied by

h(z, tj, Uk) (1 + zz)-’k(z)t]’t tppU Ukk,
where z- t2t3 tpU uk. The requirement Ch 0 implies

k(z) qFp_z(--flk + 1; -j + 1;(- 1)q+Pz).

Expanding h in a power series in z we obtain

(1 + zz)-lqFp_2(--flk + 1; --0j + 1;(-- 1)q+Pz)

(3.8)
2 Cn pfq(l, n, 0 n; flk n z)z",
n=0

zml < 1.
To compute the c, we set z 0"

(-1)"(P+q)F(--flk + n + 1)F(-j + 1)
n!r(-flk+ 1)r(-j+n+ 1)

The above examples illustrate the simplicity of our Lie algebraic method.
Once the method is understood it is straightforward to derive a great variety of
generating functions for the pFq. Furthermore, the method permits the classification
of known generating functions in terms of eigenvalues of operators formed from
the generators (3.1). (Indeed, an examination of the right-hand sides of the expan-
sions (3.4), (3.6) and (3.8) and use of recurrence relations (1.18) lead easily to the
eigenvalue equations (3.3), (3.5) and (3.7), respectively. Similarly, other known
generating functions can be classified in terms of eigenvalue equations.)

This method reduces the search for generating functions to the computation
of solutions of systems of partial differential equations. In practice such systems
may be difficult to solve. (This is the case with some very complicated identities
such as those found in [5, vol. 2, p. 2] .) Nevertheless, once an identity is discovered it
can be fitted into the Lie algebraic classification system.
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ASYMPTOTIC SOLUTIONS OF A 6TH ORDER DIFFERENTIAL
EQUATION WITH TWO TURNING POINTS.

PART 1: DERIVATION BY METHOD OF STEEPEST DESCENT*

B. GRANOFF’ AND N. BLEISTEINZl:

Abstract. Asymptotic expansions of the basis solutions of the equation

(D o2k2)3u k6xu 0, k >> 1,

are derived by the method of steepest descent. For - 0, there are two turning points, at x 0 and
x -6. All previous results pertain to the case where 0, in which case there is one turning point
at x 0. The derivation of the asymptotic expansions of a basis set for each of the three x-intervals
formed by the turning points yields a set of WKB connection formulas. Uniformly valid asymptotic
expansions are given for x in the neighborhood of the turning point x _6.

1. Introduction. The ordinary differential equation

(1.1) (D2 2k2)3U k6Xt/ 0, k >> (D d/dx),

arises in the stability analysis of viscous flow between rotating cylinders; see, for
example, Meksyn (1946, 1961), Chandrasekhar (1954, 1958), and Duty and Reid
(1964).

In this paper we shall derive the asymptotic expansions for k >> of the basis
solutions of (1.1). Previously obtained results correspond to (1.1) with 0, in
which case the equation has one turning point at x 0. For - 0, (1.1) has two

turning points, at x 0 and x 6. The derivation of the asymptotic expansions
of a basis set for each of the three x-intervals formed by the turning points yields a
set of WKB connection formulas. The results of Meksyn and of Duty and Reid
correspond to our asymptotic expansions for the intervals -o < x < _6
and 0 < x < v. We further obtain asymptotic expansions which remain uni-
formly valid for x near _6.

We briefly describe, in 2, the derivation of the integral representation of the
solutions of (1.1). In 3, we describe the deformation of contours of integration
onto paths of steepest descent (Jeffreys, 1962). The results of the application of
the method of steepest descent are summarized by means of tables in 4. The
determination of these paths of steepest descent for - 0 is rather difficult, more
so than for ---0. These paths were determined by computer. A program was
developed by N. Rushfield and run on an IBM 360. In 5 we derive the uniformly
valid expansions for x near _6 by using the method of Chester, Friedman and
Ursell (1957) for two nearby saddle points. Asymptotic expansions uniformly
valid for x near zero are possible as well with the method of Bleistein (1967).

* Received by the editors December 7, 1970, and in final revised form April 29, 1971. This work

was supported in part by the National Science Foundation.

" Mathematics Department, Boston University, Boston, Massachusetts 02215.
Mathematics Department, University of Denver, Denver, Colorado 80210.

To identify with Meksyn replace (2k2 and k by 22 and ,6h, respectively; with Chandrasekhar,

replace o2k2, k6, and -x by a2, a2T, and + (, respectively; with Duty and Reid, replace o2k2, k

and x by 2, 2z, and z 1, respectively.
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46 B. GRANOFF AND N. BLEISTEIN

However, the results are given in terms ofuntabulated "generalized Airy functions."
We consider these results as nonedifying and therefore do not include them.

2. Integral representation of the basis solutions. In order to obtain the integral
representation of the solutions of (1.1) we assume that the solutions have the form

(2.1) u(x) fv v(s) exp [ksx] ds.

The contour F is to be determined as well as the function v(s). Substitution of (2.1)
into (1.1) and integration by parts yields

(2.2) k6fv [(S2 2)3/)(S) + k- lv’(s)] exp [ksx] ds k- lV(S) exp [ksx]lr O.

The integral in (2.2) vanishes if we set

(2.3) v(s) c exp [-kp(s, ),

FIG.
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where

(2.4) p(s, ) (2 02)3 d +s7 -s5(x2 + (x4s3 6s.

In order that the "endpoint contributions" of the integration by parts vanish, we
require F to be an infinite contour with endpoints in the "valleys" of -s7; i.e., in
regions where Re s7 > 0. The seven regions which have this property are given by

(2.5)
2nrc rc 2nrc rc

7 14 <args<--- 14’
n 0,1,-..,6.

If we introduce the contours F1, F2, 17 in Fig. 1, then from (2.1) and (2.3) we
find that the solutions of (1.1) have the form

(2.6) u,,(x) fr exp {k[sx- p(s, e)]} ds, n 1,2, .-., 7.

Ofcourse only six of these solutions are linearly independent since= u,(x) O.

3. Asymptotic analysis. We now apply the method of steepest descent to the
integrals given by (2.6). If we set

(3.1) q)(s; x, o) sx p(s; ),

where p(s; ) is given by (2.4), the saddle points are defined by the equation

(3.2) qg’
8S

X (S2 02)3 0.

We first note that for x - 0 and x - _e6, (3.2) has six distinct solutions. The
turning points x 0 and x -z6 divide the x-axis into three intervals, in each of
which the expressions for the saddle points take a different form. We denote these
open intervals by

(3.3) Do. _6 < x < 0,

D+" 0<x<.

We have that

(3.4) q’(_+ sj; x, e) 0, j 1,2, 3,

where the sj are given in Table 1.
When x 0, S s2 $3 and the six distinct roots coalesce onto s __+e,

each of multiplicity three. The implications for the asymptotic analysis are that,
in both instances, simple saddle points have coalesced to yield higher order saddle
points. It is well known that the classical saddle-point method does not yield an
expansion which remains valid as x passes through either of these critical points.
We defer discussion of this problem to 5 and consider for the present values of x
belonging to one of the three domains D_, Do, D +.
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TABLI/

The roots ofx (s 0{2)3 0

0 < arg. < , o exp 2toil3

xD_

xD

xD+

//_lxll/3 + 0{2

N///XI 1/3 _}_ 0{2

//_ lxl /3o2 _+_ 0{2

//_1x1/3o92 _1_ 0{2

0{2

/_lxl/3o) + 0{2

V/- Ixl 1/3of-t- 0{

l/3(O + 0{

It is always quite simple to determine the paths of steepest descent for
locally, near the saddle points, by the use of power series. Indeed, for 0, the
essential features of these paths can be determined in the large. This is essentially
what was done by Meksyn (1961) and by Duty and Reid. For nonzero , we find
these paths by making use of the following observations"

(i) For any x in one of the domains D_, Do, D +, the essential features of the
descent paths remain unchanged.

(ii) For any fixed different from zero, say 1, (i) remains valid.
Observation (i) means that the connection of each saddle point in the finite

plane with the valleys at oo (i.e., with the sectors at oo in which the real part of
q(s; x, ) decays to oo) via paths ofsteepest descent remains essentially unchanged.

In order to verify this we first set u(a, r x, ) Re q(s; x, ) and v(a,
Im 99 (s;x, o0, where s a + iz. For x in any closed interval bounded away

from the turning point, each saddle point is simple and its position is a continuous
function of x, as are the two local directions of descent at the saddle point. Further-
more, the paths of steepest descent from a saddle point are curves on which
v const. except at the saddle points, these curves have -Vu (grad with respect
to a, ) as tangent. This vector and hence the curve v const, is a continuous
function of x.

There are seven discrete valleys at infinity. A curve which depends con-
tinuously on a parameter x for all finite (a, ) simply cannot have its endpoint at
c "jump" from one valley to another. Therefore, each saddle point is connected
up in a unique way to another saddle point or a valley at oo by paths of steepest
descent. This ultimately is what really matters since we seek to replace a contour,
with two endpoints in valleys at oo, with contours which are equivalent to it by
Cauchy’s theorem. This we can now do for some x in the prescribed interval.
Furthermore, as x varies from that value over the prescribed interval, the steepest
descent contours will vary somewhat, but still, the same deformation can be
accomplished; i.e., each curve Fa is deformed onto the same linear combination of
steepest descent paths from the same saddle points to the same valleys at infinity.
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The process breaks down when x attains a turning-point value. The reason is
that the turning points correspond here to the coalescence of two or more saddle
points into a single saddle point of higher order. A simple saddle point has two
steepest descent paths leading from it; two saddle points have four paths; but
when two coalesce to a saddle point of order two, this new saddle point has only
three steepest descent paths. One steepest descent path is lost in the coalescence
and this is a manifestation of the lack of continuity of this process as x passes
through the turning point.

A program was developed by N. Rushfield and run on an IBM 360 to deter-
mine the steepest descent paths for

q0(s; 8, 1) (Fig. 2),

q(s; -8/27, 1) (Fig. 3),

q(s; 8, 1) (Fig. 4).

FIG. 2. Paths of steepest descentfor p(s 8, 1)
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FIG. 3. Paths of steepest descentfor q(s; -8/27, 1)

By comparing Fig. with any of these figures we can immediately identify
the appropriate deformation of the contours F,, n 1, 2, ..., 7, onto paths of
steepest descent. For example, when x > 0, we use Figs. 1 and 4 to find that 1" is
deformed onto a descent path through s2, s3, s and -sl. We note that the con-
tributions from s3 and -s are exponentially smaller than those from s2 and s,
since the former lie on descent paths away from the latter. We shall call s3 and s
recessive (for F)and Sl and s2 dominant (for F1). For each of the contours F, and
each of the domains D_, Do, D +, we list the dominant and recessive saddle points
in Table 2. The asymptotic expansion of each of the functions u,, n 1, 2, ..., 7,
for each x-interval is given by a sum of contributions from the saddle points in the
corresponding dominant column of Table 2. When there are two or more entries
in a dominant position, we include contributions from each in order that six
asymptotic solutions remain linearly independent.
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FIG. 4. Paths ofsteepest descentfor o(s" 8, 1)

TABLE 2
Saddle points contributing to the steepest descent analysis of the contours

Fn, n 1,2,...,7

l)om.

S1$3

S2S

$1

S

Rec.

$2 --S

wS

xD

Dom.

SIS

--S

Sl ns

--S

R2c.

--S

Dom.

SIS

--S

mS

SI

D+

Rec.

SI

S

--S
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4. The asymptotic solutions. In the following tables we list the leading terms
of the asymptotic expansions of the solutions u,, n 1,..., 7, for each of the
domains D_, Do, D +. For future reference we exhibit the phase p(s x, ) evaluated
at the saddle points in each of the three domains:

D_ and Do: x < _6, _6 < x < 0:

(4.1)
-+-ql q(-+-s, ;x,) -+--Ixl 1/3 -4- c2

1606[---- xl / 3-%112/32 / 1111/34 /

--(D2 (-D(--S2; X, 0{)= //-Ixl 1/3c2 / 02
16_ 6q[--1 X] / -3]X 2/32(-D / lxl 1/34(D2 / -3-0 J,

----q3 f/(-’-S3; X, ) -+-/-[xl 1/39 / 2
16_ 6qU-lxl + ]112/322 + x[1/34 @ j.

D+: x>O:

16_ 6qUlxl + 1112/32 lxlX/34 + j,

(4.2)

-[-@2 (D(----S2;X,O) xl1/3c / 2
16_6E-IxI / xIe/3e(D2 3-lx11/3400 / 3-

-t-(./9 (40(/$3;x, 0)= /v/]xll/3co2 / O2

16_ 6qElxl / 6-1x12/32o9 3-1111/34co2 / 3- A.

For simplicity we introduce the following notation to be used in Tables 3 and 4:

(4.3) al Ixl- 1/311xl 1/3 21 1/4,

(4.4) a2 Ixl- 1/3(Ixi2/3 / 2lxl 1/3 / 4)- 1/8,

(4.5) 0_ w/lxl 1/3 n
=-arctan 0 <0_ <-.

4 Ixl 1/3 / 202’ 2

For use in Table 5 we introduce the additional notation:

1/3(X2 1/3)(4.6) a3 lx / Ixl -1/4,

(4.7) a4 Ixl- 1/3(1x12/3 2lxl 1/3 / @4)- 1/8,

N[X[ 1/3

(4.8) 0+ arc tan
2e Ixl /3,

0 __< 0/ < .
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TABLE 3

Asymptotic solutionsfor x in D_ x < -6

TABLE 4

Asymptotic solutions for x in DO" --0 < X < 0
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TABLE 5

Asymptotic solutions for x in D x > 0

Tables 3, 4 and 5 constitute the WKB connection formulas. When we set
cz 0, we recover Meksyn’s results (Meksyn, 1961). Appropriate linear combina-
tions of the functions u l, "", u7 with e 0 will reproduce the results of Duty and
Reid as well.

Some explanation of the results contained in these tables is necessary. First
we note that, as expected, the coefficient a which appears in Tables 3 and 4 becomes
infinite when x _6, i.e., when _+sl 0. We shall deal with this in 5. By
comparing Tables 3 and 4, we also note that the expansion of u2, for example, con-
tains a contribution from s2 when x is in Do but does not contain such a term when
x is in D_. It would seem then that the expansion has a discontinuity at x
for no apparent reason. Of course this discontinuity is only illusory. The only real
discontinuity is in the deformation of F2 onto the steepest descent paths. However,
for x in D_ there do exist descent paths (not of steepest descent) for F2 which allow
us to pass through s2 as well as Sl i.e., we can add a contribution, -a2 exp [ktP2
-i(7/3 + 0_)3, to the result for u2 in Table 3, thereby retaining a contribution
exponentially small compared to the term already appearing in the table. The only
advantage in doing this would be to eliminate a discontinuity in exponentially
small terms. In Table 4, the contribution from s2 ultimately becomes dominant
as x increases and hence it must appear in this result.

A similar observation holds for other expansions throughout the tables.

5. Uniformly valid asymptotic expansions. We have previously noted that for
x -6, two saddle points coalesce. In this limit a is infinite and the expansions
of u2, u3, u4, u5 and u6 given in Tables 3 and 4 are not valid. We obtain uniformly
valid asymptotic expansions for x near _6 by using the method of Chester,
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Friedman and Ursell (1957). 2 In particular, we introduce the change of variables

q)(s x, ) fZ(x)t t3/3.

Here q0(s; x, e) is defined by (3.1) and (2.4) and, following CFU,

1]1/3 --(X
6 < X < O,

(5.2) f(x) i_}q)lx/ x < _6.

The effect of this change of variables is to map the contours F, onto the contours

Lj of Fig. 5 as shown in Table 6.

2 "n’/5

FIG. 5. Image contours in the t-plane

We shall denote this paper by CFU hereafter.
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TABLE 6

Mappings induced by (5.1)

Range of

--6 X .< 0

Contours in s-plane

F1
F3 q- F4 -+- F5
1-’6 "+" F7

I2
F3 + 1-’4 + Fs F1 Fv
1-"

Contours in t-plane

L
L1
L3

L2
L
L3

For the two x-ranges, the pre-image of any Lj is different. The effect of this
anomaly is much the same as that discussed at the end of 4.

For x negative and bounded away from zero, the method of CFU gives the
following uniformly valid asymptotic expansions in terms of the Airy function
(see, for example, Jeffreys (1962)):

(5.3)
u2 2rcgok-1/3 exp [-iJ Ai[kZ/3fZ(x) e-2’’/3_

-aexp kq- +0_

(5.4)

u4 2rcigok- I/3Ai[k2/3f 2(x)]

+ 2i Im exp/- kq2 +

(5.6)
us 27rgok- ’/3 exp liJAi[kZ/3fZ(x) e2’’/3]

-a2 exp I-ktp2 +i(-0_)],
u6 2rCgok-X/3exp[iJAi[k2/3f2(x)e2’i/3]

-aexp -kq3 +i-+O_
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Here

2f(x) /2

(5.8) gO 6X2/3(IX[ 1/3 2)1/2
We note that lim go as x --, _6 is finite and nonzero; indeed,

(5.9) lim go (18e8) -/6.
X-- 6

To obtain uniform asymptotic expansions for x near zero we would have to
apply the generalization of CFU described in Bleistein (1967). The Airy functions
of CFU are replaced by "generalized Airy functions." The integral representation
of these functions is much like the Airy function itself, except that in the integrand
the cubic polynomial of the exponent is replaced by a quartic polynomial. Since
these functions are not tabulated, there seems to be no point in carrying out such
a uniform expansion.

Acknowledgment. The authors are grateful to E. Spiegel for bringing this
problem to their attention, to N. Rushfield for his fine computer work, and to R. A.
Handelsman for several helpful discussions on this problem.
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ON THE ASYMPTOTIC BEHAVIOR OF
FUNCTIONAL DIFFERENTIAL EQUATIONS*

T. G. HALLAM’, G. LADAS$ AND V. LAKSHMIKANTHAM

Abstract. A generalized asymptotic equivalence is established between the solutions of an un-

perturbed linear ordinary differential equation and a nonlinear perturbed functional differential

equation. These results extend and improve known results from ordinary differential equations.

1. Introduction. In this article we shall investigate some of the asymptotic
relationships between the nonlinear functional differential equation

(1) x’(t) A(t)x(t) + f(t, xt)

and the linear ordinary differential equation

(2)

In equations (1) and (2), x, y and f are n-vectors; and A(t) is a continuous n n
matrix that is defined on J 0, ). The symbol I1" will designate some con-
venient norm of a vector and its corresponding matrix norm. Let C" C-z, 01,
R", z >= 0, where the norm of an element b 6 C is defined by

max b(s)
-z<_s<_O

It will be required that fe C[J x C", R"]. For x C[[-:, ), R"], the symbol xt
is defined by the relation

x,(s) x(t + s), - <__ s <= O, e J,

and is called the past history of x at t. The terminology and notation used in con-
nection with the functional equation (1) may be found in [5, Chap. 6].

Our results establish that there is an asymptotic equivalence between equa-
tions (1) and (2) under some appropriate conditions.

The perturbation problems which we shall consider have analogues in
ordinary differential equations; in fact, the motivation for our work is contained
in the references [2], [3], [4]. When z 0, system (1) is an ordinary differential
equation; hence, the results obtained here are extensions of the corresponding
results in the above papers. When 0, the perturbed equation (1) represents a
mathematical model closer to physical reality than the corresponding perturba-
tion without delay which was considered in [2], [3], [4].

2. Preliminary results. In this section, we shall give an apparently new com-
parison principle which relates the solutions of a system of functional equations

(3) z’(t) F(t, zt)
Received by the editors November 3, 1970, and in final revised form April 12, 1971.
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to the solutions of a scalar functional equation

(4) u’(t) g(t, Ut).

This is a more general setting than the usual comparison principle [5, p. 6] in which
the comparison equation is an ordinary differential equation. In equations (3) and
(4), it is assumed that F6C[J x C",R"] and g6C[J x C+,R+], where
c+ {u Clu >= 0}, R+ { RIr _-> 0}.

LEMMA. Let g(t, u) be monotone nondecreasing in u jbr each fixed 6 J; and

(5) IIF(t, P) <= g(t, limb ), (t, b)6 J C".

Furthermore, for a given function uo e C+, suppose that the maximal solution
r(to, Uo) of (4) with initial function uo at t--- o exists and is bounded on [to, v).
Then, any solution Z(to, 4)0) of (3) with initial function 4)0 at o satisfying
d?o < uo satisfies the inequality

Z(to, o)(t)ll =< r(to, Uo)(t), >= to.

Furthermore, there exists a constant vector such that limt_oo z(to, bo)(t ;
and, if
(6) bo(0){ > ro Uo(0),

where r limt. r(to, Uo)(t), then is nonzero.

Proof Define the function m by

m(t) Z(to, bo)(t)l

Then, the right-hand derivative of m(t) exists and satisfies the inequalities

t>=to.

m’+(t) < Ilz’(to,

IF(t, zt(to, o))

g(t, zt(to, o)

<= g(t, mr), t>=to.

From the definition of m, it follows that mo =< uo The first conclusion of the lemma
now follows from Theorem 6.9.4 in [5].

An integration in (3) leads directly to

(7) bo(0 + F(s, Zs(to, 40)) ds.

To see that is nonzero provided (6) is satisfied, we obtain, from (7), that

[1 => 05o(0) ]F(s,z(to ,dpo)) ds

_>_ bo(0 g(s, rs(to, Uo) ds

=> o(O) r + Uo(0) > o.
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3. Asymptotic equivalence. We shall use the comparison principle of the
lemma to obtain an asymptotic correspondence between the solutions of (1) and
(2). The following two hypotheses will be assumed throughout the remainder of
the article. There exists a continuous n x n matrix, A A(t), defined on [-7, co)
such that

(8) IIA(t)Y(t)ll <- 1, > to,

where Y(t) is the fundamental solution matrix of (2) with Y(to)= I. Let
g e C[J x C+, R +], g(t, u) be monotone nondecreasing in u, u e C +, for each fixed
e J, and

(9) Y-(t)f(t, 4)11 < g(t, IIA,4 ), (t, 4) J C",

THEOREM 1. Let the conditions (8) and (9) be satisfied. Furthermore, suppose
that the maximal solution r(to, Uo) of(4) with initial function uo at o exists and
is bounded on [to, oo). Then, corresponding to each solution X(to, 4)0) of (1) with
initial function q5o at o satisfying dpo <= Uo, there exists a constant vector
such that

(10) A(t)[X(to,

Furthermore, if(6) is satisfied, then is nonzero.

Proof Let x(t)= X(to, qSo)(t and define Yo -= I,. The substitution x Yz
transforms (1) to the system

(11) z’(t) Y-l(t)f(t, Ytzt) =_ F(t, zt),

with Zto q5o. From (8) and (9), we obtain

F(t, zt) <= g(t, ]zt[ ).

An application of the lemma to (11) yields the existence of a constant vector
such that

lim Z(to, bo)(t)

To verify that (10) holds we observe the inequality

IIA(t)[x(to, o)(t)- Y(t)] =< A(t)r(t)[Z(to, bo)(t

The fact that is nonzero provided (6) is satisfied follows immediately from the last
conclusion of the lemma.

Next, we shall consider a converse problem to the result of Theorem 1.
THEOREM 2. Let the hypotheses of Theorem be satisfied. Then, corresponding

to each constant vector which satisfies the inequality

1[ < lim r(to, Uo)(t) r,
t’-*

there exists a solution x x(t) of(l) which satisfies the asymptotic relationship (10).
Proof. As shown in the proof of Theorem 1, it suffices to show that (11) has a

solution z= z(O which is valid on some interval [To, o) and satisfies
limt_ooz(t) .
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Define the numbers r/, , by

r/ [roo

Since 2 < roo, it follows from (4) that

g(t, 7)< oo;dt

in particular, it is possible to choose To > 0 such that

fT g(t, 7) dt < rl.

Let the set F be defined by

F= {z[z e C[R, R"] z(t) <= 7, e R" z(t) const, on cc <t<= To}.

Define the operator Ton F by the equation

Tz(t) - F(s,zs)ds, >= To- F(x,zs) ds, < To

The Tychonoff theorem will be used to establish that the mapping T has a fixed
point in F. First, F is a compact convex subset of the Banach space C[R, R"]
with the usual supremum norm. To see that TF c F, we note that for R,

Tz(t)l <_ ll + f F(s, zs) ds

Next, let the sequence {z"}_ converge uniformly to z on every compact
subinterval of R, where z", z are in F, n 1, 2,.... Then, the sequence {z’},__
converges uniformly on compact t-subintervals of R. Suppose e > 0 is given;
select T1 > To such that

g(t, 7)<dt
T1

Choose N N(e, To, T1)so that if n _>_

F(t, z’) F(t, z,) < e/(2(T To)), e To, T].

_-< {ll + g(s, 7) ds



62 T. G. HALLAM, G. LADAS AND V. LAKSHMIKANTHAM

Then for e R, we have

Tz(t) Tz"(t)ll <= F(s, z) F(s, Zs)ll ds

+ F(s, z)[[ ds + IF(s, Zs)ll ds

<,, n>=N.
The above inequality shows that T is continuous on F. To see that the closure of
TF is compact, we need only observe that TF is uniformly bounded and equi-
continuous at each point of R.

Therefore by the Tychonoff fixed-point theorem, there exists a z F such that

f(s,z)ds, >= TO
z(t)

f(s,z)ds, <= TO

For >_ To, z(t) satisfies (11); furthermore, limt_oo z(t)= . This completes the
proof of the theorem.

Remark. The matrix A was not required to be nonsingular in either Theorem
1 or 2. This fact has been previously observed in the case of ordinary differential
equations for Theorem 1, but not in regard to Theorem 2. The general technique
used in the proof of Theorem was the comparison principle; hence both Theorem
and its proof are extensions of one part of Theorem 1 of [4 which used an

ordinary differential equation as a comparison equation. The Tychonoff fixed-
point theorem, which was used in the proof of Theorem 2, has also been used for
problems of this type. The ordinary differential equation analogue of Theorem 2
was obtained by this method in [3]. In that proof however the hypothesis that A
be nonsingular was necessary.

4. An example. Many known results in ordinary differential equations have
been obtained from the ordinary differential equation analogues of the above
theorems by making a special choice of A. The references [2], [3 give several
examples to illustrate this application.

We shall apply Theorem 1 to obtain a generalization of a well-known result
[1, p. 114 in ordinary differential equations. Consider the second order linear
delay equation

(12) v"(t) + p(t)v(t ,) O,

where : _> 0 and

(13) p(t)l dt < o.

t>_O,

The extension given here is probably known to many workers in the area" however, the authors
are not aware of a reference which supports this statement.
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Every solution v v(t) of (12) satisfies

v(t)
(14) lim c

for some constant c. Furthermore, there exist solutions of (12) where the asymp-
totic constant c is nonzero.

In the usual manner, we write (12) as a system of equations of the form

(15)

where

By choosing

x’(t) Ax(t) + f(t, x,),

A=
0

f(t, qS)-
_p(t)d?l(_)

dp

A(t)=( 0 01)(asingularmatrix)0

then we have for _>_ 1,

Y-l(t)f(t, dp) <= tlp(t)l,

As the scalar comparison equation, we have

(16) u’(t) t[p(t)[u(t- ).

To see that all of the solutions of (16) are bounded, we note that an integration in
(16) leads to

u(t) U(to) 4- s[p(s)[u(s "c) ds.

Therefore,

lu(t)l K(t)=-lu(to)l + slp(s)llu(s )l ds.

Since K is monotone nondecreasing, we have

K’(t) <= tlp(t)lK(t), K(to) lU(to)[.

An application of Gronwall’s inequality shows that all solutions of (16) are
bounded. Applying Theorem 1 to (15) we see that given any solution v of (12),
there exists a constant c such that

v’(t) c + o(1), .
This implies that (14) is true. An argument like that in [1, p. 115] may be used to
show that c can be chosen to be nonzero.

If A is taken to be Y-1, then the stronger hypothesis j’ tZlp(t) dt < is
required in the above argument to obtain the same conclusion. This illustrates an
advantage of allowing A to be a singular matrix.
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ANOTHER CHARACTERIZATION OF THE CLASSICAL
ORTHOGONAL POLYNOMIALS*

W. A. AL-SALAM" AYD T. S. CHIHARA:

Abstract. The classical orthogonal polynomials of Jacobi, Laguerre and Hermite are characterized
as the only orthogonal polynomials with a differentiation formula of the form

(x)e’,(x) (OnX + fl,)e,(x) + ,P,_ (x), n >= 1,

where r(x) is a polynomial. If "orthogonal polynomial" is used in the sense of "orthogonal with respect
to a function of bounded variation," then the characterization remains valid if the Bessel polynomials
are included in the classical family. This characterization also permits us to verify a conjecture of
Karlin and Szeg6.

1. The classical orthogonal polynomials of Jacobi, Laguerre and Hermite
form a natural family in that, in addition to their frequent occurrences in similar
problems of applied mathematics, they enjoy a number of similar properties
which in turn characterize them.

For example, the classical polynomials are the only orthogonal polynomials
(apart from those obtained by trivial transformations of the classical polynomials)

(i) which are theeigenfunctions ofa second order Sturm-Liouville differential
equation (Bochner 1 ])

(ii) whose derivatives also form a sequence of orthogonal polynomials
(Hahn [5);

(iii) which have a Rodrigues-type formula. (This was first observed by
Tricomi 9] whose proof however was incomplete. Complete proofs have
been given recently by Ebert [3] and Cryer [2].)

Here we have been using the term "orthogonal polynomial" in the classical
sense of orthogonal on the real line with respect to a nondecreasing real function.
If however we use the term in the more general sense of orthogonal with respect to
a function of bounded variation, then the above characterizations remain valid
provided we (a) drop the usual restrictions on the parameters in the Laguerre and
Jacobi polynomials and (b) include the generalized Bessel polynomials in the
classical family. (This has been observed by Ebert (implicity) and Cryer for (iii)
and implicitly by Bochner and Hahn in (i) and (ii), respectively.)

Another property common to the classical orthogonal polynomials (including
the Bessel) is the existence of a differentiation formula of the form

() TC(x,)Ptn(X) --(nX + n)Pn(x) -- "))nPn l(X),

where (x) is a polynomial. (For a unified derivation of (1), due to Tricomi, see
[4, p. 167]. The Bessel polynomials are not explicitly included in this derivation
but easily can be.)
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Now if {P,(x)} is a sequence of orthogonal polynomials (with respect to
do(x), where q9 is of bounded variation) and if it satisfies (1), then

(x)P’.(x)P’m(X)

P,,(x)P’m(X)(a,,x + fl,,) dqg(x) + 7, f_ Pn-1(x)Pn(X)dq(X)

ifm <n.

Thus if it can be shown that I,, - 0 (n > 0), then {P’,(x)} is an orthogonal
polynomial sequence with respect to re(x)do(x). Then it would follow from
Hahn’s theorem that P,(x) is one of the classical orthogonal polynomials.

In case rt(x) is constant or linear, this is easily done but the quadratic case
becomes involved. We therefore bypass this approach and give below a direct,
elementary proof that (1) characterizes the classical orthogonal polynomials,
thus obviating reference to Hahn’s theorem.

Our characterization will also permit us to answer affirmatively a question
raised by Karlin and Szeg6 [7]. This will be considered in 4 together with related
conjectures (the authors wish to thank the referee for calling these to our attention).

2. Let {P,(x)} be a sequence of monic orthogonal polynomials so that there
is a recurrence formula,

(2)
Pn +l(X) (x ..ql_ Bn)Pn(x) CnPn_ (X),

P_ I(X) 0, Po(x) 1, C,, :/: 0 for n >= 1.

n=>0,

Suppose further that {P,(x)} satisfies (1).
Comparison of coefficients in (1) shows that rc(x) is at most quadratic so

write

g(X) ax2 -k- bx + c.

Clearly

(3) a, na.

Now differentiate (2), multiply by r(x) and use (1) to eliminate rC(x)P’k(X),
k n 1, n, n + 1. Then use (2) to eliminate P,+ l(x). The result of all this is

{(an+ an a)x2 + (fin+ +Bnan+ n Bnan- b)x

-c + B,,fl,,+l + 7,+ 1- B,,fl,,}P,,(x)

{Cn[(an+ 1- an-1)x -- n+ /n- 1] + "n(x -- B,)}Pn-I(X)

Cn), 1Pn_ 2(X), n 1.
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Using (3) and simplifying, we obtain

(4) n+l fl,,= b- aB.,

(5)
(n+ INn- [nBn + )n+l C)Pn(X)

{(2aC, + 7.)x + Cn(fln+l fin-1) -[- 7,B,}P,-I(X)- "))n-xC.P.-z(X).

Examination of the derivation of (4) and (5) reveals that they remain valid for
n 0 if we define

/o =7o= Co =0

(and expressions with negative subscripts as finite but otherwise arbitrary).
Comparing (5) with (2), we thus find

(6)

(7) C,,_ 1(2aC + 7,)= CnT,,-t,

(S) Cn(fln+t fin-t)

From (7) we obtain 7,/C. 7,- a/C,- 2a, n >_ 2, which gives

(9) 7n (2an + d)C,,

valid for n > 0 with d -2a 71/Ct.
Substituting (9) into (6) and (8), then using (4), leads us to

(10) (2an + d + 2a)C,+ (2an + d 2a)C, B,(b aB,) c,

(11) (2an + d + a)B, (2an + d 3a)B,_l 2b, n > 1.

We note that all formulas (4)-(10) inclusive remain valid for n >= 0 with
/?o 70 Co 0.

3. We next consider separately the cases where re(x) is constant, linear and
quadratic.

Case I. rt(x) is constant. We can assume without loss of generality that
a b 0 and c 1. It then follows directly from (1) that , =/, 0 so that
Q,(x) (7t72 7,)-1P,(x) are Appell polynomials" Q’,(x) Q,_ t(x). Now it is
well known that the only Appell polynomials that are also orthogonal polynomials
are essentially the Hermite polynomials.

However we can show directly that P,(x) is essentially a Hermite polynomial
by using (11) to conclude that B, Bo and then using (10) to find C, -n/d.
Thus the recurrence formula becomes that satisfied by

P.(x) (2r)-"H.(rx + rBo), r (-d/2) t/2.

Case II. re(x) is linear. We can assume a c 0, b 1. Then
and 7, dC,.

=O, fln=n
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From (11) we now obtain

dB, 2n + dBo,

whence from (10),

dzcn-- n(n- 1) + dBon.
The recurrence formula (2) thus shows that, in this case,

P,(x) d-"n! L,)(-dx), dBo 1.

Case III. (x) is quadratic. Without loss of generality, we take a 1, b 0
so that , n.

From (11) and (4) respectively we obtain

K
(12) B,= K=(d2- 1)Bo,

(2n +d- 1)(2n +d+ 1)’

-Kn
(d- 1)(2n + d- 1)"

Using these in (10) and multiplying by 2n + d gives

(2n + d + 2)(2n + d)C,+ (2n + d)(2n + d 2)C

which in turn yields

(2n + d + 2)(2n + d)Cn+

-c(2n+d)-
KZ(2n + d)

(2n + d- 1)2(2n + d + 1)2

--c(n + 1)(n + d)
K2

[(d- 1)-2-(2n +d+ 1)-2],

n(n +d- 1)[K2(d- 1)-2 + c(2n +d- 1)2
(13) C,

(2n + d)(2n + d- 1)2(2n + d- 2)

If c 0, we then write d a and K b(a 2) so that (12) and (13)
become

b(a- 2) -bZn(n + a- 2)
B,

(2n + a)(2n + a 2)’ C,
(2n + a 1)(2n + a 2)2(2n + a 3)

It can now be verified from the recurrence formula for the generalized Bessel
polynomial, y,(x, a, b) (Krall and Frink 8, (51)]), that

b"(a),_
P,(x) 2-)-,y,(x, a, b).

Finally, if c - 0, write d + fl + 1 and K (2 fi2)(_c)/2" Then

( l)(_c)’/
B

(2n +o+fl)(2n + +fl+2)’

-4cn(n + + fl)(n + a)(n + fl)
Cn (2n +a +fl- 1)(2n +a +fl)Z(2n +a + fl + 1)’
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and this shows that we have Jacobi polynomials’

P,(x) (2s)" (2n + +/9) -1

t’ .’(x/), (-)/

Thus the only orthogonal polynomials satisfying a relation of the form (1)
are the classical polynomials together with the Bessel polynomials.

4. At the conclusion of their monumental paper on determinants whose
elements are orthogonal polynomials, Karlin and Szeg6 [7, p. 156] suggest three
conjectures concerning additional characterizations of the classical orthogonal
polynomials. The first of these is the existence of a differentiation formula of the
form

(14) r(x)P’.(x) lln[Pn_ I(X) -+- C(x)Pn(x)]p(x), n >= O,

where C(x) is a polynomial. (The subscripts on the right side of (14) are miscopied
on p. 156 of [7]--cf. their formula (24.2) on p. 100.)

Assuming that Po(x) and Pl(x) are monic polynomials, we take n in
(14) and obtain

/"(X)-- ]21[Po(x -F- C(x)Pl(X)],o(x).

Thus (14) becomes

(15) /ul + C(x)P,(x)]P’,(x) I*,[P,,_(x) + C(x)P,(x)l.

Comparison of leading coefficients now shows that/t, n/t. Next consider
(15) for n 2 and rewrite this in the form

P’2(x)- 2P(x)= [2P2(x P(x)P’2(x)]C(x).

The left side of this equation is of degree at most 1. On the other hand, 2P2(x
-P(x)P’z(X) cannot vanish identically unless Pa(x) kPZ(x) which is impossible
if (2) is satisfied. Therefore it follows that C(x) is of degree at most 1 so (15) is of
the form (1) and {P,(x)} is classical or Bessel.

We are unable to add anything to the second conjecture in [7] but we note
that the third had already been established earlier by Hahn [6].

A somewhat related question due to Askey (private communication) is:
"What orthogonal polynomials have the property that their derivatives are quasi-
orthogonal polynomials (here in the sense that (P,, P’,) 0 if ]m n[ > k)?"
Another related problem due to Askey is to characterize the orthogonal poly-
nomials whose derivatives satisfy

2k

(16) rc(x)P’,,(x) ,jP, + k- i(x), k independent of n.
j=O

In view of the recurrence formula (2), our characterization (1) solves this problem
for the case k 1.
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Added in proof It should be noted that (14) does not provide a complete
characterization of the classical orthogonal polynomials since (14) is not satisfied
by the Jacobi polynomials except in the ultraspherical case.
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ERRATA" ON THE EVALUATION OF CERTAIN SUMS INVOLVING
THE NATURAL NUMBERS RAISED TO AN ARBITRARY POWER*

KEITH B. OLDHAM

On page 538, the relation

GO
=_ g(l- v + 1),g(/- v + 2), ..., g(l)

should be replaced by

Gc--g(l- v+ 1),g(l- v+2),...,g(1).

On page 539, the expression Gj_ 1(Go) on line 5 should be replaced by Cj_ I(G);
in equation (5) the minus sign following the =_ sign should be deleted; in equation
(5) and in the final (unnumbered) equation on the page a term 0(1 -r-zm- 1) should
be added to the right members.

* This Journal, (1970), pp. 538-546. Received by the editors April 10, 1971.
]" Department of Chemistry, Trent University, Peterborough, Ontario, Canada.

71



SlAM J. MATH. ANAL.
Vol. 3, No. 1, February 1972

MULTIPLE SOLUTIONS OF
SINGULAR PERTURBATION PROBLEMS*

DONALD S. COHEN-

Abstract. Under certain conditions on g(x, u) we establish the existence and asymptotic behavior
for small > 0 of multiple asymptotic solutions of the nonlinear boundary value problem

eu" / u’ g(x,u) O, O < x < 1,

u’(O)- au(O)-- A >= O, a > O,

u’(1) + bu(1) B > 0, b > 0.

Formal techniques of singular perturbation theory clearly reveal the mechanism which controls the
appearance of multiple solutions. Their existence is then established rigorously by iteration schemes
and the so-called "shooting method" for ordinary differential equations.

1. Introduction. We shall establish the existence and asymptotic behavior
for small e > 0 of multiple asymptotic solutions cf the nonlinear boundary value
problem

(1.1) eu" + u’ g(x,u) 0, 0 < x < 1,

(1.2) u’(O)- au(O)-- A > O, a > O,

(1.3) u’(1) + bu(1) B > 0, b > 0.

In.general, a function u(x, ) is said to be an asymptotic solution to order O(e") if
the function satisfies the differential equation and boundary conditions to order
O(e") as e 0. More precisely, for this paper, we adopt the following definition.

DEFINITION. A function u(x, e) is an asymptotic solution of the boundary value
problem (1.1)-(1.3) if u(x, e) satisfies (1.1), (1.2) and u’(1, e) + bu(1, e) B + 0()
as e- 0.

Problems of this type occur in chemical reactor theory, and it has been found
recently I1]-I3 that multiple stable steady states can occur in certain adiabatic
tubular reactors. By considering the relevant physics in the various parts of the
reactor, or equivalently by applying the formal techniques [4] of singular per-
turbation theory, the mechanism by which the multiple solutions occur is clearly
revealed. We do this briefly in 2, and this will provide us with useful insight
regarding the properties of the equation and its solutions. The rest of the paper is
devoted to rigorously establishing the existence and asymptotic behavior for small
e > 0 of the multiple asymptotic solutions of the nonlinear two-point boundary
value problem (1.1)-(1.3).

Received by the editors March 9, 1971, and in revised form May 24, 1971.
? Department of Applied Mathematics, California Institute of Technology, Pasadena, California

91109. This work was supported in part by the U.S. Army Research Office (Durham) under Contract
DAHC 04-68-C-0006 and in part by the National Science Foundation under Grant GP-18471.
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Our entire analysis is based on the so-called "shooting method" for ordinary
differential equations. Accordingly, in 3 we study the initial value problem

(1.4) eu" + u’ g(x, u) O, x > O,

(.) u(O) h >_ O,

(1.6) u’(O) A + ah.

Note that the initial conditions (1.5), (1.6) imply that the boundary condition (1.2)
is satisfied. Specific properties of g(x, u) are stated, and we then prove that for all
e > 0 the initial value problem (1.4)-(1.6) possesses a unique solution u(x, e, h)
and that u(x, e, h) and u’(x, e, h) depend continuously on h for h >= 0, and u(x, , h)
depends continuously on e for sufficiently small e > 0.

In 4 we show that the boundary value problem (1.1)-(1.3) possesses many
distinct (and we state precisely how many) asymptotic solutions. This is accom-
plished by demonstrating that there exist many distinct values of h such that for
each of these values of h the solution u(x, e,, h) of the initial value problem (1.4)-(1.6)
also satisfies u’(1, e, h) + bu(1, , h) B + O(e) for sufficiently small e > 0. Further-
more, we show that on the subinterval 0 < 6 < x < each asymptotic solution
u(x, ) possesses the property that u(x, ) v(x) O(e) and u’(x, ) v’(x) 0()
for sufficiently small e > 0, where v(x) is the solution of an appropriate reduced
problem (that is, the problem v’ g(x, v) 0 subject to an appropriate boundary
condition).

Our analysis and specific results are confined to the problem (1.1)-(1.3) for
simplicity. However, our proofs and results can be extended to problems more
general than (1.1). For example, it is relatively easy to extend our proofs to the
case where we allow u’ in (1.1) to have a positive nonlinear coefficient f(x, u).
Furthermore, with somewhat more work the results of the present paper taken
together with those of [5] allow us to obtain quite similar results for equations of
the form eu" + f(x, u, u’)u’ g(x, u) 0 for classes of f and g which occur in
problems in fluid and gas dynamics.

2. Formal methods and multiple solutions. The reason for the existence of
multiple solutions is clearly revealed by an application of the formal matching
techniques of singular perturbation theory [4]. For 0 < e << we find that there
is a boundary layer of thickness O(e) near x 0. Away from this boundary layer
the first term of the asymptotic expansion (the outer expansion) is given by

(2.1) u’ g(x,u) 0, 0 < x < 1,

(2.2) u’(1) + bu(1)= B.

Evaluating (2.1) at x 1, we find that (2.1) and (2.2) together imply that

(2.3) g(1, u(1)) B bu(1).

Clearly, the solutions of (2.3) provide the proper initial conditions for (2.1).
Figure illustrates a case where there are four roots i, 1, ..., 4, of (2.3) for
some nonlinearity g g(u) which is sketched.

Our formalism suggests that there are as many solutions for small e > 0 as
there are roots of (2.3) (later, we shall have to modify this slightly), and the first
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g(u)

M

FIG. 1.

I4 U

term in the outer expansion of each solution is given by

(2.4) v’ g(x, v) 0,

(2.5) v(1) i.

In the boundary layer we introduce a new length x/e and let u(x) =-
w(). Then, the first term of the expansion (the inner expansion) near x 0 is

given by

(2.6) w"+ w’= 0,

(2.7) w’(O)- aw(O)= A,

(2.8) w(v) v(0).

The boundary condition (2.8) expresses the proper condition for matching the
inner and outer solutions.

This procedure can be continued to generate succeeding terms in an asymptotic
expansion, and from this procedure we could, in fact, construct an expansion
which is uniformly valid on the interval 0 < x =< 1. Alternatively, we could employ
a "two-timing" formalism to obtain the same answer. We shall not pursue this
further, however, because the mechanism controlling the appearance of multiple
solutions when e is small is already clear. Quite simply, multiplicity is governed
by the roots, i, of the equation

(2.9) g(1, z)= B- ba.

Each root i of (2.9) gives rise to an appropriate "reduced problem" (2.4), (2.5),
and as we shall see, each solution v(x) of (2.4), (2.5) can be an asymptotic solution
of (1.1)-(1.3) on any subinterval 0 < 6 __< x =< for sufficiently small e > 0. (We
shall also see that sufficiently small values of may not generate an asymptotic
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solution.) We shall now proceed to give a rigorous investigation of the existence
and multiplicity of asymptotic solutions of (1.1)-(1.3).

3. The shooting method. For all the work in 3 and 4 the conditions imposed
on g will be"

H.1 g(x, u) is continuously differentiable in the region

R {(x, u)10 __< x =< 1,u=> 0}.
H.2" g(x,u)>=0onR.
H.3" 0 U //2 implies that g(x, u a) => g(x, U2).
H.4" g(x, u) satisfies a Lipschitz condition in R that is, there exists a constant

k such that for all (x, u)e R,

Ig(x, u) g(x, v)l < klu
H.5" The equation g(1, 0) B be possesses N roots 0{i, 1, ..., N, such

that0 < el <= (x2 ’’"Conditions H.1 to H.4 imply that as a function of u for u __> 0 the nonlinearity
g(x,u) is a reasonably smooth, positive, Lipschitz continuous, nonincreasing
function. Condition H.5 simply guarantees that there exists at least one root of
g(1, 0) B b0, and from the formalism of 2 we suspect that for small positive
e > 0 a solution of (1.1)-(1.3) will not exist if a root 1 does not exist. Note that the
conditions H.1 to H.3 imply that g(x, u) is uniformly bounded above on R. Thus,
g(x, u) __< M < oo on R, and since g is positive and monotone nonincreasing in
u, we can take

M max [g(x,0)].
0_<x_<l

For the rest of this paper M shall have this meaning. We wish to point out that
these conditions are satisfied in many rate functions in chemical kinetics.

Write the differential equation (1.4) as eu" + u’ g(x, u), and consider it as
a first order equation in u’ with initial condition u’(O) A + ah. Then,

(3.1) ;i -(xu’(x) (A + ah) e -’/ + e -’)/g(t, u(t)) dr.

Clearly, u’(x) >= 0 on 0 =< x < 1 if u(x) exists on 0 < x __< I. Integrating (3.1) and
using the condition that u(0) h, and performing an integration by parts, we
obtain

(3.2) u(x) h + e(A + ah)(1 e -x/) + [1 e-(X-t)/]g(t, u(t))dt.

For later convenience we shall write (3.1) and (3.2) respectively as

(3.3) u’(x) S[u], u(x) T[u],

where the operators S and T are defined as

(3.4)

(3.5)

1 fi -(xS[u] (A + ah) e-/ + e -’)/g(t, u(t)) dt,

r[u] h + e(A + ah)(1 e -x/c) + [1 e-(’-’)/]g(t,u(t))dt.
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The conditions H.2 and H.3 imply the following lemma which is basic for all of
our results.

LEMMA 3.1. Let Yl and Y2 be continuously differentiable nonnegative functions
of x defined on 0 <= x <= 1. lf yl(x <= y2(x), then S[yl] > SIy2] and T[yl] >= T[y2].

Define the sequences {u,(x)} and {G(x)} by

(3.6) Uo(X =_ h, u,+ l(x) T[u,], n O, 1,2,...,

(3.7) U’o(X O, u,+ l(x) S[u,, n O, 1,2,....

Clearly, ul(x) > Uo(X) =- h, ua(x) >= Uo(X) h, u’x(x) >= U’o(X) 0 and U’z(X) >= U’o(X)
0. These facts and Lemma 3.1 immediately imply the next lemma.
LEMMA 3.2.

UoU, uu2, u2u3, u3u4,

UoU2, uu3, u2u4, u3u,

’<u u> ’< ’>UO 2 2 3 U3 U4

’< u> ’< ’>u0 2 3 U2 4 U3

that is, for any positive integers k and l,

(3.8) Uo =< u =< u4 =<"" < u2 =<"" < u+l <"" < u5 < u3 < u

and

(3.9)

That the alternating pincer movement (for fixed h) converges to the unique
solution of (1.4)-(1.6) is the content of the following theorem.

THEOREM 3.3. Let g(x, u) satisfy H.1 to H.4. Then, for any h >= 0 the sequences
{u,(x)} and {u’n(x)} defined by (3.6) and (3.7)converge respectively to the unique
solution u(x) of the initial value problem (1.4)-(1.6) and to its derivative u’(x) on the
interval 0 < x < 1.

Proof. First, we prove that for all n __> we have

(A + ah)k"x"
(3.10) lu, u,_ 11 < +n! n!

(A + ah)k"x"-
(3.11) [u’,-

(n- 1)! (n- 1)!

Here k is the Lipschitz constant of condition H.4, and M is the uniform upper
bound on g(x, u).

We now proceed by induction. Using the fact that e(1 e-x/c) <= x, we obtain

(3.12)

Uo[ e(A + ah)(1 e -x/) + 1 e-X-t)/]g(t, u(t))dt

<= (A + ah)x + Mx <= (A + ah)kx + Mkx.
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We have used the fact that x
take k _>_ 1. Similarly,

2/2 x on 0 __< x __< 1, and we see also that we must

ff -(xU’l U’o[ (A + ah) e -x/" + e -/g(t, u(t)) dt

M fo -(x-o/(3.13) <_ (A + ah) +- e dt

<= (A + ah) + Mk.

Hence, (3.10) and (3.11) are valid for n 1. Now, assume that (3.10) and (3.11)
are valid for all integers up to and including a given integer n. We must prove
that they are valid for n + 1. Using H.4 and the induction hypotheses (3.10) and
(3.11), we obtain

u,+l u, =< [1 e-(X-/Jlg(t, u,(t)) g(t, u,_ (t))l dt

__< k lu.(t)- u._ l(t)l dt

=< k ff .(A + ah)k"t"n, + M"k"t"-]n J
dt

(A + ah)k"+ x"+ M.+ lkn+ 1xn+
+

(n + 1)! (n 4- 1)!

To obtain the last line of the inequality we have used the facts that we can take
M __> and x"+2/(n + 2) __< on 0 __< x __< 1. Similarly,

(A + ah)k"+ 1xn mn+ lkn+ 1xn
lu’.+ u’. =< +n!

Therefore, we have verified that (3.10) and (3.11) hold for all n >= 1. Now, write
u,(x) as

(3.14) u,(x) Uo(X) + [u(x)- uj_ l(X)]
j--

with a similar formula for u’,(x). The estimates (3.10) and (3.11) immediately imply
that in the limit as n --. oo the series in (3.14) converges absolutely and uniformly
on the interval 0 =< x =< 1. Consequently, the limit functions u(x) lim,_.o [u,(x)]
and u’(x) lim,_. [u’,(x)] exist and are continuous (since each u,(x) and u’,(x) is
continuous), and it then follows in the usual manner that u(x) is a solution of
(1.4)-(1.6) on 0 __< x =< with derivative u’(x).

We shall now prove the uniqueness of the solution u(x). Suppose that (x) is
another solution. Then, O(x) > Uo(X) =- h, and hence,

T[tT] =< U T[uo].

In the same way we show that U2n ffl U2n+l. As we have just showed, the



78 DONALD S. COHEN

sequence {u,(x)} converges (i.e., the pincer closes). Then,

a(x) lim [u,(x)] u(x).

This completes the proof.
We wish to note here for future use that the solution u(x, e, h) of the initial

value problem (1.4)-(1.6), and its derivative, depend continuously on h for all
h => 0. This follows from the uniform convergence of the {u,(x)} which are clearly
continuously differentiable in e and h.

The preceding analysis was suggested by the classical paper of Hermann
Weyl [6] who obtained a similar alternating process for the Blasius problem of
fluid dynamics.

4. Multiple solutions and their asymptotic expansions. We shall now show
that under the conditions H.1 to H.5 every root g of (2.9) can give rise to an asymp-
totic solution ui(x, e) of the boundary value problem (1.1)-(1.3). Furthermore, we
shall prove that corresponding to any 0 the asymptotic solution ug(x, ) possesses
the property that ui(x,e)- vi(x)= O(e) and u’i(x,e)- v’i(x)= O(e) as e 0
uniformly on any subinterval 0 < 6 __< x __< 1, where vi(x) is the solution of the
reduced problem (2.4), (2.5).

In order to prove the existence of multiple asymptotic solutions of the
boundary value problem (1.1)-(1.3) for sufficiently small e > 0 we shall need the
following lemmas.

LEMMA 4.1. If Iu’(x, , h)l < C for sufficiently small e > 0, where C is independent
of e, then for any x (0, 1 we have

1 -(xe -/g(t, u(t, , h)) dt g(x, u(x, , h)) 0()(4.1)
e

for sufficiently small e > O, where u(x, e, h), for fixed h O, is the unique solution
of the initial value problem (1.4)-(1.6).

Proof. First, note that
cl

-tx-t)/ee dr= 1- e x/

Then,

e -’)/g(t, u(t, e, h)) dt g(x, u(x, e, h))

(- (xe- -’)/t[(1 e x/t)g(t, u(t, , h)) g(x, u(x, , h))] dt
(1 e-"/t) Jo e

1 (- 1 (

-(1-e
<

-x/t) Jo -e e- -’)/tlg(t, u(t, e, h)) g(x, u(x, e, h))[ dt

+
(1 e -’/t)

e-("-/tg(t, u(t, , h)) dt

=< max(1 Idg/dtle_X/t) fi’ -eel _(x_,)/t(x t) dt + e-x/t max

max [dg/dtl
(1 e -’/t)

[e-X/t( x e) + ] + e -‘/t max Igl.
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Here we have used the mean value theorem and the facts that g and dg/dt gt + g,u’
are bounded. The lemma now follows.

As an immediate consequence of applying Lemma 4.1 to (3.1) we obtain the
following lemma.

LEMMA 4.2. If lU’(X, e, h)l < C for sufficiently small e > O, where C is independent
of e, then for all h >_ 0 the solution u(x, e, h) of the initial value problem (1.4)-(1.6)
satisfies
(4.2) u’(x, e, h) g(x, u(x, , h)) O(e)

for sufficiently small > 0 on any subinterval 0 < 6 <__ x <= 1.
Now, define J as the number of roots ei of g(1, e) B be which exceed

the quantity M + O(e) for sufficiently small e > 0. For example, J 4 for the
situation illustrated in Fig. 1, and J 3 for the situation illustrated in Fig. 2.

MI g(u)

(1 c2

B-bu

FIG. 2

We shall now prove that there exist J asymptotic solutions of the boundary value
problem (1.1)-(1.3) and that on any subinterval 0 < 6 =< x < each asymptotic
solution and its derivative is asymptotic to the solution and its derivative of
the reduced problem (2.4), (2.5). (Here we are assuming that J >= 1. Later we
shall discuss the situation where roots ei of g(1, e) B be exist but where J 0.)

TI4EORF.M 4.3. Let g(x, u) satisfy H.1 to H.5. Let v(x), N J + 1,..., N,
denote the solution on 0 <= x <= of the reduced problem

(4.3) v’ g(x, v) 0,

(4.4) v(1) e

where ei, N J + 1, ..., N, are the J roots of g(1, e) B be which exceed
the quantity M + O(e) for sufficiently small e > O. Then, for all sufficiently small
e > 0 there exist J asymptotic solutions u(x, e), N J + 1,..., N, of (1.1)-
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(1.3) such that ui(x, e) vi(x O(e) and u’i(x, e) v’i(x) O(e) as e 0 uniformly
on any subinterval 0 < 6 <= x <__ 1.

Proof. First, we prove that there exist J asymptotic solutions. Now consider
the solution u(x, e, h) of the initial value problem (1.4)-(1.6). Equation (3.2) implies
that for any e > 0 we can choose h so large that u(1, e,, h) is arbitrarily large.
Furthermore, g(x, u) =< M on R and (3.2) imply that

u(1,e,,h) < h + e,(A + ah)e -1/ + m(1 + e, +
Thus, for sufficiently small e, > 0, u(1, e,, h) M + h + 0(:). Hence, for sufficiently
small e, > 0, u(1, e,, h) varies continuously from M + O(e,) to infinity as h varies
from 0 to infinity. Therefore, u(1, e,, h) takes on the values ei, N J + 1, .., N,
as h varies. Now, let hg hg(e,) denote the value of h for which u(1, e,, h) takes on
the value g; that is, u(1, e,, h(e,)) a for sufficiently small e, > 0. Then,

(4.5) g(, u( , h,())) B bu( ,, h())
for sufficiently small e, > 0. If we can show that ]u’(1, e,, hi(e,)) < C for sufficiently
small e, > 0 where C is independent of e,, then Lemma 4.2 and (4.5) imply that
u’(1, e,, hi) + bu(1, e,, hi) B + O(e,) for sufficiently small e, > 0. Therefore, if
lu’(1, e,, hi(e,))l < C for sufficiently small e, > 0, then for each root i, N J
+ 1, ..., N, of g(1, ) B ba there exists an hi hi(e,) such that corresponding
to that value of hi there exists an asymptotic solution ui(x, e,) of the boundary
value (1.1)-(1.3). Therefore, if [u’(1, e,, hi(e,)) < C for sufficiently small e, > 0, then
there exist J asymptotic solutions. To show that lu’(1, e,, hi(e,))l < C for sufficiently
small e, > 0 note that (3.2) implies that

u(1, :, hi(e,))-- (z hi(e, q-- e,(A + clhi(e,))(1 e-l/e)

(4.6) I"1+ [1 e -(1 -’)/*:]g(t, u(t, e,,hi(e)) dt.
o

Since all terms on the right of (4.6) are positive, then hi(e,) < i. That is, hi(e,) O(1)
as e,--, 0. From this together with Ig(x,u)[ < M we conclude from (3.1) that
u’(1, :, hi(;)) is bounded independent of e, for sufficiently small e, > 0, and therefore
there exist J asymptotic solutions. Note that in a similar way it follows that
lu’(x, e,, hi(e,)) < c for all x (0, 1].

Lemma 4.2 and the preceding paragraph imply that each asymptotic solution
ui(x, e,) satisfies

u’- g(x, u)= O(),

Ui(1, e,) Oi,

for sufficiently small e, > 0 on 0 < 6 __< x < 1. Let v(x) denote the solution of
(4.3), (4.4) on 0 < 6 < x < 1. Then, standard theorems on ordinary differential
equations (for example, Theorem 5 of W. Hurewicz 7, p. 9]) immediately imply
that ui(x, e,) vi(x) O(e,) and u’i(x, e,) v’i(x) O(e,) as e, 0 uniformly as e, - 0
on 0 < 6 =< x =< 1. This completes the proof.

It is clear that there exist functions g(x, u) satisfying H.1 to H.5 such that
roots i exist but J 0. Our Theorem 4.3 does not apply here, and we can draw
no conclusions as to whether or not the solutions of (4.3), (4.4) approximate
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solutions of (1.1)-(1.3) on 0 < 6 =< x =< 1 for sufficiently small e > 0. The formal
matching techniques of singular perturbation theory [4] indicate that a root el
may exist but that the corresponding solution of (4.3), (4.4) is not an approximate
solution of (1.1)-(1.3) on 0 < 6 =< x =< for sufficiently small e > 0. There are
other situations for which such solutions may not exist. For example, let y u’
and write (1.1) as

dy g(x, u) y
(4.7)

du ey

Figure 3 represents a sketch of the phase-plane trajectories corresponding to
(4.7) for small e, > 0 for the same function g used in Fig. 1. A necessary condition
for the existence of a solution of (1.1)-(1.3) is that a trajectory intersect both the

y:A+ou

y = g(u)
=U

y B-bu

FIG. 3

lines y A + au and y B bu. The situation depicted in Fig. 3 represents a
case in which no such trajectory exists. It seems reasonable to expect that under
such conditions a solution of (1.1)-(1.3) will not exist. Thus, for example, if
B- bu < g(x,u) for all u and A > M maxo_<x_<l [g(x, 0)], we expect that
(1.1)-(1.3) has no solution for sufficiently small e > 0.

Acknowledgment. The author wishes to express his appreciation to Professor
Herbert B. Keller for several discussions and helpful suggestions during the
course of this work.
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DECOMPOSITION OF AN INTEGRAL OPERATOR
BY USE OF MIKUSEqSKI CALCULUS*

R. G. BUSCHMAN?

Abstract. Recently T. R. Prabhakar used fractional integrals in order to obtain explicit solutions
to a convolution integral equation in which the kernel involved a confluent hypergeometric function.
Decomposition of the integral operator into fractional integrals and exponential functions plays a
role in the development and, following the ideas of A. Erd61yi, this decomposition is treated here in
a clearer format from the standpoint of Mikusifiski operators. Further, the conditions for existence
and uniqueness of the solution are conveniently displayed.

In a recent paper by T. R. Prabhakar [4] fractional integrals are used in order
to obtain explicit solutions of a convolution integral equation of the form

K.,f(t) K(a; b; 2(t u))f(u) du g(t)

in which the kernel is of the form

K(a; b; 20 [tb-/F(b)]lF(a; b; 2t)

and 1Fa denotes the confluent hypergeometric function with Re b > 0. Decom-
position of the operator Ka, into a product of simpler operators plays a role in
the development. Following the ideas ofA. Erd61yi [2], this equation can be studied
from the standpoint of Mikusifiski calculus and the decompositions can be
presented in a clearer format.

The following correspondences to Mikusifiski operators are needed"

K(a;b;2t)s"-b(s-2)-, Reb>0, Re2>0;

It"- et/F(#)] (s 2)-", Re # > 0.

In view of the development by Erd61yi [2], these can be obtained from tables of
Laplace transforms [3]. Since by Kummer’s transformation,

1Fa(a;b; -20=e-Xt F(b-a’b’20

we see that the first relation also holds for Re 2 < 0. For 2 0 in the second
correspondence we obtain l" s-u, where I" denotes the Riemann-Liouville
fractional integral operator of order / for Re/ > 0. This can be extended to
Re/ =< 0 in the usual manner by choosing a positive integer n such that
Re(n +/0 > 0 and letting I" I-"I"+" in which I-" denotes a differentiation
operator such that the property I-"f s"fis retained.

We note that

-(d) f(u) du - (s 2)-"f.
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From this and from the other correspondences,

Ka,b sa-b(s ,,)-a ib-a e;tla e-,t,
and we have obtained the decomposition of K,, into a product of fractional
integral operators and exponential multipliers. This is the result of Lemma 9.1 of
Prabhakar [4] which is used to solve the given integral equation in Theorem 9.
Looking at the expression in s we can see that other decompositions are available,
but this certainly seems to lead to the simplest. Another interesting result,
Theorem 5 of [4], states that, if f L1, then

I-bK,,f(x) f(x) + a 1Fl(a + 1; 2; x t)f(t)dt.

This representation can be obtained by the following manipulations with Mikusifi-
ski operators, in which we use the formula sf f’ + f(O). Consider

I-bK,bf SS I(S 2)-/

s{1fl(a 1; t)}f
[D{1FI(a 1; ,t)} + 1Fl(0)Jf

{a21F1(a + 1; 2; 2t)}/+ f,

which gives us the result. We also note the correspondences which are related to
Theorem 3 of [4];

IUKa, sa-b-U(S 2) Ka,b+ ".

In terms of Mikusifiski operators the integral equation becomes the algebraic
equation

so-b(s_ 2)-of g

which has the operator solution

f sb-a(s_ 2)g

sbg 4- [(1 2Is)- 1]sbg.

The second form is useful for the investigation of the conditions under which a
locally integrable solution exists. First we note that the expression in brackets is
actually an integration operator so that it suffices that sbg correspond to a locally
integrable function. Using ideas from [1] and [2], if we write

Sbg S-(k-b)(Skg),

where k is the least integer such that k > Re b, we know that if g has a locally
integrable derivative of order k and g(")(0) 0 for 0 __< m __< k 1, then a locally
integrable solution exists. A similar discussion holds for continuous solutions,
L1-solutions, etc. This method is directly analogous to that used by Jet Wimp [5].
The uniqueness of the solution follows from the uniqueness of the operator
solution in the field of operators as in [21 of course, this means uniqueness among
the appropriate equivalence classes which are the elements of the particular space
of functions under discussion.
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Other similar types of equations and other decompositions of the associated
integral operators can be treated in an analogous manner using the field of
Mikusifiski operators. The hypergeometric function of several variables (I)2,
which can be considered a generalization of 1F1, corresponds to a rather simple
expression involving the operator s, as can be seen from formula 4.24(5) of the
tables [3]. It thus presents us with an example which can be treated similarly.
With the easy general technique available, we omit the details of numerous special
cases.
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EXISTENCE THEORY FOR MULTIPLE SOLUTIONS
OF A SINGULAR PERTURBATION PROBLEM*

HERBERT B. KELLER,"

Abstract. Nonlinear two-point boundary value problems of the form ey"+ y’-g(x,y),
0 <= x <= 1" y’(O) ay(O) A" f(y(1), y’(1)) 0 are studied. Under modest assumptions on g(x, y)
and f(y, z) it is shown that for each simple root % ofF() f(, g(1, )) 0, which lies in an appropriate
interval, the boundary value problem has a distinct solution yj(x, e) for all in 0 < < Co. Further-
more the solutions converge uniformly on [0, 1] to an appropriate solution of the reduced problem
v’ g(x, v), f(v(1), v’(1)) 0 as 0. As equilibrium states of a diffusion process the y,i(x, ) are stable or
unstable provided fz(j, g(1, j))F’(j) > 0 or <0, respectively. This latter result is not demonstrated
here. These problems are suggested by and have relevance to the theory of tubular chemical reactors.

1. Introduction. In 1] D. S. Cohen has shown that the singular perturbation
problem

(1.1) ey" + y’= g(x,y), 0 < x < 1;

(1.2) y’(O) ay(O) A;

(1.3) y’(1) + by(l)= B

can have several distinct "asymptotic solutions" for all sufficiently small e > 0.
These are functions y(x, e) which satisfy (1.1) and (1.2) exactly but only satisfy
(1.3) to within O(e). We shall complete and extend Cohen’s results in several ways.
First the conditions on g(x, y) are weakened in two essential ways (i) by imposing
smoothness requirements only on a finite y-interval rather than the half-line y > 0;
(ii) by eliminating the monotonicity condition gy(x, y) =< 0. Under these modified
conditions we show, using essentially techniques already employed in [1], that
(1.1)-(1.3) can have several exact solutions y yj(x,e). These solutions are
continuous and even continuously differentiable with respect to e on 0 < e =< eo
for sufficiently small Co. As e $ 0 each yj(x, e) converges uniformly on 0 < x =<
to an appropriate "outer solution" of singular perturbation theory. Our analysis
furthermore allows us to establish all of these results when (1.3) is replaced by
very general nonlinear boundary conditions of the form

(1.4) /(y(1), y’(1)) 0.

A number of other extensions of (1.1) were mentioned in 1] and of course
the present analysis carries over for these problems too. In particular we point out
that the present analysis applies (with but a sign change and an interchange of
the treatment of the endpoints) to establish the existence of all three solutions
conjectured by Cohen in [2]. Previously only the two "stable" solutions were
shown to exist. In fact the proofs employed in [2] could have been applied in [1 to
get the existence of an exact solution corresponding to essentially every other
asymptotic solution. This has also been observed independently by S. V. Parter
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(private communication). However it has recently been shown by Sattinger [5]
that only "stable" equilibrium states (of unsteady parabolic problems) are obtained
by these monotone iteration methods. In fact the analysis in [5] can be applied
almost without change to determine the stable solutions of (1.1), (1.2), (1.3).
For nonlinear boundary conditions of the form (1.4) the analysis must be modified,
as is already done in [4], and the stability can again be studied under some
additional conditions on f(y, z) that we do not require here.

We first reformulate the hypothesis of [1], and impose conditions on g(x, y)
only over some finite rectangle Ry =- {X, ylO <-_ x <= 1, 0 y <__ Y} as follows"

Ul" g(x,y) eCl(Ry);

H2" 0 =< g(x,y) __< M on Ry;

(a) f(y, z) e C1([0, Y; x [0, 2M + N]);
H3"

(b) F() f(cz, g(1, cz)) 0 has J simple roots ej in

H4" a>=O,A>O,Y<=2(M+N).

From HI it follows that there is some constant, say

(1.5a) K max Igr(x, Y)I,
Ry

such that

(1.5b) Ig(x, y) g(x, 37)1 =< Kly 371 for all (x, y) and (x, 37) e Rr.
(This Lipschitz condition had to be assumed in [1] since Roo was used rather than
Rr.)

2. Initial value problems and outer solutions. To establish asymptotic solutions
of (1.1), (1.2) and (1.4) as well as exact solutions we use the initial value problem

(2.1a) eu" + u’ g(x, u);

(2.1b) u(O) h, u’(O) A + ah.

By integrating (2.1a) over [0, x], multiplying by the integrating factor ex/, integrat-
ing again over [0, x] and performing an integration by parts, we formally obtain
the integral equation

(2.2a) u(x) q)o(X) + To[u(x)]

o0(x h + (A + ah)e[1 e-X/],
(2.2b)

To[u(x)] =_ [1 e(’- x)/]g(t, u(t)) dr.

If u(x) is a twice continuously differentiable solution of (2.1) for which (x, u(x)) Ry
for 0 =< x __< 1, then the indicated derivation of (2.2) is valid and u(x) is also a
solution of the integral equation on 0 =< x =< 1. Conversely, if u(x) is a continuous
solution of (2.2) whose graph remains in Ry, then it has two continuous deriva-
tives and, by differentiation, is found to be a solution of (2.1). Thus (2.1) and
(2.2) are equivalent, and we study the existence theory by means of the integral
equation.
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THEOREM 2.3. Let H1, H2 and H4 hold. Then for each (e, h) in

(2.4) 0 < e =< eo min (1/a,M/A); 0 <= h <_ N;

the initial value problem (2.1) has a unique solution u u(x e, h) which exists on
O <= x <__ and satisfies O <= u(x e, h) < Y, u’(x e, h) >= O. Further u(x e, h) and
u’(x e, h) are continuously differentiable with respect to (, h) on (2.4) for all x in [0, 1.

Proof. We consider for any fixed (e, h) satisfying (2.4) the sequence of iterates
{uv(x ;e, h)} -= {uv(x)} say, defined by

(2.5a) Uo(X) (Do(X);

(2.5b) uv+ I(X)’- (Do(X) nt- To[uv(x)], V O, 1,2,’’’.

We first show, by induction, that 0 < uv(x < Y on [0, 13. From (2.2b) and (2.4)
we have, recalling H4,

O<=uo(x)=(Do(X)__<h(1 +ae)+A__<2h+M =<2N +M < Y.

Assuming 0 < uv(x) <= Y on [0, 1] we use H2 and (2.5b) to get

O b/v+ I(X) (D0(X) + M [1 e(t-x)/-] dt < (Do(X) + M <= K
concluding the first induction.

Next we show that

(2.6) luv(x)- uv-l(x)l < M KVx
K v! 0=<x=< 1, v= 1,2,....

Clearly from (2.5), lul(x) Uo(X) To[uo(x)][ <= mx for 0 < x =< 1, so (2.6) is
established for v 1. Using the inductive hypothesis and (1.5) we get

lUv+ I(X)- Uv(X)] [1 e(t-x)/]Kluv(t)- Uv_l(t)dt

< K luv(t u a(t) dt

M Kv+ 1XV+
K (v-+-l)!

and so (2.6) follows.
Now in the usual way {uv(x)} is a Cauchy sequence of continuous functions

on [0, 1 and by the continuity of g(x, y) on Rr it follows that lim_ u(x) u(x)
is a continuous solution of (2.2) over [0, 1]. Since 0 __< u(x)<= Y the same is
true of u(x). To demonstrate uniqueness we simply use the fact that To[u] is con-
tracting under the norm

lull1 sup e-Xlu(x)[
O<x<l

for any / > K. Finally u’(x) >= 0 follows from differentiating in (2.2a), and the
smooth dependence on (e, h) follows from the uniform convergence of the {u(x)}
which are clearly continuously differentiable in e and h and these derivatives
converge uniformly on 0 =< x __< 1. This completes the proof.
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We next show that u(1 ;e, h) essentially ranges over (M, NI as h ranges over
(0, N] for all e sufficiently small. More precisely we have the following corollary.

COROLLARY 2.7. Let H1, H2 and H4 hold. For any 6 in 0 < 6 <= 3M define
%(6) min (1, l/a, 6/(3A)).

Then for each in 0 < <= e,o((5 as h ranges over 6/3 < h <= N, the quantity
e(e, h) u(1 , h) ranges, at least, over m + 6 < < N.

Proof. All (e, h) as in the hypothesis also satisfy (2.4) and so u(1 e, h) is uniquely
defined by (2.1). Integrating (2.1a) over [0, x] and using H2 yields

eA + (1 + ae)h <= eu’(x) + u(x) <= eA + (1 + ae)h + mx.
u(x) dx < u(1)so thatHowever since u(x) >= 0 and u’(x) >= 0 on [0, 1] we have o

another integration, now over [0, 1], yields

h + (A + ah) <= u(1;e, h) <= eA + (1 + ae)h + m.

The result follows from the continuity of u(1 e, h) in h by using first h N in the
left-hand inequality and then h 6/3, eA < 6/3 and ae __< in the right-hand
inequality.

Finally we require some bounds on u"(x) which are contained in the next
corollary.

COROLLARY 2.8. Let H1, H2 and H4 hold. Then there exist constants K and
C independent of (, h), such that for all (e, h) satisfying (2.4) the solution u(x , h)
of (2.1) has second derivatives bounded by

(2.9a) elu"(x" e,h)[ <__ (Ka + KC)e(1 e -’/) + C e-x/.

Further for e < 1,

(2.9b) lu"(1 , h)l <= Ko =- K + (1 + K)C

Proof By differentiation in (2.2a) we obtain the integral representation

u’(x e, h) (A + ah) e-x/ + e-)/g(t, u(t)) dt.

On performing a partial integration this yields, in (2.1),

u"(x’ h)= [g(0 h)- (A + ah)] e -’/ + e(t-x)/dg(t’ dr.
dt

Using the bounds

K1 max [g(x, Y)I, C >__ max lu’(x e, h)J, K =_ max gy(x, Y)I,
Rv O<_x<_ Rv

we get

e[u"(x;e,h)[ <= (m + A + aN)e-x/ + e(K + KC1)(1 e-’/).

Here we have recalled that h __< N and [g[ =< M. Also we find from the above
integralrepresentationthatlu’(x;e,h)[ <= (A + ah) + M, andsoC1 (M + A + aN)
will do. Thus (2.9a) is established, and (2.9b) follows since e-1/ < e for e < 1.
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We recall [1] that Cohen disclosed the possibility of multiple solutions of
(1.1)-(1.3) by considering the reduced problem

(2.10a) v’ g(x, v),

(2.10b) v’(1) + by(l)= B;

obtained by formally setting e 0 in (1.1) and dropping the boundary condition
(1.2). A slight knowledge of singular perturbation theory suffices to determine
which, if any, boundary condition should be retained; we refer to the text of
Cole [3] for a thorough understanding. The reduced problem for (1.1), (1.2) and
(1.3) is simply

(2.11a) v’ g(x, v),

(2.11b) f(v(1), v’(1)) 0.

In either case we are thus led to consider initial value problems of the form

(2.12a) v’ g(x, v),

(2.12b) v(1) .
The existence theory for this problem is contained in the following theorem.

THEOREM 2.13. Let H1 and H2 hold for some Y > M. Then for each z in
M <= <= Y the problem (2.12) has a unique solution v v(x;z) on 0 <= x <=
satisfying cz m(1 x) < v(x, ) <= .

Proof. We simply consider the equivalent integral equation

v(x) g(t, u(t)) tt

and the iteration scheme

l)o(X 0, Uv + I(X) O{ g(t, v(t)) dr.

By induction it is easily established that, on 0 5- x __< 1,

-M(1-x)<=v(x)<= v= 1,2,..-,

M K(1 x)
II)v(X l)v_l(X)l <---/ v!

v= 1,2,....

The results now follow in the standard fashion previously indicated.
If we use e z, the roots of f(e, g(1, z)) 0, as initial data in (2.12), we

obtain vj(x) v(x, ) which are solutions of the reduced problem (2.11). These
are known as the "outer solutions" for the singular perturbation problem (1.1),
(1.2), (1.4). Notice that according to H3 we may not be investigating all of the
outer solutions but only those determined by the e which are simple roots and
lie in (m, N).
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3. Solutions of the boundary value problem. We now use the results of
2 to show that the boundary value problem (1.1), (1.2) and (1.4) has several

distinct solutions each converging to an appropriate solution of the reduced
problem (2.11) as e - 0. The main result is contained in the following theorem.

THEOREM 3.1. Let g(x, y) and f(y,z) satisfy H1, H2, H3 and H4. Then for
some el > 0 the boundary value problem (1.1), (1.2), (1.4) has at least J distinct
solutions, y yj(x, e), for each e in 0 < e < e For some constant Co independent
of e, these solutions satisfy

(3.2) lye(l, ) 1 < Coe, j 1,2,..., J.

Proof. For all (e, h) satisfying (2.4) we use the solution u(x;e,, h) of (2.1) to
define
(3.3a) G(h, ) =/(u(1 ;, h), u’(1 ;, h)).

It clearly follows from Theorem 2.3 that y u(x;e, h) is a solution of (1.1), (1.2),
(1.4) if G(h, e) 0. We shall establish that G(h, e) has, for all sufficiently small
at least J zeros h hj(e). First, using F() defined in H3(b), we write

(3.3b) G(h, e) F(u(1 ;e, h)) + fl(h, e),

where

(3.3c) fl(h, e) f(u(1 e, h), u’(1 e, h)) f(u(1 e, h), g(1 u(1 e,, h))).

For (e, h) in (2.4) we have 0 __< u’(1 e, h) < 2M + N, and it follows that fl(h, e) is
continuous and even continuously differentiable on this domain. The smoothness
off(y, z) in H3(a) and the boundedness ofu(1 e, h) and ]u"(1 e, h)l from Theorem 2.3
and Corollary 2.8, respectively, imply that

(3.3) Ifl(h, e)l =< KoLe, L max Ifz(Y, z)].
O<_y<_Y

O<z<2M+N

Since the roots j of F() 0 are simple we are assured that

(3.4a) m 1/2 min dF(ej)
> O.

<-j<-J d

Then for some sufficiently small Po > 0 it follows that

(3.4b) IF()l > ml j[ on 0 < I jI _-< po, j 1,2,..., J.

Thus, since F() changes sign at each j, the continuous function F() + fl must
vanish at least once in each interval le ej[ < p iflfl[ <mp for any p in 0 < p _<_ Po.

Now pick 6 and P so small that

M + 6 __< t t91, /91 =< /90, Pl < min (ej 0j_1)/2
2<=j<_J

and set t31 rain {eo(6), mpl/(KoL)} .Applying Corollary 2.7 for any
shows with the above argument and the continuity of fl(h, e) that as h ranges over
6/3 <= h <= N, G(h, e) 0 for at least J distinct values of h, say h hj(e). In fact
these values of h can be chosen such that for all

KoLe/m <= u(1; e, h(e)) <= + KoLe/m, j 1,2,..., J.
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Clearly yj(x, s) =_ u(x; s, hj(s)) for j 1,2, J are each solutions of (1.1),
(1.2), (1.4), and they are distinct since they differ at x 1. Furthermore these
solutions satisfy (3.2) with Co KoL/m. This completes the proof.

We can show, by means of the implicit function theorem, that the h(s) and
hence the solutions yj(x, s) can be continuous and continuously differentiable in
s on 0 < s __< So for sufficiently small So. The proof is involved so we do not present
it here. However we easily show how the exact solutions are related to the "outer
solutions" in the following corollary.

COROLLARY 3.5. Let H1-H4 hold and s be as in Theorem 3.1 and at least as
small as s < 1/K. Define the outer solutions v.i(x) =_ v(x, ), j 1,2,..., J, by
using (2.12) with and Theorem 2.13. Then jbr each e in 0 < e < el,

(3.6) yj(x,s) v(x)l <= Co + C + el(-x + eK
e

:[’or all 0 < x <= and j 1, 2,..., J.
Proof. From (1.1), (2.9) and (3.2)it follows that w(x,s)= y(x,e)- v(x)

satisfies an initial value problem of the form

w’ a(x, s)w + b(x, s),
where

a(x, ) =- g(x, Oy(x, ) + 1 Ov(x)),
b(x, s) =- sy’j(x, s),

C -= yj(1, s)- a,

w() c,

la(x, )1 <- K,

Ib(x,s)l (K1 + KC1)g + C1 e -x/e

The bound on Ib(x, e,)l follows from Corollary 2.8. Solving the equation for w
yields, on taking absolute values,

Iw(x)l eK(1-x) Cl q- eK(e-X)lb(, s) d.

Finally (3.6) results on inserting the bounds for Ibl and ICI and using eK < 1,
thus completing the proof.

We note that the convergence implied by (3.6) is uniform in x as s $ 0. Thus
there is no typical boundary layerjump at x 0 but at most one ofmagnitude O(e).

REFERENCES

[11 D. S. COHEN, Multiple solutions qfsingular perturbation problems, this Journal, 3 (1972), pp. 72--82.
[21 Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor

theory, SIAM J. Appl. Math., 20(1971), pp. 1--13.
[31 J. D. COLE, Perturbation Methods’ in Applied Mathematics, Ginn-Blaisdell, Waltham, Mass., 1968.
[4] H. B. KELLER, Elliptic boundary value problems suggested by nonlinear difjhsion processes, Arch.

Rational Mech. Anal., 35 (1969), pp. 363-381.
[5 D. H. S,TTINGER, Monotone methods in nonlinear elliptic and parabolic boundary value problems,

Indian J. Math., to appear.



SlAM J. MATH. ANAL.
Vol. 3, No. 1, February 1972

ASYMPTOTIC SOLUTIONS OF A 6TH ORDER DIFFERENTIAL
EQUATION WITH TWO TURNING POINTS.
PART II: DERIVATION BY REDUCTION TO A

FIRST ORDER SYSTEM*

B. GRANOFF-

Abstract. The 6th order ordinary differential equation (D k2)3u k6xu 0 possesses turning
points at x and x 0. The asymptotic behavior of a fundamental set of solutions of this equation
is investigated by first transforming the scalar equation into a first order 6 6 linear system of the
form eU’ A(x)U, where k- 1. In a neighborhood of the turning point x 1, the system can be
reduced to four uncoupled scalar equations and a 2 2 first order system. The resulting scalar
equations are solved without difficulty and the solution of the 2 x 2 system is shown to be expressible
in terms of Airy functions. This constitutes a derivation of uniformly valid asymptotic expansions of
a fundamental set of solutions in a neighborhood of x 1. At the turning point x 0, it is shown
that the 6 6 system can be reduced to two uncoupled 3 3 systems for the leading terms of the
asymptotic expansions of a fundamental set. Each 3 3 system is equivalent to a third order scalar
equation of the form /3/)(3)

__
/X#(X)/)’ .ql_ XY(X)l) 0, where #(0) 4:0 and v(0) - 0. A comparison is

made between this type of asymptotic analysis and a previous investigation which employed the
method of steepest descent.

1. Introduction. In a previous paper (Granoff and Bleistein, 1972) we
obtained the asymptotic expansions of a fundamental set of solutions to the
equation

(1.1) (D2 k2)3u k6xu 0 (D d/dx),

where k is a large positive parameter. This equation possesses two turning points,
at x -1 and x 0. The results contained in that paper were obtained by
applying the method of steepest descent to integral representations of a funda-
mental set of solutions. The paths of descent were determined numerically at a
representative point in each of the intervals (-,- 1), (-1, 0), (0, v). In this
manner we were able to derive asymptotic expansions of a fundamental set in
each interval and WKB connection formulas across the two turning points.

In the present paper we describe an analytical procedure by which we obtain
the uniform asymptotic expansions of a fundamental set in a neighborhood of
the turning point x 1. In a neighborhood of x 0 we find that (1.1) may be
replaced by two uncoupled third order linear equations for the leading terms of
the asymptotic expansion of a fundamental set. The procedure which we employ
is described in detail in Wasow (1965).

In the next section we replace (1.1) by a first order linear system and make
use of a theorem which implies that this system can be partially uncoupled by a
similarity transformation in a neighborhood of each of the turning points. The
details of the uncoupling at x -1 are given in 3. Four uncoupled equations
and two coupled equations result. The two coupled equations are treated in 4.
There it is shown that the leading terms ofthe asymptotic expansion ofthe solutions
can be given in terms of Airy functions. In 5 we obtain the leading terms of the

* Received by the editors December 7, 1970, and in final revised form April 29, 1971.

" Mathematics Department, Boston University, Boston, Massachusetts 02215.
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94 B. GRANOFF

asymptotic expansions of a fundamental set of solutions to (1.1) in a neighborhood
of x -1. In 6 it is shown that, in a neighborhood of x 0, (1.1) may be
replaced by two uncoupled systems consisting of three equations each. Additional
analysis results in two third order equations of the form

(1.2) /33//’"+ exg(x)u’ + xh(x)u O, k -1,

where g(x) and h(x) are analytic at x 0 and g(0) 4: 0, h(0) : 0 for the leading
terms of the asymptotic expansion of a fundamental set. A comparison of the
two techniques applied to (1.1) is made in 7.

2. Reduction to a first order linear system. Expanding (1.1) fully we obtain

(2.1) U(6)- 3kZu(4) + 3k4u’’- k6(x + 1)u--0.

Let us now set e k-1 and

u+l =u), j= 1,2,.-.,5.

Here ul u. By (2.1), this substitution results in the first order linear system

(2.2) eU’= A(x)U,

where U is a six-component column vector and

A(x)

1 0 0 0 0

0 1 0 0 0

0 0

0 0 0

0 0 0

l+x 0 -3

1 0 0

0 1 0

0 0 1

0 3 0

The turning points of (2.2) occur at the points x at which the eigenvalues of
the matrix A(x) coalesce. The characteristic equation associated with A(x) is

(2.3) 26- 32 + 322- (1 + x)= 0.

The roots are easily found and they are

(2.4) w/1 + x 1/3, +_w/1 + cox 1/3, -}-V/1 + 602x 1/3,

where x r e 0 < 0 < 2rt x 1/3 r 1/3 ei/3 and o0 e2i/3 We find that the
turning points are x -1, at which +__ x/1 + xl/3co both coalesce to zero, and
x 0, at which V/1 + x 1/3, v/1 + cox1/3 and V/1 + co2x 1/3 coalesce to 1 and
the remaining roots coalesce to -1.

It can be shown that in a neighborhood of each turning point it is possible
to partially decouple the system of equations given by (2.2). The decomposition
results from the following theorem proved in Wasow (1965).

THEOREM. Let A(x,g) 2j=o Aj(x)ej, e O, uniformly for e in some sector

S of the e-plane, 0 < lel =< Co, where Aj(x), j O, 1,... are analytic at x Xo.
Assume that the eigenvalues of Ao(xo) consist of two groups {21,’", 2p} and
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{2p+1,’", 2,} such that 2 # 2k for j <_ p and k > p. Then there exists a matrix

P(x, e), analytic at x Xo andfor 0 < lel _-< eo in a sector S ofthe e-plane, possessing
in S a uniform asymptotic expansion

P(x, e) Pj(x)d, e O,
j=O

det Po(x) 4:0 for x sufficiently close to Xo, such that the transformation
U P(x, )Y

takes the system of differential equations

into
ehU’ A(x, e)U

8bY B(x, e)Y,

where B(x, e) has the block diagonal form

B(x, e)
11

0 B22(x g)
The matrices B#(x, e) have asymptotic power series for e--+ 0 in S and the eigen-
values oflim_ 0 Bjj(xo, e) are {,1, ,p} for j 1 and {,p+l, ,,} for j 2.

Upon investigation of the eigenvalues associated with the matrix A(x) given
in (2.4), we find that this theorem implies that, in a neighborhood of the turning
point x -1, we can replace (2.2) by a system consisting of four first order
uncoupled equations and two equations which remain coupled. The uncoupled
equations can be solved for the leading terms of the asymptotic expansion of their
solutions. Because of the manner in which the two eigenvalues coalesce to zero at
x 1, we can show that the two coupled equations can be reduced to a problem
involving Airy’s equation. The analysis leading to these results is contained in

3 and 4.
In a neighborhood of the turning point x 0, the above theorem implies

that (2.2) may be replaced by two uncoupled systems each consisting of three
equations. This problem is treated in 6.

3. Block diagonalization of A(x) about x 1. The first step in decoupling
(2.2) about x -1 is to construct a matrix P(x), analytic and nonsingular at
x -1, such that P-(x)A(x)P(x) is in the appropriate block diagonal form.
This may be accomplished by considering the cyclic invariant subspaces of E6

relative to the matrix A(x) in a neighborhood of x -1. The theory of cyclic
invariant subspaces is described in Gantmacher (1959). We are led to consider
the matrix

(3.1) P(x)

-1 1 1 1 1 0

21 -/1 22 -22 0 1
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where 21 v/1 09lxl 1/3, 22 w/1 o92lxl 1/3, and 2 1-Ixl 1/3. It is easily
seen that P(x) is analytic at x 1 and possesses an analytic inverse at x 1.
By direct computation we find that

(3.2)

From (2.2) we have that

(3.3)

Setting

(3.4)

we obtain

(3.5)

where

P-I(x)A(x)P(x) ’(x)

21 0 0 0 0 0

0 --21
0 0 ’2 0 0 0

0 0 0 --22 0 0

0 0 0 0 0 1, o

0 0 0 0

0 0 0 0

aP- l(x)U’ a’(x)P- l(x)U.

U P(x)Y

eY’ C(x, e)Y,

where Q(x, ) I + j% Qj(X)gj’ it is possible to transform (3.5) into

(3.7) eV’= s(x)+ j(x)d V,
j=

where the matrixj sj(x)d has the same block diagonal form as the matrix s(x).
Thus (3.7) reduces to the system of four uncoupled equations:

,9V; /]" 1(X) + lj(X)g’J l) 1’
j=

gU --/I(X) + 122j(X)g I.)2,
j=

(3.8)
3V; 2(X) + ]23j X)g l)3,

j=l

(3.6) Y Q(x, e)V,

C(x, ) /(x) P- I(x)P’(x).
It is shown in Wasow (1965) that by means of a transformation of the form
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and the system of two coupled equations"

(3.9)
j=l

U; ](X)U -1- 2 [V6j(X)/)5 + 6j(X)/)6]j"
j=l

4. Solution of the coupled equations. We now proceed to treat the coupled
equations (3.9). We rewrite them here as

(4.1)

where

ew’= Bo(x) + Bj(x)eJ w,
j=l

W= and Bo(x)
/)6 X 1/3

Our object is to obtain the leading term in e of a fundamental matrix to system (4.1).
Following the procedure in Wasow (1965) we find that if we set

(4.2) t(x) x//1 Il 1/3 d
-1

and

(4.3) R(x)
dt/dx

then, by means of the transformation

(4.4) W- R(x)W*,

we obtain

(4.5)
dt

B(t) + B(t) W*
j=

Here

Observe that t(x), defined by (4.2), is analytic at x 1.
We shall now employ the following theorem proved in Wasow (1965).
THEORZM. There exists an asymptotic power series j=oRj(t)e whose

coefficients are analytic in a region tl <= l, and with det R0(0 1, such that
the formal transformation

(4.6) W*= Rj(t)eJZ
j=O
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changes the d!fferential equation (4.5) into

(4.7) eZ’= B(t)Z.

Furthermore it is proved in Wasow (1965) that the formal serieso R(t)
in the above theorem is the asymptotic expansion of functions R(t, ) such that
the transformation W* R(t, e)Z actually transforms (4.5) into (4.7).

A fundamental matrix of (4.7) is

Ai(te- 2/3) Ai(cote- 2/3)
(4.8) Z

e1/3Ai,(t;-2/3) ;1/3coAi,(cote-2/3)A’
where Ai(x) is Airy’s integral and co exp 2zri/3. Therefore, the leading term of
the fundamental matrix of (4.5) is given by

(4.9) W* Ro(t)Z wl
Lw

where

WI r11(t Ai (tg -2/3) + g12(t)31/3 Ai’ (tg-2/3),

W2 rll(t Ai ((.Otg -2/3) + r12(t)gl/303 Ai’ (0.)t-2/3),

wa rz1(t) Ai (te, -2/3) + rzz(t)e 1/3 Ai’(te-2/3),

w2 rz(t) Ai (cote -2/3) + rzz(t)e1/3co Ai’ (cote-z/3).

From (4.4) we obtain the leading term of a fundamental matrix of (4.1). It is

WI W2
(4.10) W R(x)W* dt , dt|"

W -N W2 2 d_]
In (4.10) there appear four unknown functions, r, r12, r21, and r22. We shall
find it necessary to determine only the functions rll and r12 in order to obtain
the leading terms of a fundamental set of solutions of the original scalar equation
(1.1). This will be considered in the next section.

5. Derivation of a fundamental set of solutions for (1.1) at x -1. From
(3.8) and (4.10) we find that the leading term of the asymptotic expansion of a
fundamental matrix of (3.7) is

t

0

(5.1) V

0

0 0 0 0 0

0 0 0 0

0 0 0

V2

0 V 0 0 0

0 0 v4 0 0

0 0 0 0 WI W2
dt dt

W -- W 2 -d
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where

v exp e- 2({)d{+/a(x
-1

/)2 exp -e- 2a({) d + 2(X
-1

V3 exp e- 22() d + 3(X
-1

v4exp -e- 22({)d+4(x)
-1

and w]’l, W2, Wl, W2 are given by (4.9). The function t(x) is given by (4.2).
The functions ktj(x), j 1,..., 4, are still unknown. They will be determined
shortly by resorting directly to the original scalar equation (1.1).

From (3.4) and (3.6), we find that the leading terms of the asymptotic expan-
sion of a fundamental matrix of (2.2) are given by

(5.2) U P(x)Q(x, O)V P(x)V.

In order to obtain the leading terms of the asymptotic expansions of a
fundamental set of solutions to the scalar equation (1.1), we need consider only
the entries in the first row of the fundamental matrix U given by (5.2). By direct
computation we find that these terms are

(5.3) uj =/), j 1,..., 4,

where vj, j 1, ..., 4, are given by (5.1) and

(5.4) u5 w’l, u6 w’2,

where w]’l, W2 are given by (4.9).
We now proceed to find those unknown functions tj(x), j 1,..-, 4,

appearing in (5.1), and g(x) rll[t(x)], h(x) rlz[t(x)], appearing in (4.9). First
let us substitute the expression

u=exp e-1 2()d+#(x
-1

into (1.1). Observe that this is the typical form of uj, j 1,
tion yields the equation

,4. This substitu-

[/6 324 + 322 (x -+- 1)] -k- e[(625 1224 + 62)/g

+ (5" 8 + 3)’ + o(e) o.
If 2 +_ 21 or

_
22, where 21 and ’2 are given in (3.1), then the first bracketed

term in (5.5) vanishes. Equating the coefficient of e to zero, we obtain

(5.6) (625- 1224 + 62)/’ + (1524- 1822 + 3)2’= 0,

where 2 +_ 21 or _+)2. We observe that implicit differentiation of the charac-
teristic equation given by (2.3) results in

(5.7) (625- 1223 + 62)2’ 1 0.
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Since 2 21 or + 22 are simple roots of (2.3) in a neighborhood of x -1,
we may solve (5.7) for 2’ and then substitute it into (5.6). The result is

(5.8) #’= -(1524- 1822 + 3)(2’)2.

The solution is

(5.9)

If2= +_21,then

(5.10)

#(x) (1524- 1822 + 3)(2’)2 d.
-1

[[-1 d
50)111/3 4

If 2 +_ 22, then

(5.11)

In Ixl- 1/3( 1 0)lxll/3) 1/4( 1 0)) 1/4

p(x) In Ixl- 1/3(1 0)21x11/3)- 1/4(1 0)2)1/4

Hence we obtain

;xU (1 0))1/41x1-1/3(1 0)Ix 1/3)- 1/4 exp e- 21() d,
-1

/t2 (1 0))1/41x1- 1/3(1 0)1x11/3) 1/4 exp -e- /1() d,
-1

(5.12)
U3 (1 0)2)1/41x 1/3(1 0)21x11/3)- 1/4 exp e- /2() d,

-1

u4 (1 0)2)1/41x1-1/3(1 0)21x11/3)-1/4 exp _e-1
-1

By substituting W]’l, given by (4.9), into (1.1) and retaining only leading
powers of e, we find that g(x) r11[t(x)l must satisfy the equation

t" 1 (t2t’4--2tt’2 + 1_)1’](5.13) g’ -+- [_t7 + t2t,4 2tt, 2 +
g 0

and that h(x) r12[t(x)] satisfies

t"
(5.14) h’+ + ; -- l(t2t’4--2tt’2+ l_l)’lh=O"2 2_ 2tt,2 +

The solutions are given by

g(x) calxl- 1/3t1/4(x)[1 1x11/33- x/4 (Cl const.),

where tl/4(x)[1 1x11/3] 1/4 is analytic at x -1, and

(5.16)

-1/3

x//1 112 d ]xl-1/3tl/4(X)[1 1X11/33-1/4

(dl const.).
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Observe that if dl -- 0 in (5.16), h(x) ---, as x ---, 1. Hence h(x) is analytic at
x= -1 if and only if dl =0.

Therefore the leading terms for us and u6 are

(5.17) us Ixl- 1/3tl/4(X)[ l Ixll/3] 1/4 Ai [,-2/3t(X)]

and

(5.18) U6 Ixl- 1/3tl/4(x)[l Ixl / ] 1/4 Ai [F,-2/3(Dt(X)],

where

From (4.2) we see that

(5.19) tl/(x)( 1 ix11/3)-1/4 (32_ / 31x11/3 + _1xl2/3)1/6.

6. Block diagonalization of A(x) about x 0. In a manner similar to the
one described in 3, we may obtain a matrix Q(x) which, together with its inverse,
is analytic at x 0 and such that Q- l(x)A(x)Q(x) is in the desired block diagonal
form. A matrix which has the required properties is

0 0 1 0 0

(6.1) Q(x)

if we set

0 0 ql 0 0 -ql

0 ql q2 0 -ql

ql q2 q3 -ql q2

q2 q3 q4 q2 --q3

q3 q4 q5 --q3 q4

(6.2)

q2

a --x//1 / x 1/3 x//1 / 60x 1/3- x//1 / (_.02x 1/3,

a2-- x//1- (-,02X 1/3 / X2/3 / x,/1- X 1/3 / X2/3 / x//1- X 1/3 / (,02X2/3

a3 x//1 / x,

where the elements of Q(x) are given by the formulas

ql --a3,

(6.3)

q2 ala3,

q3 -a3(3 + a2),

q4 + x + 3ala3,

qs --6a3 3a2a3.
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By direct computation we find that

(6.4) Q- i(x)A(x)Q(x)

From (2.2) we obtain

(6.5)

0 0 --a3 0 0 0

1 0 --a2 0 0 0

0 1 -al 0 0

0 0 0 0 0 a3

0 0 0 1 0 -a2

0 0 0 0 1 a

eY’= /(x)Y- eQ-l(x)Q’(x)Y,

where U Q(x)Y and sC’(x)= Q-l(x)A(x)Q(x). From comments made in 3,
(6.5) can be further transformed by V (I + R(x)d)Y in such a manner that
we obtain a system of the form

(6.6) aV’= ’O(X) + X), V,
j=

where SC’o(X)= se’(x) and the matrix jlSC’j(x)d has the same block diagonal
form as matrix sC’(x). Therefore, (6.6) is equivalent to the two uncoupled systems

(6.7)
I 1eV 1 0 -a2 V +
0 1 -a

I;:V 0 a2 V2 +
a

l Alj(X)e Vl,
j=

A2j(x)eJ
j=

Let us restrict our attention to the first system appearing in (6.7). If we set

V1 TW1 exp e-
where

then we obtain for Wl,

(6.8)

Here

(6.9)

-1 11-2 0

0 0

1W’ (x) 0 W -- O(E)W
(x) o

(X) 3 al(x),

fl(x) --3 2al(x a2(x),

7(x) -1 al(x)- a2(x)- a3(x).
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Now set W1 S(x)U1, where

S(x)

Then

1 0 0

1 0

0 1 0

(6.10) eU’a 0 0 Ua + O(e)U.

It may be easily verified that the leading term in the asymptotic expansion of the
first component of the three-vector U must satisfy the third order equation
given by

(6.11) ;3b/’" g2(X)U" 6,fi(X)U’ )(X)U--O.

The change of dependent variable

v u exp --- e() d

results in the equation

(6.12) ,3V"’ -- ,(X)V’ -Ji- V(X)V "--0

for the leading term of the asymptotic expansion of v. Here

(6.13)
]2(X)-- --(1/202 +
V(X)-- --(2@03 + (fl nt-

It can be shown that/40) v(0) 0 and that/(0) :P 0 and v’(0) - 0.
An equation similar to (6.12) can be obtained when treating the second system

in (6.7).
Some special third order differential equations with a turning point have

been investigated by Langer (1955). However, asymptotic expansions of a
fundamental set of solutions of third order equations of the form of (6.12), which
possess a turning point at x 0, have not yet been obtained. In a forthcoming
paper we shall consider this problem.

7. Comparison. The results given by (5.12) and (5.17), (5.18) are most easily
compared to the results of Granoffand Bleistein (1972) with the aid of the following
equations:

(7.1)

2() d (x)(-lxl + lx 2/02 + lx x/co + )

( 1)(5co2 + 3_83_0) __),14
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where 2(x) 21(x) or 22(x), and

(1 (_DIXI1/3) -1/4 --11 + Ix] x/3 + Ixl2]31-1/8 exp arctan
2 + 1x[1/3

(7.2)
(1 21xlX/3) x/ ]1 + Ixl x/3 + Ixl2/31 x/ exp arc tan

2 )/3
Reverting to the notation used in Granoff and Bleistein (1972), we obtain

Ul cla2(x) exp [kO3(x) + iO_(x)],

u2 c2a2(x)exp [-kO3(x) + iO_(x)],

(7.3)
u3 c3a2(x)exp [kp2(x)- iO_(x)],

u4 c4a2(x)exp [-kO2(x)- iO_(x)],

us Csgo(x) Ai(k2/3f 2(x)),

u6 C6go(x)Ai(k2/3of2(x)).

Here a2(x), O2(x), O3(x), 0_(x), go(X), and f(x) are given by (4.1(4.5) and (5.2),
(5.8) in the abovementioned paper and the c2, j 1, ..., 6, are constants.

In comparing the two procedures used in order to obtain the uniformly valid
asymptotic expansions of a fundamental set of equation (1.1) in the neighborhood
of the turning point x 1, it is clear that the one described in the present paper
is the simpler to employ. This technique gives the required result in a straight-
forward analytical manner without the necessity to resort to a numerical analysis,
which was required in the previous investigation. The analysis described in this
paper is recommended for those equations which may be uncoupled into systems
of equations of order not greater than two.

The situation in the neighborhood of the turning point x 0 is not as simple.
The present procedure leads to a problem which has not been fully investigated,
whereas the treatment given in Granoff and Bleistein (1972) does yield the WKB
connection formulas across this turning point.
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GENERAL BOUNDARY VALUE PROBLEMS FOR
DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE*

JOHN E. LAGNESE

Abstract. An Lp theory (1 < p < ) of existence and regularity of solutions of the partial differ-
ential equation (1 /(t))(Ou/ct) L(t)u f satisfying general boundary conditions is given. For
each t, #(t) is a linear elliptic partial differential operator in the space variables, 5(0 is a linear differ-
ential operator whose order does not exceed that of (t) and 7 is a nonzero complex constant.

1. Introduction. The following note is concerned with existence and regu-
larity of solutions of the equation

(1.1) (1 y(x, t; D))tt (x, t) of(x, t; D)u(x, t) f(x, t)

in a cylindrical domain A f (s, T), Rn, which satisfy the boundary
conditions

(1.2) C(x, t;D)u(x, t) 0, k 1,2, ..., s,

(1.3) B(x, D) -tt (x, t) O, j 1,2, ..., m,

on the lateral portion of A. In (1.1), 7 is a nonzero complex constant and /f/and of
are linear partial differential operators in x of respective orders 2m and __< 2m
with complex-valued coefficients defined in A, and is elliptic. {C},= and
{B}% are given sets of linear differential operators in x with coefficients defined
on the lateral part of A. In what follows, {C},= can be, for example, a subsystem
{Bjk}: of {Bj}jm-_ having the property that the order of Bjk does not exceed 1,
where < __< 2m, and the coefficients of Bjk do not depend on t.

We now outline our main results. Assume first of all the coefficients in the
differential operators appearing in (1.1)-(1.3) are independent of t, and let M
(resp., L) be the realization in Lp(f) (1 < p < ) ofthe operator (resp.,) under
the boundary conditions (1.3) (resp., (1.2)). In 2 we prove, for example, that the
initial value problem

du
(1.4) (1 ?M)-d- Lu f, u(O) Uo

has a unique solution for all complex ? with the exception of a discrete sequence
{7i} consisting of the characteristic numbers ofM. Regularity of the solution is also
studied and it is proved, in particular, that solutions of (1.1)-(1.3) are C in all
variables provided all the given data in the problem is C. In 3 we study (1.4) in
the case when 7 is a characteristic number of M. Assuming that L M and p 2,
we give necessary and sufficient conditions in order that (1.4) have a solution and
study also the question of uniqueness of solutions. Our results in this connection
generalize some results of R. E. Showalter [9], where it is assumed that
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106 JOHN E. LAGNESE

L M M*. The extension to a nonself-adjoint operator M is nontrivial and
makes considerable use of the theory of bases in a Hilbert space. In 4 we extend
the results of 2 to the case where M and L depend on t.

The literature on equations of the form (1.1), or more generally, linear partial
differential equations having mixed space and time derivatives in their highest
order terms (equations of Sobolev type see [12]), is extensive. We refer to the ref-
erences listed in [9]-[11 for an adequate bibliography on the subject and for infor-
mation on the physical origins of (1.1). The papers most relevant to the present
note are those of R. E. Showalter and T. W. Ting [9], [11 who treat (1.1)-(1.3) in
L2( by Hilbert space methods, assuming the coefficients to be independent of t.

Their methods are, however, essentially bound to the validity of G&rding-type
inequalities and, consequently, their results apply only to a small class of boundary
value problems. (Cf. M.I. Visik [16, especially Thm. 5"].)

2. The stationary case. Let gl be a bounded open set in R" with smooth
boundary and let x denote a variable point in fl. Write Di= /xi,
D D]ID22... D, for any multi-integer (1,2,’", ,), i >- 0, and

I1 1 + 2 + + ,. The operator /{ is the elliptic operator

#(x;D) a(x)D
ll_<2m

with complex-valued coefficients as defined in fl. Thus the characteristic poly-
nomial associated with the principal part ’ of/ satisfies ’(x; ) : 0 for all
real vectors (1, 2, "’", n) 4:0 and x fl. If n 2, we shall also assume that
//satisfies the following condition.

Roots condition. For every pair of linearly independent real vectors , q and
x , the polynomial in z,////’(x + zr/), has its roots equally divided between the
upper and lower half-planes.

As is well known, this condition is a consequence of the ellipticity of if
n > 2 or if n 2 and the coefficients of’ are real.

In addition to #, we give m differential boundary operators

BjU-- E bJ(x)D mj < 2m- 1 j 1 m

with complex-valued coefficients b{ defined on ctl. We shall always assume
{Bj}j% is a normal system. This means that mj :/: mk ifj : k and that cgl is non-
characteristic to Bj at each point. We further require the following condition.

Complementing condition. At each point x on gl, let v be the normal vector and- 0 be any real vector parallel to tl at x. Denote by z- () the m roots with posi-
tive imaginary part of the polynomial //’(x; + zv). Then the polynomials
Bi(x ; + zv) are linearly independent modulo the polynomial Hn=l (Z Z; ()).

We next state our smoothness assumptions which will depend on a non-
negative index q.

(Aq) fl is a bounded domain of class C2m +q. The coefficients in are of class
cq(l) and those in Bj of class cZm+q-mJ(g").

Following Agmon [1], we call the boundary value problem (/, {Bj}]’, fl)
a regular elliptic boundary value problem if the conditions of the present section are
satisfied. In what follows all elliptic boundary value problems will be assumed
regular.
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For 1 < p < oe, let Wk,p( denote the Banach space consisting of the sub-
class of functions in Lp() whose distributional derivatives of orders =< k belong
to Lp(), with the norm

If 2m _<_ k <_ 2m + q and u W,p(O), Bju has a well-defined trace on cf as a func-
tion in the space W_mj_l/p,p(f (see, for example, [7, Chap. 1). We define
W,p(f; {Bj}) as the closed subspace of W,p(f) consisting of those functions which
satisfy

Bju--O on3f, l__<j< m.

in what follows, we shall omit the subscripts p and f and write W(f), W(f; {Bj})
and I" in place of W,p(f), W,p(f; {Bj}) and k,p,n respectively.

Under the assumptions of the present section the following well-known
a priori estimates hold for all u Wzm+q(f)

(2.1) < C( /u + Z Bju 2m+q mj-1/p "it- bl 0),l 2m+q
j=l

where C does not depend on u.
We denote by M the unbounded linear operator in W(f) defined as follows:
(i) O(M)= Wz.,+q(f; {Bj}).
(ii) For u e D(M), Mu /g(x; D)u.

It is clear that M is a closed operator in W(f) and it follows from (2.1) that M has a
finite-dimensional null space and closed range. Ifthe spectrum ofM is not the whole
complex plane, that is, if (2- M)-1 exists for some 2 20, it follows (since
(2o M)- is compact) that (2 M)- exists for all/l except a discrete sequence
{2,} of eigenvalues of M, each of finite multiplicity, having no finite accumulation
point. In general, however, one cannot exclude the possibility that the spectrum
of M is the whole complex plane. We therefore assume the following condition.

Spectrum condition. The spectrum of M is not the entire complex plane.
If the spectrum condition is fulfilled and /l is in the resolvent set of M, a

special form of the estimates (2.1) is valid:

(2.2) Ilu 2m+q--< C{ (/],- )bl q--[- Z Bju 2m+q-mj-1/p},
j=l

where C may depend on/l but not on u. A sufficient condition for the spectrum
condition to hold is given by the following result of Agmon [1].

THEOREM 2.1. Suppose for some O, 0 <= 0 < 2zt, the following two conditions
are satisfied"

’(x; )
(i) (- 1)ml,(X; ) 4: ei for all real vectors 4:0 and x 9z.
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(ii) At any point x ofcf let v be the normal vector and =/= 0 be any real vector
parallel to cf at x. Denote by z(, 2) the m roots with positive imaginary part ofthe
polynomial in z, 1)m/Z’(x + zv) 2, where 2 is any number on the ray arg 2 0.
Then the polynomials B(x + zv) are linearly independent modulo the polynomial

Then the spectrum ofM is discrete. Moreover, there is a sector 52" [arg 2 0[
< 6, 2[ >= R, of the complex plane such that,for all 2 52 and u 6 D(M),

2m+q q

(2.3) 1/2mlu 2m/- <----C Il/zm u- Mu q-k,
k=O k=0

where C does not depend on 2 or on u.
In particular, E is contained in the resolvent set of M. The inequalities (2.3)

were established only for q 0 in l], but their derivation for q > 0 may be carried
out in essentially the same manner. If p 2, Theorem 2.1 is contained in [2]. In
this case the conditions (i) and (ii) are also necessary for the validity of (2.3).

Next we state our assumptions on . Actually, in what follows we need not
assume is a differential operator at all. We therefore make certain assumptions
about some linear operator L which will be satisfied, in particular, if L is a suitable
realization in I,V() of a boundary value problem.

(B) D(L) is a closed subspace of W+() for some =< 2m. L is a bounded
linear operator from V D(L) into FV() and V D(M).

Example 2.1. Suppose (x; D) is a partial differential operator in ) of order
< 2m with cq() coefficients. Let __< __< 2m and {Bs}7,= be a subsystem of

{B}m__ such that mg =< l- 1. Let V be a closed subspace of W+(f) such that
W+(f; {B}) c V W+o(f) and define L as follows" D(L) V and for u D(L),
Lu (x;D)u. Then L satisfies hypothesis (B).

We now proceed to discuss solutions of the equation

(2.4) (1 7M)u’(t)- Lu(t)= f(t),

where f(t)is a given Wq(f)-valued function.
DEFINITION 2.1. A solution of (2.4) on an interval ! is a strongly continuously

differentiable function u :I V such that u’(t) D(M) and (2.4) holds for all in I.
If L is the realization in Wq(f) of the boundary value problem (5(x; D), V)

given in Example 2.1, and if u is a solution of (2.4) on I, then u will be called a
solution of the boundary value problem

U
(2.4’) (1 7//(x D))- f(x D)u f(x, t), (x, t) f x I,

(2.5) u e V, e I,

(2.6) Bs(x D) Ct =0, (x, t) e c3f x I, j= 1, m.

Example 2.2. By choosing 2m and V W2,,+0(; {Bs} in Example 2.1,
the boundary conditions (2.5) become Bs(x D)u O,j 1, 2, ..., m. The boundary
conditions (2.6) are therefore a consequence of (2.5) in this case. At the opposite
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extreme we take and V W+q(f). Then no boundary conditions are im-
posed by (2.5). Since Vwill be the space of initial conditions for solutions of (2.4),
in certain situations it may be desirable to have V as large as possible.

We denote by z(M) the discrete set of characteristic numbers of M. Thus

7 z(M) if and only if 7-1 is in the spectrum of M.
THEOREM 2.2. For any given Uo V, y q z(M) and o Is, T], equation (2.4) has

at most one solution u on (s, T) such that

(2.7) lim u(t) Uo.
tto

THEOREM 2.3. Letf be a continuous function from an interval Is, T] into Wq(f).
For any given uo V, ? q z(M) and o Is, T], equation (2.4) has a unique solution u
on Is, T] satisfying (2.7).

Theorems 2.2 and 2.3 are a consequence of the following lemma.
LEMMA 2.1. For any 7 z(M), (1 7M)- 1L is a bounded linear operator on V.
Proof Theorem 2.1 and hypothesis (Bq) shows that (1 ?M)-1L is a well-

defined linear operator from Vinto itself for each ? z(M). Moreover, for each
u e Vwe have from the estimates (2.2):

<C <C

The lemma follows from this last inequality since 2m.
We now form the group {etA._ oe < < + oe } of bounded linear operators

in V, where A (1 7M)-1L. It is well known that eta is infinitely differentiable
with respect to on (- , oe) in the uniform operator topology and

d
etA A etA.

Moreover, if ; 6 z(M), equation (2.4) is equivalent to

(2.8) u’(t) (1 7M) -1Lu(t) + (1 yM)- if(t),

which in turn is equivalent to

u(t) e(t-t)AUo + e(t-*)A(1 7M)- If(a) da,

wheneverf(a) is continuous on Is, T] and (2.7) holds. Theorems 2.2 and 2.3 follow
easily.

We next examine the regularity of solutions of (2.4). Suppose that f(t) has
derivatives to order k on (s, T) as a function in Wo(f and u(t) is a solution of (2.4)
on (s, T) for some fixed 7 q z(M). Since (1 7M)-1 (resp., (1 7M)-1L) is a
bounded linear operator from Wq(f) (resp., V) into D(M), it follows from (2.8),
by forming difference quotients, that u’(t) has derivatives to order k + 1 in D(M)
and that

U(j + 1)(t) (1 }M) -1Lu(J)(t) -1- (1 7M)- lf(J)(t), j =0,1,...,k.
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In particular, u’(t) is continuous on (s, T) as a function in D(M). Writing
+

(2.9) u(t + h)- u(t)= u’(t) dr, s 4- h T,

where the integral is a Riemann integral in D(M), we conclude that h-l[u(t / h)
-u(t)] lies in D(M) and converges to u’(t) in D(M). We summarize the above
discussion in the following theorem.

THEOREM 2.4. For any fixed / z(M), let u(t) be a solution of (2.4) on (s, T). If
f(t) has continuous derivatives on (s, T) to order k as a function in Wq(), then u(t)
has continuous derivatives on (s, T) to order k + 1 as afunction in W2+q(); (B)).

We note from (2.9) that if u(t) is a solution of (2.4) on (s, T) satisfying (2.7) and
if Uo D(M), then u(t) is also in D(M) for s T. In particular, this implies that
the group (e’- 4- ) leaves invariant WEm+q(; (B)). This same con-
clusion could also be reached by noting that (1 yM)-L is a bounded linear
operator on W2m+q(’ {B3}).

Let c’k( x (s, T)) denote the class of functions u(x, t) defined and having
continuous partial derivatives DDu(x, t) on f- x (s, T) for [a[ <= r, 0 <= j <= k. By
employing Theorem 2.4 in conjunction with the Sobolev imbedding theorem, we
obtain the following result concerning differentiability in the classical sense of
solutions of (2.4).

THEOREM 2.5. With the hypotheses ofTheorem 2.4, let u(t) u( t) be a solution

of(2.4) on (s, T) and suppose 2m + q > nip. Then u C2m +q-t"/P- ,k +( (S, T))
after correction on a set of measure zero.

COROLLARY. Let u(x, t) be a solution of(2.4’) satisfying the boundary conditions

B(x O)u(x, t) O, (x, t) c3 I, j 1, rn

(that is, V W2,, +q(f; {Bj})). Suppose f is of class C, the coefficients of and //
are ofclass C() and the coefficients ofB are ofclass C(c3f). Then u C() I)
wheneverf6 C(f I).

3. The singular points. In this section we suppose 7 is a characteristic number
of M. Since the spectrum ofM is discrete we may suppose without loss that zero is
in the resolvent set ofM, so that 7 is an eigenvalue ofM- 1. We make the simplifying
assumptions that L M, p 2 and q 0. Thus we are concerned with the
problem

(3.1) (1 7M)u’(t)- Mu(t)= f(t), u(O) uo V,

for a function uC’(R, V), where R (-, ), V= W2m,2(f; {Bj}) and f is
a continuous function from R to L2(f). (We could, of course, treat (3.1) on any
interval.) By setting v(t) Mu(t), (3.1) is clearly equivalent to

(3.2) (M -1 )v’(t) v(t) f(t), v(O) Muo L2(),

for a function v C’(R, L2()), where we consider M- as a compact operator in
L2(). We shall use (.,.) to denote the inner product in L2( "(u, v) u dx.

In this section we first derive necessary conditions, in terms off(t), Uo and the
root vectors of M corresponding to 7-1, in order that (3.2) have a solution. We
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then show that solutions of (3.2) are uniquely determined by f(t) and Uo if the
system of root subspaces of M form a basis for L2(). Finally we prove that the
necessary conditions are also sufficient in order that (3.2) have a solution provided
the system of root subspaces form an unconditional basis for L2( and only a
finite number of the root subspaces contain root vectors which are not eigen-
vectors.

It may be helpful at this point to recall a few facts concerning root vectors. For
a more complete discussion particularly relevant to this paper we refer the reader
to V. B. Lidskii [6, Chap. 2].

If/l is an eigenvalue of M, a nonzero vector 05 is called a root vector ofM
corresponding to 2 if for some positive integer k, (2 M)kq5 0. (One assumes, of
course, that q5(1) (2 M)qS, )(2) (/ m)b(1), and so on, all belong to D(M).)
The set of all root vectors ofM corresponding to 2 spans a (root) subspace of Lz(f2
which we denote by R(2). Clearly 95 is a root vector of M corresponding to 2 if
and only if b is a root vector of the compact operator M- corresponding to the
eigenvalue p 2- the root subspace R(2) R(p) is therefore finite-dimensional.
One can choose a basis in R(/t) consisting of Jordan chains (a Jordan basis) of
eigenvectors and root vectors of the operator M-IIR(,). Each such chain
4;’2), ..., q5(p) is a Jordan chain for M- and is transformed by M- according to
the formulas

M-l(/)(1) ]Ab(1), M-1(/)(2) ]2(/)(2) ._[_ (/)(1), "’’, M-Xqb(p) ]A(/)(p) q_ b(p-1).

.(3.3)

Consider the sequence {7i} of all distinct eigenvalues of M-1 and choose a
Jordan basis in each root subspace. In this way we obtain a certain sequence
in L.(f). This sequence determines in a unique way another sequence {0r}, con-
sisting of eigenvectors and root vectors of (M-)*, which together with
forms a biorthonormal system, that is, (qS, )= fi. More precisely, if
4), bp is a Jordan chain in the system {b} which transforms accord-
ing to (3.3), then the vectors (), (2), ..., O(p), having the same indices in the
system {Oi} as the vectors b(’) have in the system {}, transform according
to

(3.4)

Therefore the matrix [(M- q5’, J)] has Jordan form, having p at each diagonal
element and, if p > 1, 1 at each subdiagonal element and zeros elsewhere. Thus
if {bk},"i; (nl 0)is the Jordan basis for R(7) and {Ok},[;’ the corresponding
dual Jordan basis in R*(Pi) (the root subspace of (M-)* corresponding to the
eigenvalue i), the matrix

[(M- 1(/)k ni+

has Jordan form, having 7i at each diagonal element, either or 0 at each sub-
diagonal element and zeros elsewhere. In particular, the above matrix is diagonal
if R(7) contains only eigenvectors.
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Finally, we note that if a vector f in L2( can be written as a strongly con-
vergent series

k=l

then by virtue of the existence of the dual system (} the coefficients Ck are uniquely
determined: Ck (f, k)"

We return to the problem (3.1) and derive necessary conditions for it to have a
solution. Let (1), (2), ..., O(p) be a Jordan chain in the root subspace R*(p) which
transforms according to (3.4) with/ 7. If we form the inner product of (3.2)
with O(i), we obtain

d
(3.5) d_(v(t) i(i+ 1)) (V(t), (i)) (f(t), @(i)), 1,..., p 1,

(3.6) -(v(t), (P)) (f(t), /(P)).
We therefore see that (f(t), /(P)) must be continuously differentiable and, setting

0 in (3.6), that

-(Muo, 6v)) (f(0), 6)).

Similarly, from (3.5) and (3.6) we find that

d
p))(f(t), (v-1)) + _t (f(t),

must be continuously differentiable and

d
(p))(Muo (p- 1)) (f(0), /(v- a)) + t(f(t

t=O

Proceeding step-by-step we obtain the following theorem.
THEOREM 3.1. In order that (3.1) have a solution, the following conditions are

necessary: For each Jordan chain (1), (2), () in the Jordan basis for R*(),
transforming according to (3.4) with , the functions defined recursively by

(3.7) G(P)(t) (f(t), /(P)),
d
G(p_i+ 1)(0 + (f(t), O(P-i)), 1 1(3.8) G(P-i)(t) t ’’"’ p-

are continuously differentiable and

(3.9) (Muo O(i)) Gi(O), 1,2,..., p.

We remark separately on the case when M, which is a closed, densely defined
operator in L2(), is normal: MM* M*M. Then M-1 is a compact normal
operator in L2(), its root subspaces therefore contain only eigenvectors and the
eigenspaces E(7) R(7) and E*(p) R*(p) coincide. Consequently Theorem 3.1
implies the following theorem.

THEOREM 3.2. Suppose M is a normal operator in L2( In order that (3.1) have
a solution it is necessary and sufficient that (f(t), d?) be continuously differentiable
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for each E(y) and Muo + f(O) be orthogonal in L2( to E(y). The solution is
unique whenever it exists.

The statements concerning sufficiency of the conditions and uniqueness of
solution are a consequence of Theorems 3.3 and 3.4 below. If M M*, Theorem
3.2 was essentially obtained in [9].

We proceed to the question of uniqueness of solution. Let { R(,i)} be the system
of root subspaces of M arranged in some order. This system is called a basis for
L2(f) if eachfe L2(Y can be written as a strongly convergent series

(3.10) f f/, f/ R(Ti).
i=1

This implies, in particular, that the set of characteristic numbers is infinite. If
{qSk}i-’l (nl 0)is a Jordan basis in R(7i) and

ni+l

f= Y
k=ni+

then Ck (fi, Ok), where {Ok}i;’l is the dual Jordan basis in R*(7). Since Ok is
orthogonal to all the root subspaces R(7j) withj : we have (j; Ok) (f/, Ok) Ck"
The representation (3.10) is therefore unique.

The system {R(7i)} is an unconditional basis for Lz(f if it remains a basis
under any permutation of its constituent subspaces. It is known (see, for example,
I. C. Gohberg and M. G. Krein [4, pp. 335-336]) that this is equivalent to the
following statement: There is a bounded, invertible linear operator on L2()
which transforms {R(7i)} into an orthogonal basis for L2(O).

THEORE 3.3. If some arrangement of the system {R(7i)} of root subspaces
ofMjbrms a basis jbr Le(), the problem (3.2) has at most one solution.

Proof. Let the characteristic numbers of M be indexed so that {R(vi)}? is a
basis for La(O). We may assume without loss that 7x . If v(t) is a solution
of (3.2), then

1 k=ni +(3.11)

v(0) ,
k=ni+

where {bk}i$1 is a Jordan basis for R(Ti) with corresponding dual Jordan basis
{Ok}i;l for R*(Pi) and

v,(t) (v(t), bk (Muo, Ok)"
A similar series representation is valid for v’(t):

(3.12) v’(t) 1 Wk(t)g/k,
k=ni+

w,(t) (v’(t), 0) v’(t).

We have to show that the functions {Vk(t)} are uniquely determined by f(t)
and the initial condition Muo. Substituting (3.11) and (3.12) in (3.2) gives

1i+ tli

(3.13) [V’k(t)(M-1 7)(k- Vk(t)k] Z 2 fk(t)k
k=ni + k=ni+
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wherefk(t) (f(t), Ok). Each subspace R(7i) is invariant under M- 7" Consider
first R(71) R(7) and let b(1), b(2), , b(p) be a Jordan chain in its Jordan basis.
If V(1)(t) V(2 )(t) ..., v(P)(t) are the corresponding coefficients in the expansion
(3.11), we have from (3.5) and (3.6),

(3.14) vi)(t) -Gi)(t), i= 1,2,..., p,

where the functions G((t) are defined by (3.7) and (3.8). The coefficients v
are therefore uniquely determined by f(t). Since the basis for R(71) consists of a
finite number of such Jordan chains, it follows that all the coefficients {vk}’ are
uniquely determined by f(t).

Consider next a subspace R(7i) with =/= 1. This subspace is invariant under
Mr-1

where

7 so that

(M-1 )(k CkjdDj k 1 Av 1,’’’, ti+ 1,

j=ni+

ck (M- )k, lj) (kj"
Hence from (3.13),

[(M-lk, tj) 7kj]Vk(t) Vj(t) fj(t dpj 0,
i= j=ni+ k=ni+

and therefore,
?i+1

(3.15) [(M-l(/)k, j) ])(kj]Vtk(t) Dj(t) fj(lS) O, j ni + 1,.-., /’/i+1"
k=ni+

The matrix [(M-Xdk,tj)- y6kj]nni_xl has Jordan form, having 7i-7 at each
diagonal element, or zero at each subdiagonal element and zeros elsewhere.
The matrix is therefore nonsingular which in turn implies that the system (3.15)
has a unique solution {vk(t)},"iXl subject to the initial conditions

(3.16) vk(0) (Muo,

The coefficients in the expansion (3.11) are therefore uniquely determined by Uo
and f(t), proving the theorem.

Before discussing existence of solutions to (3.1) we comment on the basis
condition of Theorem 3.3. IfM is a self-adjoint or normal operator, then of course
the root subspaces form an unconditional basis for L2(). This same result is
true for various classes of nonnormal operators (see, for example, [4, Chap. 6]
and V. N. Vizitei and A. S. Markus [15]). This is true, in particular, if M is a
dissipative operator (that is, Im (Mu, u) <= O. for u e D(M)) such that the closed
linear hull of its root subspaces equals L2( and whose characteristic numbers
{7i} satisfy

i,j=l
:/:

Im 7i Im 7i
mimj [7i )j

< C
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and

Im 7 1
lira sup (m 1),- I- 1i:j

miwhere m is the smallest positive integer for which (M y) R(y) 0. (See
A. S. Markus 8] and , Chap. 6].) If m for all io, that is, if all but a
finite number of the R(y) ontain only eienvetors, these onditions reduce to

Im y Im

,: I 1
ej

The condition that the closed linear hull of the root subspaces equals L()
is known to hold under mild conditions on the regular elliptic problem (, {B}, )
([1, Thin. 3.2]). This result holds in particular if (, {B}, ) differs from a self-
adjoint problem (, {},) only in lower order terms, that is, ’= ’ and

B B. If in addition 2m > n and the order of is less than 2m n,
the following stronger result is valid" The root subspaces form an unconditional
basis with parentheses for L() ([15, Thin. 5.3]). This means there is a sequence
{k} of natural numbers (k 0) such that the system of subspaces {R}
defined by

(+) (+,), J , e, ...,
is an unconditional basis for Le().

We now turn to the question of existence of solution of (3.1). Assuming that
the necessary conditions of Theorem 3.1 and the basis condition of Theorem 3.3
are satisfied, we form the series (3.11) in which the coecients {v}; are defined
by (3.15) and (3.16) for i> 1 and, for i= 1, by (3.14) for each Jordan chain
), ..., (’) in the Jordan basis for R(7). Then (3.11) will obviously be a solution
of (3.2) provided the two series (3.11) and (3.12) converge uniformly on bounded
t-intervals.

THZOZM 3.4. Suppose the necessary conditions of Theorem 3.1 are satisfied
and that

(i) {R(7i)} is an unconditional basis for La();
(ii) all but a finite number of the R(Ti) contain only eigenvectors.
Then the problem (3.1) has a unique solution.

Proof. We suppose 7 7 and arrange the other 7 in order of decreasing
magnitude, so that {7} converges to zero. By hypothesis (ii), there is a positive
integer io such that if => o the matrix [(M-,) 7]"’,, has diagonal
form, having 7-7 at each diagonal element. Therefore the system (3.15)
uncouples and becomes

(,- )v(t)- v(t)= A(t), n + ,...,
Thus for io,

v(t) (Muo, 0)exp [(7i 7)- t] + exp [(7i 7)-(t s) (f(s), 0)ds,

k --/’/i -11- 1, ,/’/i+1,
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so that

?!i+1

k=ni+
Vk(t)dk exp [(7, 7)-lt]Ui

exp [(7, 7)-1(/7 s)]Fi(s)Ms,

where

Therefore,

?li /’ti

Ui (Muo, Ok)k, Fi(t (f(t), Ok)k.
k=ni+ k=ni+

(3.17) V(t) o <= C(t) U, o + Fi(s) o ds i>= io,

where C(t) is bounded on bounded intervals (here we use the fact that 7i--’ 0).
We have

(3.18) Muo U,, f(t) F(t).
i=1 i=1

By hypothesis (i), there is a bounded, invertible linear operator A mapping
L2( onto L2( such that {AR(7)} is an orthogonal basis for Lz(f). It follows
from (3.18) that

A(Muo) Z IAC,
i=1

and since A has a bounded inverse,

(3.19) Z Ui g < ,
i=1

Af(t) AF,(t)llo
i=1

F(t) o2< .
i=1

Since each Fg(t) is continuous we can apply Dini’s theorem to deduce that the
second series in (3.19) converges uniformly on compact intervals. It then follows
from (3.17) that V(t) converges for each t, uniformly on bounded intervals.

Since
1

V’i(t --[V/(t) + Fi(t)] >= o

and 7i- 7-- -7, 2 Vfi(t) likewise converges uniformly on bounded t-intervals.
The proof is therefore complete.

4. The nonstationary case. We suppose the coefficients in the differential
operators (x,t;D) and {Bj(x,t;D)} are defined in the infinite cylinder
fi x (-, o) and that (/{, {Bj}, f) is a regular elliptic boundary value problem
satisfying the spectrum condition for each fixed t. We also make the following
smoothness assumptions.

(Aqr) f is a bounded domain of class C2m/q. The coefficients in are of class
cq’r(l x (-oo, oo)) and those in Bj of class c2m+q-mJ’r(" x (--o0, (30)).
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As in 2, let M(t) be the realization in Wq(f) of the boundary value problem
(//(x, t; D), {Bj(x, t; D)}’= a). We further introduce a family {L(t)" oe < < + oe }
of linear operators which satisfy the following hypotheses.

(Bqr) D(L(t)) V is a closed subspace of W/+ q(f), =< 2m, which is independent
of t, and V D(m(t)). L(t) is a bounded linear operator from V into Wq(f) having
continuous t-derivatives to order r in the uniform operator topology.

Example 4.1. Let (x, t; D) be a partial differential operator in x of the form

(x, D) l(x, t)D
I1_-<

with coefficients of class cq’r( x (-, )). Let <_ < 2m and {Bk},= be a
subsystem of {B}m= such that mk < 1 and the coefficients inB are independ-
ent of t. Let V be a closed subspace of W/+q(f) such that W/+q(D; {Bk}) c V
c W/+q(f). Define L(t) as follows" D(L(t))= V and for u e V= D(L(t)),
L(t)u (x, t; D)u. Then {L(t)" < < + } satisfies (Bq). In fact, the
derivative L()(t) of L(t) is the operator defined by L()(t)u ()(x, t; D)u for
u e V, where &a()(x, t;D) is the differentlal operator obtained by differentiating
the coefficients of j-times with respect to t.

We now discuss solutions of the equation

(4.1) (1 7M(t))u’(t)- L(t)u(t)= F(t).

DEFINITION 4.1. A solution of (4.t) on an interval I is a strongly continuously
differentiable function u:I V such that u’(t) D(M(t)) and (4.1) holds for all
tinI.

In the particular case when L(t) is defined as in Example 4.1, a solution of
(4.1) will be called a solution of the boundary value problem

(4.2) (1 7//g(x, t; D))C-t 5(x, t; D)u f(x, t), (x, t) f x I,

(4.3) u e V,

U
(4.4) Bj(x, t; D)-ff[ O, (x, t) c3 x I, j 1,... m.

For any t-interval we denote by )i the set

-j z(M(t)).
tel

Although each )(M(t)) is discrete, we cannot in general rule out the possibility
that Zl is the entire complex plane. However, if we suppose that conditions (i)
and (ii) of Theorem 2.1 hold for each and consider a bounded interval I, there is
a sector EI :]arg 2 01 < 6, 121 >_- R, in which the estimates (2.3) hold uniformly
in e I, so that )i must lie entirely outside of 2; in this case.

THEOREM 4.1. Let I [s, T]. For any given Uo V, to I, and 7 q )(,I, (4.1)
has at most one solution u on int (I) satisfying

(4.5) lim u(t) Uo.
tto
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THEOREM 4.2. Let I Is, T] and let f be a continuous function from I into

Wq(). For any given uo V, to I and ? ZI, (4.1) has a unique solution u on I
satisfying (4.5).

THEOREM 4.3. For any interval I and any fixed / q , let u(t) be a solution
of(4.1) on I. Ill(t) has continuous derivatives on I to order k as afunction in Wq(fl),
then u(t) has continuous derivatives on I to order min (r, k) + 1 as a function in

W2m + q(’))
The existence of a classical solution of the boundary value problem (4.2)-(4.4)

can now be deduced from Theorems 4.1-4.3 and the Sobolev imbedding theorem
as in 2 provided f, fland the coefficients of, 5 and {Bs} are sufficiently smooth.
In particular, if these functions are C(Y x (S, T)), then every solution of (4.2)-(4.4)
is C(fl (s, T)) after correction on a set of measure zero.

Denote by (Wq()), W2,+()) the Banach space ofbounded linear operators
from Wq(Y) into Wzm+q() with the uniform operator topology. Theorems 4.1-4.3
are a consequence of the following lemma.

LEMMA 4.1. For each Y qZ, the mapping (1- yM(t)) -1 of I into

,(Wq(fl), W2m+q(fl)) is r times continuously differentiable.
This result is due to H. Tanabe ([14]; cf. [5], [13]) and is based on the

inequalities (2.2). In fact, if f 6 Wq(fl) and u(t)= (1 7M(t))-f, for each the
derivative w(t) u()(t) is, formally, the solution of the boundary value problem

l-1

(4.6) (1 7#(x, t; D))Wl(X, t)
k=O l) k)(x D)uk)(x t) X ,

k
/{(l t"

l-1

(4.7) Bs(x D)w(x, t)
k=O

B}-k)(x, t; D)uk)(x, t), xec3f, 1 <=j m,

where (z-k)(x,t;D) (resp., Bl-k)) is the differential operator obtained from
(resp., Bj) by differentiating the coefficients 1-k times with respect to t.

Lemma 4.1 is proved by induction. The passage from 1 to is made by applying
the estimates (2.2) to the difference Wl(t)- h-[u- *)(t + h)- u- )(t)], where,
for each t, w,(t) is the unique solution of (4.6), (4.7).

We now can prove Theorems 4.1-4.3. We first note that because of Lemma 4.1
and hypothesis (Bq,), the mapping t- A(t)= (1- ?M(t))-L(t) from I into
5(V, W2m+()) is r times continuously differentiable. In particular, this mapping
is continuous in (V, V) so the evolution operators {G(t, z):(t, z)e I x I} exist
for the equation u’(t) A(t)u(t) (see, for example, [3, pp. 134-136]). Thus for any
Uo e V and any continuous Wq()-valued function f(t) on I, the problem (4.1),
(4.5) has the unique solution

u(t) G(t, to)Uo + G(t, z)(1 7M(z))- if(z)dz, I.

Theorems 4.1 and 4.2 are thereby proved. To prove Theorem 4.3 write

u’(t) A(t)u(t) + (1 yM(t))-if(t).
Because of the differentiability properties of A(t), (1 yM(t))- and f(t), an
easy argument shows that u’(t) has min (r, k) continuous derivatives as a function
in W2,+(). Arguing as in 2, we also can conclude that h-(u(t + h)- u(t))
lies in Wz,,+(f) and converges to u’(t) in that space.
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ON THE EXISTENCE OF SIMILAR SOLUTIONS OF SOME

BOUNDARY LAYER PROBLEMS*

PHILIP HARTMANt

Abstract. The first part deals with the continuity and monotonicity of functions of the parameters
determining the range of existence of solutions of the Falkner-Skan equation considered by Iglisch
and Kemnitz (and by Hartman). It also deals with the continuous and monotonic dependence on

parameters of the maximal solution and its derivative. In the second part, we give existence theorems
and physically significant properties for solutions of some problems associated with the names
of Pohlhausen and Stewartson. Some of these problems have also been treated by Hastings. The
method depends on Tikhonov’s fixed-point theorem and on the consideration of a boundary value
problem for a nonlinear second order equation on [0, oe). Existence for this singular boundary value
problem is obtained by Nagumo’s method of sub- and supersolutions, and uniqueness by properties of
principal solutions of disconjugate linear second order equations. The third part is concerned with
more general boundary value problems on [0, oe) associated with systems of equations, some of which
are of order two and some of order three.

Consider the boundary value problem involving the Falkner-Skan [2]
differential equation

(I.1)

and boundary conditions

u’" + uu" + 2(1 u’2) 0,

(I.2) u(0) , u’(0) fi,

(I.3) u’(o) 1;

also the side conditions

(I.4) 0</?<u’ < fort>0,

(I.5) u" > 0 for > 0,

(I.6) 0 < u’ < for > 0.

This problem occurs in boundary layer theory. Questions of existence and non-
existence, of uniqueness and nonuniqueness, of the asymptotic behavior of solu-
tions have been settled (Weyl, Iglisch, Iglisch and Grohne, Iglisch and Kemnitz,
Coppel [1], Hartman; see [6, pp. 519-537] for a systematic exposition and
bibliography).

The situation as to existence is as follows" if 2 > 0, 0 =< fl < 1 or 2 0,
0 < fl < 1, then (I.1)-(I.5) has a solution for all ; if 2 0, fl 0 or 2 < 0, 0 __< 13
< 1, then there exists a constant A(fl, 2) with the property that (I.1)-(I.5) has a
solution if and only if >__ A(fl, 2). It is known [3 that A(0, 0) < 0. Hastings
has pointed out that it is not known if A(0, 2) is continuous at 2 0, but his
results imply A(0, 2) < 0 for small -2 > 0.

In Part I, we examine the function A(fl, 2) and solutions of (I.1)-(I.5) for
2 < 0. It is observed that A(fl, 2) is continuous for 2 < 0 and 0 =< fl < 1, monotone
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with respect to 2, and satisfies, as 2 --+ 0-, A(fl, 2) A(0, 0) or -co according as
/3 0 or 0 < fi < 1. It is shown that the maximal solution of (I.1)-(I.5) and its
first derivative are monotone in 2 for 2 =< 0. It will remain undecided if A(fi, 2) is
monotone in fi but it will be verified that if 0 < rio _-< ]3 < 1, then (I.1)-(I.3) has a
solution satisfying (I.6), but possibly not (I.4), when > A(fio, 2).

The results of Part I are used to obtain some existence theorems for the
problems of Polhausen and Stewartson involving the system of differential
equations

u"’ + uu" + 2(h u’2) 0,

(II.2) h" + ruh’ 0,

the boundary conditions

(II.3) u(0) , u’(0)= fi, h(0) a,

(II.4) u’(co) h’(co) 1,

and one or more of the side conditions

(II.5) u’ > 0 for > O,

(II.6) /3 < u’ < for > O,

(II.7) u" > 0 for > O,

(II.8) h-u’2 >0 fort>O,

(II.9) < u’ < fl for > O,

(II.10) u" < 0 for > O,

(II.11) h-u’2 <0 fort>O.

Existence for (II.1)-(II.5) has been settled for a > 0, 2 > 0, a > 0, fi >= 0 and
-co < < co by Ho and Wilson [9] in some cases, and by McLeod and Serrin
[15] in general; see Lan 14] for systematic proofs. Hastings [8] has dealt with the
case ofa 1, z fi 0, a >= 1, and sufficiently small 2 > 0 (say, 20(a) 2 < 0),
and has raised the question of existence in corresponding cases for 0 < a < 1. In
Part II, we obtain sufficient conditions on the parameters a, , fi, 2(< 0), a for
existence. The main result (Theorem 7.1) implies that if a 1, a > 0, and either

fi -Y: 0 and is arbitrary, or fi 0 and > A(0, 0), then (II.1)-(II.5) has a solution
for sufficiently small -2 > 0. (After the completion of this paper, Mr. Lan
called my attention to [8a] in which Hastings has announced a corresponding
existence theorem for the case a 0, which has been incorporated into [8].)
The condition a can be relaxed to a > 0 if 0 _>_ 0. If a 2 0 and a 1,
then the solution obtained satisfies (II.8) and if, in addition, fi < 1, then (II.6)-
(II.7) hold. If fi _>_ (a + 1)/2 and a 1, then the solution obtained satisfies (II.11)
and if, in addition, fi > 1, then (II.9)-(II.10) hold. For references to Pohlhausen,
Stewartson, Cohen and Reshotko, Libby and Lin, and other hydrodynamical
literature, see [8 and [15].
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Hastings [8] and Lan [14] obtain their existence theorems by the use of fixed-
point theorems, not unlike the methods in Hartman [4, pp. 506-509]. The methods
to be employed below are similar. The idea of using a solution of (I.1)-(I.5) as
a subsolution of certain second order equations is suggested by Hastings [8], and
is extensively exploited here in the proof of all existence theorems. In the proof of
the continuity of A(0, 2) at 2 0 and of the proof of Remark 4 (following Theorem
7.1 which contains [8]), we use the same linear functional equations as Hastings
[8]. In the other existence theorems, we use a nonlinear functional equation. The
ingredients of the proofs are the choice of subsolutions (just mentioned), con-
struction of a supersolution, a corollary of a theorem of Nagumo [16] on two-
point boundary conditions for a nonlinear second order equation (cf. Proposition
A3.1 in the Appendix), and a simple uniqueness theorem for linear second order
equations (cf. Proposition A2.2). The latter should have other useful applications.

In Part III, it is pointed out that a similar procedure leads to existence
theorems for a more general class of problems.

PART I. THE FUNCTIONS A, ), AND Uo

1. Statement of results. We shall need the following theorem of Iglisch and
Kemnitz [12] on fl 0 (see [6, pp. 525-534] for 0 <_ fl < 1).

PROPOSmON 1.1./f 2 < 0 and 0 =< < 1, then there exists a number A A(,
2) and a continuous increasing function 7(cO defined for >__ A such that 7(A) 0
and (1.1}-(1.4) has a solution if and only if >= A; in which case (I.5) holds. The
solution of the initial value problem (I.1), (I.2) and

(1.1) u"(0) y

is a solution of (I.1)-(I.4) if and only if 0 __< 7 =< 7(e); so that there is uniqueness if
and only if A(fl, 2).

Below we shall prove the following result concerning A(fi, 2).
THEOREM 1.1. The function A(, 2) is continuous for 2 < 0 and 0 <_ < 1,

is a decreasing function of 2, and as 2 0 -,

(1.2) A(fl, 2) - uniformly on compacts of 0 < < 1,

(1.3) A(0, 2) A(0, 0).

The monotonicity of A(0, 2) has been proved by Iglisch and Kemnitz [12]; the
proof for A(fl, 2) will be similar.

We shall write 3,()= 7(,//,2) and denote by u Uo(t)= Uo(t, , fi, 2) the
solution of (I.1)-(I.5) satisfying u"(0) 7(). If z > A(fl, 2), so that 7() > 0, then
different solutions u u(t) of (I.1)-(I.5), i.e., those having 0 __< u"(O) < 7(),
satisfy

(1.4) z<u <u0, fi<u’ <ub for t>0;

cf. the proof of (3.9) in 3. The solution u Uo(t) will be called the maximal solution
of (I.1)-(I.5). It can also be characterized by its asymptotic behavior at o;
Hartman [5] (see [6, pp. 534-537]). For 2 0, Uo(t) Uo(t, cz,/3, 0) will be the unique
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solution of (I.1)-(I.5) when it exists; correspondingly, 7(0,/, 0)= u{5(0). Analo-
gously, let A(/, 2) oo for 2 0, 0 </ < 1. Define the sets

fi {(,/, ,).0 _<_/ < , ,z < 0, >__ A(/, 2)},

no {(,/, 2)’0 __</ < , 0, > A(/, 0)} and f fo U fo.

THEOREM 1.2. The functions 7(e,/3, 2), Uo(t, 0, fi, 2), and U’o(t, , , 2) are con-
tinuous on {t > 0} x f and are strictly increasing functions of o and of 2.

The monotonicity of Uo, u with respect to 2, when/ 0, is contained in [123.
One cannot expect continuity, for example, at (e,/?,2)= (A(0, 0), 0, 0) for e

A(0, 2) A(0, 0) and 0 7(A(0, 2), 0, 2) 0 as 2 0-, but no solution of
(I.1)-(I.5) for 2 0 can have u"(0) 0.

In this part of the paper, we shall also prove the following theorem.
THEOREM 1.3. Let 2 < 0, 0 =</o < / < 1, 0 >__ A(/3o, 2). Then (I.1)-(I.3) has

a solution u u(t) satisfying o < u’ < 1 (but not necessarily u" > O) for > 0;
also, 1 u’ < U’o(t, , o, 2) for >= O.

The proofs of Theorems 1.1 and 1.2 will be given together; the monotonicity
statements in 3, the continuity statements for 2 < 0 in 4, and the assertions
concerning 2 --+ 0- in 5. Theorem 1.3 will be proved in 6.

2. Preliminaries. The proofs of Proposition 1.1 depend on some changes of
variables, due to Iglisch [10 and [11, which will also be used below. Introduce the
new independent and dependent variables,

(2.11) u u(t) and z(u) u’Z(t)

along solutions of (I.1) for which u’ > 0 on some interval 0 < < T(__< oo), so
that if :i dz/du,

(2.12) u’ z 1/2 hi"-- /2, u’" zl/2,/2.

Thus (I.1)-(I.5) and (1.1) become, respectively,

(2.2) zl/25 + u + 22(1 z)= 0,

where dz/du,

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

z() =/,

z(c) 1,

/2<z< for<u< ,
>0 for < u < oo,

() 27.

Along a solution on which > 0, we can (following Iglisch [11]) also introduce
z as a new independent variable. Let u U(z) be the function inverse to z z(u)
and let V(z) (U(z)). Then (2.2) becomes the system

(2.8) d(- U)/dz l/V, dV/dz U/z 1/2 22(1 -z)/zl/2V.
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When we wish to consider varying 2, add the following differential equation to
this system"

d(- )/dz O.

The system of differential equations for (-U, V, -2) has the property that the
right sides of these three equations are, respectively, nondecreasing functions of
V and -2, of U and -2, of U and V for 0 < z < 1. Hence, it follows from a
theorem of Kamke [13 (cf. [6, Exercise 4.1, p. 28 and p. 558]) that if (-Uz(z),
V/(z), -2i) for 1, 2 are solutions satisfying

(2.9) U1 U2, V1 V2, 21 /],2

and V2 > 0 at some z z0, 0 < Zo < 1, then the same inequalities persist on
their common domain of existence in Zo _-< z < 1.

This leads easily to the following analogues of propositions of Iglisch and
Kemnitz [12] (cf. [6, Steps (d) and (c), pp. 526-528]).

PROPOSITION 2.1. Let z Zl(U)= ZI(U, 21), Z-- Z2(U Z2(U, 22) be two
solutions of (2.2), where/t =/ll, 22, satisfying

Z2(02 Z1(01 2 0 < 2(02) < ,1(0{1) O < O2 1 < /]’2 < 0

0 <= fl < 1, and at least one of the following inequalities hold"

0{1 < 02, 4i(0{2) < 1(0{1), /]’1 < 22"

Then, as long as both solutions satisfy 2 < ,7, < 1 with increasing u, U2(2 Ul(Z
is positive and increasing, and Vz(z) Vl(Z) < O. In particular, the arcs z z l(u),
z Zz(U) in the (u, z)-plane do not intersect in the half-strip u > z2, 2 < z < 1.

Remark. Proposition 2.1 remains valid for 22 0 provided that

(2.10) either/3 > 0 or 2(02) > 0.

(If (2.10) fails to hold and 22 0, then Z2(N can be Z2(b/) ------ fl and the assertion be-
comes meaningless.) In the verification of Proposition 2.1 and this remark, one
avoids the singularities of (2.8), if any, by exploiting the relationship between
(I.1) and (2.2), and examining the Taylor expansion of corresponding solutions of
(I.1) at 0, in order to first obtain the desired inequalities for small z 2 > 0.

PROPOSITION 2.2. Let z z(u) be a solution of (2.1) for large u satisfying
0 < z(u) < and (u) > O. Then z(m) 1.

3. Proofs. (a) Monotonicity of A, o with 2(<0). We first show that if 0 =< fl
< 1, then

(3.1)

To this end, let

A(fi, 2) =< A(fi, 2) if/1 < /2 < 0.

(3.2) A(fl, 1) __< 0.

Let z Zl(U), z2(b/) be the solutions of (2.2), with 2 21,22, determined by the
initial conditions

(3.3) Zl Z2 2 ’1 "2 27( fi /1) > 0 at u o
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Then 2 ( ,71 ( 1, 1 > 0 for u > and zl(c) 1, by Proposition 2.2. It follows
from Proposition 2.1, since a solution of (2.2) cannot have a maximum value z on
0 < z < 1, that Zz(U)exists for u >= ,
(3.4) /2 < Z2 < Z1 < 1, 2 > 0 for u > .
Hence z2(c) by Proposition 2.2 and so A(fi, 22). This proves (3.1).

Also, since 27(,, , 22) 2(7), equation (3.3) implies that

(3.5) 7(,fl,22)7(,fl,2) if2 <22 <0.

We now show that strict inequality holds in (3.5). Suppose, if possible, that

(3.6) 7(, , 22) 7(, , 2)

for some A(fl, 2), 0 N fl < 1, 2a < 22 < 0. Then z2, as well as z, corresponds
to a maximal solution, so that 27(u, z/Z(u), 22) 2(U). The application of Proposi-
tion 2.1 giving (3.4) also yields Va(z) > Vz(z) for f12 < Z < 1 for the corresponding
functions V defined after (2.6). Hence, if f12 < Z0 < 1 and za(U) z2(O2)
then U < U2 and (U) > 2(U2). A solution z z(u) of (2.2), with 2 2,
determined by

zI(u2) Z0, l(Ol) 1(U2)> 2(U2)

exists for u U2 and satisfies 1 > 0 for u U2 and z() 1; Propositions
2.1 and 2.2. Hence

T(U2, z/2 21) > 2(U2)/2 T(U, z/2, 2).

This contradicts (3.5) and shows that 7(, , 2) is an increasing function of 2(< 0).
In particular, if A(fl, 2), then T(,fl, 22)> 0 7(,fl, 2). Hence, the

strict monotonicity of A(, 2) follows, that is, A(, 2) < A(, 2) if 2 < 22 < 0.
(b) monotonicity of Uo, u with 2(<0). Let 2 < 22 < 0, A(fl, 21) and

z0, Z2o correspond to maximal solutions, that is, solutions of (2.2) for 2 2, 22,
respectively, satisfying

(.7) Z,o() , e,o() 27(, ,
Then the argument leading to the contradiction of (3.6) shows that

(3.8) Zo(U) > Zo(U) for u > .
Note that the fact that 7(, , 2) is an increasing function of 2 implies that

(3.9) Uo(t, , fl, 2a) < Uo(t, , , 22) if 2 < 22 < 0

for small > 0. Suppose, if possible, that there is a first t-value to > 0 where
(3.9) fails, so that Uo(to) Uzo(to) and U’o(to) Uo(to), where Uio Uo(t, , , 2i).
But, in view of (2.1a), this contradicts (3.8). Hence (3.9) holds for > 0.

The strict monotonicity of u with respect to 2 follows from (3.8), the mono-
tonicity of z o, and (3.9), that is, from

Zo(Uo(t)) > Z,o(Uo()) > Z,o(U,o()),
by virtue of (2.1 ).
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(c) Monotonicity of 7, Uo, U’o with a(for 2 < 0). The strict monotonicity of
y(a, fi, 2) with follows at once from Proposition 2.1 and the "maximality"
property of 7. The monotonicity of Uo, u}) with a follows from Proposition 2.1 and
the arguments just used to demonstrate their monotonicity with

(d) Monotonicity of A, 7, Uo, U’o on f. It merely has to be remarked that the
above arguments extend to 2 __> 0, > A(fl, 2), by virtue of the remark following
Proposition 2.1. (Actually, the meaningfulness of this statement depends implicitly
on the validity of (1.3) which will be proved in 5.)

4. Proofs. Continuity for 2 < 0.
(A) Local estimates. Let 2 < 0 and let z z*(u)= z*(u, 2) be the maximal

solution for fi 0 and a A(0, 2), so that

(4.1) z* =0, * =0 atu=A(0,2).

Thus 0 < z* < 1, * > 0 for u > A(0, 2), and z*(o) 1. Let u U*(z) U*(z, 2)
be the function inverse to z z*(u) and V*(z) V*(z, 2) *(U*(z)). Clearly,

(4.2) A(fl,2)=< U*(fl2 2) for0<fi<
for z z*(u) satisfies (2.2)-(2.6) with U*(fi2). Also,

(4.3) 0 __< 2 7(a, fi, 2) =< V*(2, 2) for A(fi, ,) __< __< U*(fl2 /)

by Proposition 2.1 and the "maximal" property of 7(a) 7(a, fl, 2).
(B) Upper semicontinuity of A(fi, 2). The continuity of U*(fi, 2) with respect to

fi and the monotonicity of A(fi, 2) with respect to 2 imply that A(fl, 2) is locally
bounded from above. Let 2o < 0, 0 =< rio < 1, and

a lim inf A(fi, 2) as (rio, 20) 4: (fl, 2) (flo, 2o),

with 2 < 0, 0 < fi < 1, so that o =< a < c. Let a > a;in particular, > A(fl, 2)
for (fi,)0 a member of a sequence (fil,21), (fi2,22), "", (ft,,2,)---, (fio,2o). Let
u u"(t) be the solution of (I.1), with 2 2,, satisfying u(0)=
u"(0) 0; so that u u"(t) satisfies the analogue of (I.1)-(I.5) for n 1,2, ...,
and u" and its derivatives tend uniformly to u and its derivatives on compacts of
> 0. It follows from 2o < 0 that 0 < u’ < 1, u’’ > 0 on > 0, and that u’()

1, by Proposition 2.2. Hence _> A(fio, 2o). Since a(> a) is arbitrary,

A(fio, 20) lim inf A(fi, 2) < as (fi, 2) --, (rio, ,o).

(C) Continuity of A(fi, 2) for 2 < 0. Let 20 < 0 and 0 =< rio < 1. It suffices to
show that if 0 > 2, - 20, 0 =< ft, - rio and

(4.4) a lim A(fl,, 2,) exists (finite),

as n- , then

(4.5) A(fio, 20).

To this end, let z z*(u, fl, 2) be the solution of (2.2)-(2.7), where A(fl, 2)
and 7 0. The arguments of step (B) show that, since 2o < 0, z*(u, ft,, 2,) and its
derivatives tend to Zo(U and its derivatives, where z Zo(U is the solution of
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(2.2), with 2 =/lo, satisfying Zo(Z) fig, o(e) 0. It has to be verified that

(4.6) Zo(U) z*(u, rio, 20).

Let Voz(U) be the solution of the Weber equation (AI.1) satisfying (A1.2)
and let S(2) be defined by (A1.4) in the Appendix. Then z*(u, , 2) satisfies

(4.7) -*/(1 z*)=< foa(U)/Voa(U) for u __> S(2);

cf. [6, pp. 536-537]. Hence, by the continuity of S(2),

-o/(1 Zo) _-< bo/Vo for u >__ S(2o), /t 20.
Consequently, Zo(U) < (const.)Voz(U),/l =/lo, for u _>_ S(2o). This asymptotic
behavior of Zo(U) implies (4.6); see [6, pp. 536-537].

(D) Continuity of , Uo, U’o for/t < 0. The proof is similar to that in step (B),
but simpler because of (4.3), and will be omitted.

5. Proofs. Behavior as 2 - 0-.
() On (1.2). If 2o 0 and 0 < flo < 1, the arguments in step (C) of the last

proof remain valid and show that if (4.4) holds for 2o 0 and 0 < rio < 1, then
0.1)-0.5) has a solution with u"(0)= 0, 2 0. But 2 0, u"(0)= 0 imply that
u"(t) 0, since (I.1) reduces to a first order linear equation for u" when/l 0.
Hence, (4.4) cannot hold when 0 > 2, 0, 0 < , o, 0 < o < 1. In particular,
it follows, from the monotonicity of A(fl, 2) with respect to 2, that the limit relation
in (1.2) holds for a fixed fi, 0 < fl < 1. The relation (1.2) now follows from the
continuity of A(fi, 2)for/t < 0, 0 =< fi < 1.

() On A(0, 0-) __< A(0, 0). Let e, > 0 and e A(0, 0) + e,. We shall show that
there exists a number A A(,) < 0 such that (I.1)-(I.5), with 0, has a solution
if A __< 2 < 0. This, of course, implies that A(0,2) __< A(0,0) + , if A =< 2 < 0,
so that A(0, 0-) __< A(0, 0).

Let u Uo(t)= Uo(t, A(O, O), O, O) be the solution of (I.1)-(I.5) for 2 0,
e A(0,0)and fi 0. Put

(5.1) w(t) Uo(t) +

Then we have

(5.2) w(O) A(O, O) + ,, w’(O) O,

(5.3) 0 < w’ w-Uo < 1, -Uo>0,

(5.4) w’" -+- ww" + (1 w’2) u; + A(1 -u)Z).

Choose A A(,) > 0 so small that

(5.5) e,u + 2(1-u)2)>0 forA 2, t>0.

The existence of A is clear from the fact that u > 0 and 2u t(1 u2) as
;see Hartman [5] (cf. [6, p. 536]).
Let 1 be the space of functions u s C10, ) with the topology of C con-

vergence on compacts of __> 0. In terms of M(T)= M(T; T,[2I, 1) in (A3.9)
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in the Appendix, let oX be the compact convex subset of cgl consisting of functions
u satisfying

u(O) w(O), u’(O) w’(O), w’(t) <__ u’(t) < 1 fort >__ 1,
(5.6)

]u’(t)- u’(s)l_-<M(T)(t- s) for0__< s__< =< T,

where w(0) A(0, 0) + e,, w’(0) 0. For u ,, consider the linear, inhomogeneous
equation

(5.7) [y y" + u(t)y’ + 2(1 u’(t))(1 + y)= 0.

Note that this reduces to (I.1) if y u’.
The function y is a supersolution,

(5.8) q(’(1) 22(1 u’) < 0,

and the function y w’ is a subsolution if A < ) < 0,

(5.9) [w’l >= (u w)w" + e,u’ + 2(1 u;2) > 0.

It follows that (5.7) has a unique solution y y(t) satisfying

(5.10) y(0)=A(0,0)+,, w’<y< fort>0,

(5.11) ly’(t)l =<M(T) for0=<t__< T, T>0.

In fact, the homogeneous part of (5.7),

(5.12) z" + u(t)z’ + 2(1 u’(t))z O,

is disconjugate (i.e., no solution z 0 has two zeros) on __> 0 since the coefficient
of 7 is

(5.13) 2(1 u’) __< 0.

Thus (5.7) has a unique solution y yT,(t) satisfying arbitrarily given two-point
boundary conditions, say,

y(0) A(0, 0) + , and y(T) (w’(T) + 1)/2.

Such a solution satisfies (5.11), and (5.10) for 0 < < T by a simple maximum
principle. We obtain the solution y y(t) satisfying (5.10), (5.11) for > 0 by
letting T o through a suitable sequence. (One recovers the strong inequalities
in (5.10) by a maximum principle.) The solution y y(t) is unique, for the difference
of two solutions is a solution z z(t) of (5.12) satisfying z(0). But such a solution is
either z(t) 0or is monotone, by (5.13), and cannot satisfy z() 0.

Define a map z’ X by

(5.1.4) u -, + y(s) ds,

where y y, is the unique solution of (5.7), (5.10), (5.11). It is clear that r is con-
tinuous. Hence, Tikhonov’s fixed-point theorem implies the existence of a solution
of (I.1)-(I.3) for e A(0, 0) + e, fl 0, 2 >= A(e). Note, that by (5.6), a fixed point
u satisfies u"(0) _>_ u;(0) >__ 0, hence (I.4)-(I.5).
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(y) On (1.3). It has to be shown that A(0, 0-) >= A(0, 0). Let > A(0, 0-)
be fixed. Then 7(e, 0, 2) increases to a limit, which is finite, as 2 0 For (I.1) and
0 < u’ < 1 imply that lu’"l =< Tlu"l + [21 on 0 =< =< T, so that, for example,

(, 0, 2) u(0, , 0, 2) m(1; 1,121,1);

cf. (A3.9) in the Appendix. Since the limit 7(, 0, 0-)> 0, the arguments in
step (C) of 4 show that (I.1)-(I.5) has a solution if/ 0, 2 0. Hence >= A(0, 0),
and so A(0, 0-) >__ A(0, 0).

() Completion of the proofs. The continuity of Uo, u) and 7(,/, 2) at points
(,/, 2) of fL where 2 0, is an easy consequence of the uniqueness of solutions of
(I.1)-(I.5) when 2 0. This completes the proofs of Theorems 1.1 and 1.2.

6. Proof of Theorem 1.3. This theorem can be proved by the method of step
(/) in the last section; cf. also the proof of Theorem 7.1, where a is permitted. A
slightly simpler proof is as follows" Let 2 < 0, 0 =</o </ < 1, >= A(/, 2) and
z Zo(U)= Zo(U, ,/0,2) correspond to the maximal solution, i.e., Zo =/2,
o 2y(,/o, 2) at u . Note that z =_ is also a solution of (3.1) and, of course,
0 =</ < Zo < 1 for u > . It follows from Proposition A3.1, and Remark 1
following it, in the Appendix, that (2.2), (2.3) has a solution z z(u) satisfying
z() =/2, (0<)Zo < z < for u > . This implies the first part of Theorem 1.3.
As to the last part, cf. the proof of the monotonicity of Uo, u with respect to 2 in

3, step (b).

PART II. ON POHLHAUSEN’S AND STEWARTSON’S PROBLEMS

7. Existence theorems. In what follows, , o,/,/o, [1, e, a, a are constants
satisfying

-<o<, 0/3o < 1, /0 / : /1,
(7.1)

0<,=< 1, a>O, a>=O.

Note that the problem (II.1)-(II.4) is trivial if for, in this case, u + ,
and h is determined by two quadratures. When a 1, so that h 1, the problem
(II.1)-(II.4) reduces to that discussed in Part I. When c > 0, the condition (II.4)
is not less general than

(7.2) u’2() h() c.

For if u(t), h(t) are replaced by c-1/4 u(c-1/’t), c-lh(c-1/4t), then the problem
(II.1)-(II.3), (7.2) is reduced to (II.1)-(II.4), with , , 2, a replaced by z/c TM, fi/c /2,
2C 1/2, a/c, respectively.

THEOREM 7.1. Assume that either

(7.3) {0 </o < 1, o arbitrary} or {/o =0,o > A(0,0)}

and that either

(7.4) {a: 1} or {a > 0, o >= 0}.
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Then there exists a number A A(ao, rio, ill, e, min (a, 1), max (a, 1)) with the
property that if (7.1) holds and

(7.5) A __< 2 < 0,

then (II.1)-(II.5) has a solution satisfying 0 =< flo < u’ < max (1 + e, ill) for
t>0.

It is not claimed that there is nonexistence if 2 < A. The proof supplies
estimates for lu’ 11, hence implicitly for Ih 11, for the solution (u, h) constructed.
For example, there exists a positive constant c c(zo, flo, fl 1, min (a, 1), max (a, 1))
such that

(7.6) lu’- II O(exp (-ct2)) as .
Remark 1. If fl >= (a + 1)/2 and either

{a-l} or {a<l,a<l,>_0) or {a>l,a>l,>=0},
then the proof of Theorem 7.1 can be modified to yield a solution (u, h) satisfying,
fort>0,

(7.7) u’ > [(1 fl)h + (fl a)]/(1 a) > h /2,

hence (II.11). If, in addition, fl fla > 1, then (II.9)-(II.10) hold; while if (a + 1)/2
_<_ fl < 1, then u’ either increases from/3 to 1 or first increases to a value > 1 and
then decreases to 1; cf. Remark 5.

If a 1 and fl <= a /2, then the proof can be modified to yield solutions of
(II.1)-(II.5), (II.8) (and (II.6)-(II.7) if 0 <= fl < 1) and, at the same time, simplify
the definition of A. This is the content of the next three remarks.

Remark 2. Assume that a 1, flo <= fl <-- al/2 < and e __> A(flo, #), where
/ 22/(1 + rio) _-< 2 < 0. Then (II.1)-(II.5) has a solution satisfying

(7.8) w’ < u’ < [(1 fl)h + (fl a)]/(1 a) < h /2 < 1,

hence (II.8). In (7.8), w(t) Uo(t, z, rio,/) is the maximal solution of (I. 1)-(I.5), with
(, fl, 2) replaced by (, flo, #). If fl flo, then (II.6) and (II.7) hold. If >
max (A(flo, #), 0), then condition a can be relaxed to a >= 1.

Remark 3. Assume that a 1, 0 < flo < 1, 1 < fi <= fil <__ a 1/2, and
>= A(fio, Vo), where

(7.9) Vo 2 max (a fio2)/(1 rio2), 2fia/(1 + flo)] < 2 < 0.

Then (II.1)-(II.5) has a solution satisfying

w’ < u’ < [(1 fl)h + (fl a)]/(1 a) < h/2 u’ < fl,
(7.10)

1 < h < 1 +(a- 1)(1 w’)/(1 -flo),

hence (II.8), where w Uo(t,,flo, Vo). If __> max(A(flo, Vo),0), then a--1
can be relaxed to a >= 1. Furthermore, either u’ decreases from fi to or first
decreases to a value < 1 and then increases to 1; cf. Remark 5.

Remark 4. Let rio _-< fl < 1 < a and

(7.11) v 2(a flo2)/(1 fi) < 2 < 0.
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(i) If o 1 and c >__ A(/3o, v), then (II.1)-(II.5) has a solution satisfying

(7.12) w’ < u’ < 1 < h < 1 + (a 1)(1 w’)/(1 -/9o),

hence (II.8), where w Uo(t,
__> max (A(/3o, v), 0), then o 1 can be relaxed to o >= 1.

(ii) Also, if0 < o < 1 and > max(cr-1/2A(o, vo-), 0), then the conclusion
of part (i) is valid with w a- 1/2Uo(ffl/215 01/20, 10, Y/if) in (7.12).

In the verification of these remarks, we shall use the following remark.
Remark 5. If (u, h) is a solution of (II.1)-(II.4) satisfying h/2 u’ < 0 (>0)

for > 0 and u"(to) <= 0(>_0) at some to => 0, then u"(t) < 0 (>0) for > to.
In fact, since 2 < O, u’" + uu" < 0 (>0), so that u" exptu ds is decreasing (in-
creasing) and, hence, negative (positive) for > to.

The proof of Theorem 7.1 is contained in 8-9. Section 8 contains also some
propositions needed for the verifications of Remarks 1-4. Remarks 1-4 are proved
in 10-13.

8. Subsolutions, supersolutions and uniqueness. Consider the system of dif-
ferential equations

(8.1) L[y] y" + uy’ + 2(h- y2)= 0,

(8.2) h" + ouh’ O,

which reduces to (II.1), (II.2) if y u’. If u u(t) is a given function of such that
u >_ const. > 0 for large t, then (8.2) has a unique solution h(t) h(t) satisfying

(8.3) h(O)=a and h()= 1,

and h’ 0 if a - 1. It will always be assumed that u u(t) is a given function and
h h,(t), so that (8.1) reduces to a differential equation in one unknown function
y. We shall assume, for convenience, that

(8.4) a - 1.

Define the function 0 0(o, o) by

(8.5) 0= =or ifo <0 and 0=min(1,o) if Co >0.

Let -/ > 0 be so small that

(8.6) 01/2(X0 >_- A(fio, la/O).

Note that if o < 0, then 0 a 1 and (7.3) implies the existence of/z; also, if
o > 0, then/ exists since A(0, 0) < 0; cf. Theorem 1.1. Put

(8.7) w(t) 01/2uo(O1/Zt, 01/20o, rio,/l/0),

where Uo(t)= Uo(t, O1/o,fio,U/O) is the maximal solution of (I.1)-(I.5) when
(, fi, 2) (0/2o, rio,/l/0). Then (8.7) satisfies

(8.8) w’" + Oww" + (1 w’2) 0,

(8.9) w(0) o, w’(0) =/30,

(8.10) 0 < 1 W’ U’o(O/Zt)
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where cl > 0, C2 are constants; Hartman [5], cf. [6, pp. 536-5373. Also, we have

(8o11) X" + OwX’- /(1 + w’)X- O,

where X 1 w’ > 0, X’ < 0 for > 0; and the function

(8.12) Xo (1 w’)/(1 flo) > 0, X =< 0,

is a solution of(8.11) and Xo(0) 1, Xo() 0.
Define W W(t)to be the solution of

Is.3) w" + (Ow )w’= 0,

(8.14) W(0)=max(1 +c,/71)> and W()= 1,

where 0 < c 1, so that

< W__<max(1 +c, fll) and W’<0 fort>=0,
(8.15)

0 < W- O(exp(-O’t)), t , if0< 0’ <0.

Also, the function

(8.16) Wo (W- 1)/(W(0)- 1)> 0, W; < 0,

is the unique solution of (8.13) and W(0) 1, W() 0.
Note that if

(8.17) u >__ w,

then, since w >__ 0 when o >= 0,

(8.18) u >_ Ou >= Ow > Ow- 1.

Hence, if the linear equation (8.2) is compared with (8.11) and with (8.13), we see
that

(8.19) 0<(h- 1)/(a- 1)_=ho<Xo, Wo fort>0,

where h ho is the unique solution of (8.2) satisfying ho(0) 1, h; < 0; cf. (A2.10)
and Proposition A2.1.

In the propositions to follow, we assume that L is defined in (8.1) and that the
given function u satisfies

(8.20) u => const. > 0 for large t,

so that (8.2), (8.3) has a unique solution h(t) h,(t).
PROPOSITION 8.1. Ira < (SO that h < .for >__ 0), then

(8.21) L[1] 2(h 1) > 0 .for >= O.

PROPOSITION 8.2. If a > (SO that h > .for > 0), then

(8.22) L[1]=2(h- 1)<0 fort>O.

PROPOSITION 8.3. Assume that

(8.23) fi >__ (a + 1)/2,
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that either

(8.24) {a= 1} or {0< a=< 1,a < 1,u_>_0} or

and that m(t) m,(t) is given by

Then

(8.27)
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{r __> 1,a > 1,u >__ 0},

m(t) [(1 /)h + (fl -a)]/(1 a).

m(O) fi, m(av) 1, m > h 1/2 fort > O,

m" + rum O,

L[m] (1 cr)um’ + 2(h m2) > 0 for > O,

Proof. We have (h + 1)/2 > h 1/2 for h > 0, h -: 1. The linear function of h
on the right of (8.25) has the value fl when h a and the value when h 1, so
that m __> (h + 1)/2 > h 1/2 if h is between a and 1. This gives (8.26), while (8.27),
(8.28) are clear.

PROPOSITION 8.4. Assume that

(8.29) 0 fl a 1/2,

and that either

(8.30) {a- 1} or {0<r__< 1,a> 1,u_>_0} or {a_>_ 1,a< 1,u__>0}.
Then (8.25) satisfies (8.27),

(8.31) m(0) =/3, m() 1, m < h 1/2 fort > O,

(8.32) L[m] =(1-a)um’+2(h-m2)<0 .[’ort>O,

Proof. The linear function of h on the right of (8.25) has the value/3, at
h a, 1, respectively, so that the concavity ofthe function h/2 implies that m < h/2

for h between a and 1.
PROPOSITION 8.5. Let 0 <= a < (so that h < 1 jbr > O) and let u >= w.

Then

(8.33) # =< 2 < 0

implies that

(8.34) Lw’] > 0 fort > O.

Proof. From (8.1) and (8.8),

(8.35) L[w’] (u Ow)w" + 2(h 1) + (2 -/)(1 w’2).
PROPOSITION 8.6. Let a > 1 (so that h > .[or >__ O) and let u > w. Then

(8.36) /(1 fi)/(a fig) < 2 < 0

implies (8.34).
Proof. This follows from (8.35), (8.12) and (8.19), since 1- w’2

(1 + w’)(1 w’) _>_ (1 + rio)(1 w’)and (u Ow)w"> O.
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PROPOSITION 8.7. Let the function W in (8.13)-(8.16) and the constant rl > 0
satisfy

(8.37) W’/(W 1) <__ r/ < 0

and let u > w. Then

(8.38) -q{max (0, a)/[max (1 + e,/31) 1] + 3 +/1} -1 2 < 0

implies that

(8.39) L[W] < 0 fort > O.

Proof. Note that a constant r/exists since, by l’H6pital’s rule,

W’/(W- 1) W"/W’- -Ow + 1---,-co, t--,

and W’ < 0 for > 0. The assertion follows from

LW]-(u-Ow+ 1)W’+2(h- 1)+2(1- W2)

<= {W’/(W- 1)+ A(h- 1)/(W- 1)- A(1 + W)}(W- 1),

(8.16), (8.19) and 1 + W =< 3 +/31. Note that 2(h 1) < 0 ifa > 1.
PROPOSITION 8.8. Let C be a constant and u >= w. Then (8.1) has at most one

solution y y(t) satisfying

(8.40) y(0)-- fi, ly(t)l <-_ C, ]y(t)- 1]- O(t-) as t Co

for all N if
(8.41) #(1 + flo)/2C <= 2 < O.

Proof. If there are two solutions Y l, Y2, then their difference, x Y2
satisfies

x" + ux’-2(yl + Yz)X O,
(8.42)

x(0)=0 and x(t)=O(t-z) ast---,

for all N. If the differential equation in (8.42) is compared with (8.11), it is seen, by
(A2.10) and Proposition A2.1, that (8.42) is disconjugate for >__ 0. Thus the
assertion follows from Corollary A2.1.

9. Proof of Theorem 7.1. Let cg be the space of functions u CI[0, co)
with the topology of C convergence on compacts on >= 0. Put

R(T) max W2(t) for 0 <- =< T,

(9.1) CI(T) + max [w(t)[, / W(s)ds

C2(T) max (1, a, R(T)).

In terms of the functions w, W and (9.1), define a compact convex subset
vg[w, W] of cgl consisting of functions u satisfying

u(0)= , u’(0)=fi, w’__<u’ < W fort>__0,
(9.2)

]u’(t)-u’(s)] <M(T)lt- sl for0=<s,t =< T, T>0,

where M(T) M(T; CI(T), C2(T), R(T)) in (A3.9) in the Appendix.
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Note that if u e :,ut, the solution h h,(t) of (8.2), (8.3) satisfies

(9.3) Ih’(t)l < MI(T)= M(T; CI(T), C2(T),max(a, 1)) for0 =< < T,

Also, if y y,(t) is a solution of (8.1) and

(9.4) y(0)=fl and w’<y< W fort_>_0,

then

(9.5)

T>0.

ly’(t)l M(T) for 0 =< =< T, T > 0.

Let A be the minimum of the quantities on the left of (8.33) if a < or (8.36)
if a > 1, of (8.38), and of (8.41) with C max (1 + e,,/1)" Let A < 2 < 0. Then,
by virtue of (8.34), (8.39) and w’ < 1 < W, Proposition A3.1 implies that (8.1)
has a solution y y,(t) satisfying (9.4). This solution is unique by Proposition
8.8.

Define a map r’sf ---, by

u- + y,(s) ds .
The definition of sf, (9.3), (9.5) and the uniqueness of y y,(t) show that r is
continuous. Hence, by Tikhonov’s theorem, r has a fixed point u and (u, hu) is the
desired solution of (II.1)-(II.5).

10. On Remark 1. Let u 6 $45. Then the function m in (8.25) satisfies

(10.1) w’ < m < W fort >0.

The second inequality is clear if fl < 1, so that m < 1 < W. If fl > 1, (8.19) gives

(10.2) (h- 1)/(a- 1)= (m- 1)/(fl- 1)< (W- 1)/(W(0)- 1),

so that the last inequality of (10.1) follows from W(0)- => fi- 1 >= fi- 1.
The first inequality is proved similarly. Thus, in 9, we can use (8.28), instead of
(8.34), and replace (9.4) by

(10.3) y(O) =/3, (w’<)m<y< W fort>0.

11. On Remark 2. In the definition (9.1)-(9.2) of ,U #,(Ew, W], choose
W to be W 1. If u sf s(f[w, 13, then the first part of (10.2) and (8.19) give

(11.1) w’ < m < h 1/2.

If, in 9, we use (8.32), instead of (8.39), we can replace (9.4) by

(11.2) y(0)=/3, w’<y< 1 fort>0.

Also, /3 =/o implies that y(0) w’(0) =/, hence y’(0) >_ w"(0) >= 0. Thus
(11.6), (11.7) hold in this case; cf. Remark 5.

Note that, in this argument, Proposition 8.7 and the function W of (8.13)-
(8.16) are not involved. Thus, in the definition of A, (8.38) need not be considered
and C can be taken to be 1 in (8.41).



136 PHILIP HARTMAN

12. On Remark 3. This remark can be proved in the same way except that
we choose ,.;( ,_[w, 1, i.e., W 1 in (9.1)-(9.2). As to the last part of (7.10),
cf. (8.19).

13. On Remark 4. Let ## ##[w, 1]. Again we can use (8.32) instead of
(8.39) in the arguments of 9 to replace (9.4) by

(13.1) y(0)=fl, w’ <y< 1 <h fort>0.

This would prove Remark 4 if condition (7.11) is strengthened to (7.9) with fl 1.
In order to obtain Remark 4, as stated, we replace (8.1), (8.2) by a linear system
considered by Hastings [8,

(13.2) Lo[y y’" + uy’ + ,(h 1/2 u’)(h 1/2 + y)= O,

(13.3) h" + cruh’ O.

Let ## ##w, 13. Then w’ __< u’ < < h 1/2 and the arguments in the proof
of Proposition 8.6 show that

(13.4) Lo[w’3 > 0 fort > 0

when (8.36) holds. We also have

(13.5) Loll] 2(h /2 u’)(h 1/2 + 1) < 0.

The homogeneous part of (13.2),

(13.6) x" q- UX’ q- ,,(h 1/2 u’)x ’-O,

is disconjugate for => 0 since 2(h/2 u’) < 0, so that, by Corollary A2.1, (13.2)
has at most one solution y satisfying (8.40). The proof of Remark 4 now follows
as in 9.

PART III. A MORE GENERAL PROBLEM

14. An existence theorem. Consider a system of differential equations for
an (n + 1)-vector (u, h) (u, hi, h") of the form

u", h’)u" H, (t u, u",(14.1) u’" + G,+x(t,u,u, h, +2,+ + u, h h’)=0,

(14.2k) hk’’ + Gk(t, u, u’, u", h, h’)hk’ + 2kHk(t, U, U’, U", h, h’) 0

for k 1," ", n, and the boundary conditions

(14.3) u(0) , u’(0) fi, h(0) a,

(14.4) u’(oo) and h(oo) 0.

(Note that condition (II.4) in Theorem 7.1 reduces to (14.4) if the variable h there
is replaced by h + 1.)

Partition the set of integers {1, ..., n} I U J, where I and J are disjoint,
possibly empty, sets. The index will denote an element ofI,.j ofJ, while k 1, .-., n
or k 1, ..., n + 1. We make the following assumptions"

(H1) Gk, Hk are continuous for _> 0, u’_>_ 0, arbitrary (u, u", h, h’) and
k=l,...,n+ 1.
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(H2) There are constants ak > 0 and Co > 0 such that

(14.5) Gk>_ a(u- Co) fork 1,...,n+ 1.

(H3) The functions Hj, H,+ satisfy

(14.6) H.i=O ifhJ=0; H,+x =0 if (u’, h) (1, 0).

(H4) Hj and G, k 1, ..., n + 1, are subject to an estimate of the form

(14.7) G,, H

uniformly on (t, u, u’, h)-compacts.
(H5) H, H,+ satisfy Lipschitz conditions of the form

(14.8i) IH HI _-< B Z Ih h]l,

(4.8,+ ) IH,2+ g,,X+ 11 =< Alul u’l + B Ih2 hl,
k=l

for >__ 0; 0 __< u’, Ihxl, Ih2 _-< C ;lul =< C(1 + t) and arbitrary (u", h’), where C > 0
is arbitrary, A A(C) and B B(C) are constants, HT’ Hi(t, u, u’, u", h,,,...,
him, hi+ x, h", h’) and H",’+ H,+ x(t, U, Um, U h,,, h’) for m 1,2.

(H6)
iraJ>_0oraJ_< hJ_<0ifaJ<_0.

THEOREM 14.1. Assume (H1)-(H6), 2.i >__ 0 fixed for j e J, that (o, flo) satisfy
either

(14.9) {0 </30 < 1,Co arbitrary} or {/30 0, Co > A(0,0)},
that either

(14.10) {ax a,+x} or {ak > Oarbitrary,o _>= 0},

and , o, x, fl, flo, fix, e,, a (a x, a"), a satisfy.

(14.11) o / Co _-< _-< a, /o _-</3 __<//1, lal _-< a, 0 < __< 1.

Then there exists a positive number A Ax(eo,Zx,flo,/1, e,,2j for j e J,
min (ax "", a,+ 1), ax) with the property that if l2il, 12,+ xl < Ax, then (14.1)-(14.4)
has a solution (u, h) satisfying

(14.12) 0__</o <u’ <max(1 +e,,fix) fort >0,

(14.13) h is monotone,

(14.14) -e, < h < a if a > 0 or a < h < e, if a < 0 .]’or > O.

Also, if Hi 0 when hi 0 for some io e I, then

(14.15) 0 < Ihi < lai fort > O.

Except for the dependence of Ax on z Theorem 14.1 contains Theorem 7.1.
The proof below also supplies (exponential) estimates for Ihl and lu’ II. It will
be clear that, with slight modifications of the assumptions, with hk’ playing the
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role of hk, some or all of the equations (14.2k) can be replaced by equations of the
form

hk"’ + Gh’’ + 2kH O,

where the corresponding h occurs in the arguments of the G’s and H’s, and the
boundary conditions for h are of the type hk(0) , h’(0) a, h’(oo) 0.

15. Proof of Theorem 14.1. Without loss of generality, we can suppose that

(15.1) ak=>0, wherea=(a a")

for otherwise the variable h is replaced by -h. Define the number
0 0(al, ,+1,o) by

(15.2) 0=al a,+l ifo <0, 0=min(al,...,a,+l) ifo >0.

Assume (8.6) and introduce the functions w, W in (8.7)-(8.16).
Let C be the constant

(15.3) C max(1 + e,lol,lll,fil,al) > 1.

For T __> 2C, choose C(T) C(T, 2j for j J) => 1 so large that

(15.4)
[Gk[, [,’ljHjI < C(T) + ([u"] + 1h’1)/32C,

lB,+ 11, Inil C(T),
where k 0,..., n; j6J; i6I; 0 __< =< T; 0 __< u’, Ihl =< C;lul _-< C(1 + t); and
(u",h’) is arbitrary; cf. hypotheses (H4) and (H3), (H5). Finally, for T >= 2C,
let

N(T) 8CC(T) >
(5.5)

NI(T) 2(C(T)+ N(T)/16C)N(T)= 24C(C(T)).
Let c be the space of functions of class C[0, oo) with the topology of C

convergence on compacts of 0. Let JU be the compact convex subset of
z cgl x cgl c2 (cgx), consisting of (u, h) satisfying

(15.6)

u(0)=, u’(0)=/, w’<u’=< W fort=>0,

lu"(t)l N(T), lu"(t)- u"(s)l <= Nx(T)lt- sl
h(0)=a, IhU(t)l lal fort>=0,

Ih’(t)l N(T), Ih’(t)- hk’(s)l N,(T)It- sl
and T_> 2C. In particular,

u>_w+-o,
a(u Co) >= Ow

for O <_ s,t <= T,

For fixed (u, h) e , consider the system of differential equations

(15.8k) L,[y,] =_ yt,,, + Gy,, + ,I,H] O,

where k 1, ..., n + 1, and the asterisk indicates that u u(t), u’= u’(t),

(15.7)

for O < s,t <__ T,

so that u Co > w

fork= 1,...,n+ 1.
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u"= u"(t), h 7 h(t), h’= h’(t)except that, i1 Ga and Ha, (h 1, "", ha-l) and
(hi,, "", ha- are replaced by (yl, ", ya- and (yl,, ..., ya-1,); in addition,
in Ha, ha is replaced by ya and, in H,+ 1, u’ is replaced by y’+ 1. Thus a solution of
(15.8) is obtained by solving successively for yl, "", y,+ 1. In (15.8a), the derivative
ya, occurs only where it appears explicitly and ya occurs only in H’. Thus, if
yl, ", ya-1 are known, G’ becomes a known function of alone and H’ is a
function of (t, ya) for k 1, ..., n + 1. The system (15.8) reduces to (14.1)-(14.2)
if(y1, ..., y+l) (h 1, "", h, u’).

The coefficients Ow, Ow 1, G of (8.8), (8.13), (15.8a) satisfy

G >=ak(U-- Co)Ow>=Ow-- 1 fork-- 1,...,n+ 1.

Thus, by (8.11) and (8.13),

(15.9) X"+ G’X’-tt(1 +/o)X<-O if X= 1-w’,

(5.o) w"+ (at + )w’_<_ o.
PROPOSITION 15.1. There exists a number
> 0 with the property that if (u, h) e 2( and

(15.11) ILl < c5, for ieI,

then (15.8k), k 1, "", n, has a unique solution satisfying

(15.12) yJ(O) a, yJ’ <=0, O <= yJ <= aJXo,
(15.13) y(O)= a, yJ’ <=0, O <__ yJ <= aJWo,
(15.14) yi(O) ai, eXo < yi < aiXo for > O,

(15.15) yi(O ai, e.Xo < yi < aiWo for > O.

If, in addition, Hi 0 when hi 0 for some io I, then 0 is permitted in (15.14),
(15.15) for o Furthermore,

(15.16) ly’(t)l __< N(T) for 0 <= <= T, T >= 2C.
The functions Xo, Wo are defined in (8.12), (8.16).
Proof. Let m < n and suppose that there exists a positive 6,,, depending on

the specified parameters, with the property that if 12il _-< 5" for ! i =< m, then
(yl, ..., ym) exist, are unique, and satisfy (15.12)-(15.16).

Suppose first that m + j e J. Then, by the hypotheses (14.6) and (H6),
the existence and uniqueness of a solution ym/ of (15.8m/ 1) satisfying (15.12) or
(15.13) follows from Proposition A3.2, where the roles of X,[X] <= 0 are played
by either Xo, (15.9) or Wo, (15.10). Since uniqueness depends only on the con-
ditions ym+l(O)= a"+ 1, y"+l(oe)= 0, the same solution satisfies both (15.12),
(15.13).

Suppose that m + 1 e I. By virtue of hypothesis (14.8i) and the inequali-
ties in (15.12)-(15.16a) for i, j, k _<_ m, we can deduce, from Corollary A3.1(ii) or
Corollary A3.2(ii), the existence of a 6m + > 0 with the property that if 12l =< 6,, + 1,

I =< m + 1, then (15.8,.+ 1) has a solution ym+ satisfying (15.14) and a solution
satisfying (15.15). If m+l > 0 is sufficiently small, uniqueness follows from
Corollary A3. l(iii).
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In order to verify (15.16k), for k m + 1, note that, by (15.4) and (15.8k),

lyk"l <= (C(T)+ N(Y)/16C)(lyk’l + 1)--(3C(T)/2)(lyk’I + 1)

for 0 _< __< T, T > 2C. Hence, on this t-range, ]yk’(t)l <= M(T), where

M(T) <= M(T; 3C(T)/2, 3C(T)/2, C) <= 6CC(T) + 1 < N(T);

cf. (A3.9), (A3.10) in the Appendix.
PROPOSITION 15.2. There exists a number A1 A (Zo 1, flo ill, 0,,, 2j,

min(ak), al), 0 < A1 < i,, with the property that if (u, h),; [2il, 12,+ 11 < A1;
and (yl, "., y,) is the solution of (15.8k), k 1, "", n, provided by Proposition
15.1, then (15.8,+ 1) has a unique solution y"+ satisfying (15.16,+ 1) and

(15.17) y"+ 1(0) fl, w’ <y,+l < W for > O.

Proof. By the arguments in the proofs of Corollaries A3.1 and A3.2, we can
show the existence of a A1 > 0 with the property that if 12,+ 11 < A1, then

L,+lw’]>0 and L,+I[W] <0.

In this argument, we use

Ln+ 1[w’] (Gn*+ Ow)w" -t- )n+ l[Hn*+ 1]y-+,=w’ //(1 + w’)(1 w’),

L,+ ,[W] (G*,+ Ow + 1)W + 2,+l[H,*+l],,+,=w,
where, from (14.6) and (14.8,+ 1),

IH,*+ 11 =< All y"+ 11 + B
k=l

and ly(t)l < max (,, a)(1 w’)/(1 -/0) and ly(t)l =< max (e, a)(W 1)/(W(0)
1) by Proposition 15.1.
Thus, if 12,+ 11 < A1, the existence of y,+l follows from w’ < < I/V and

Proposition A3.1. In order to obtain uniqueness, note that the difference x of two
solutions satisfies the conditions

x(O) o, x o(w- w’)= o((w- ) +( w’))= o(t-),

as --, o, for all N, and a differential equation of the form

x" + G,*+ ix’ + 2,,+ lql(t)x O,

where ql(t) is a bounded measurable function of t, Jql(t)l < A by (14.8,+ 1). Hence,
by the proof of Corollary A3.1(iii), uniqueness follows for small 12,+1J from
Corollary A2.1.

The proof of (15.16k) for k n + 1 is the same as for k < n.
Completion of the proof. Let 12i1, 12n+ 11 < A1 and for (u, h)e , let (yl, ",

y,+l) be the solution of the system (15.8) supplied by Propositions 15.1 and
15.2. Define a map r" ## W by

(u, h) -, + y"+l(s) ds, yl, ..., y,
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It is easily verified that is continuous and, therefore, has a fixed point (u, h).
Clearly, such a point (u, h) is a desired solution of (14.1)-(14.4).

APPENDIX

AI. On Weber’s equation. We record here, for easy reference, some facts
about the Weber differential equation

(A1.1) v" + tv’ 2,v O.

This equation has a pair of linearly independent solutions v Vo, v lz satisfying

(A1.2)
Vo>0, Vo<0, Vo>0 for larger,

Vo/Vo -t, Vo 1-2exp(_t2/2) ast-,

Vo is unique up to positive constant factors; and

(A1.3)
v > 0 for large t,

2 and 2,t2-tl). )lA as (30,

v is unique up to the addition of (const.) Vo; cf. 6, Exercise 17.6, p. 3201.
Let S(2) be the largest zero of v(t), so that

(A1.4) v’(t) >= 0 according as => S(2).

It is easy to see that S(0) 0 and that S(2) is a continuous decreasing function of 2.
Finally, note that if ao > 0 and v v(t) is a solution of(Al.1), then v v(a/2t)

is a solution of

(A1.5) v" + aotV’- 22aoV 0.

A2. Linear second order equations. Let the coefficients of

(A2.1) x x" + p(t)x’ + q(t)x 0

be real-valued and continuous on some t-interval I. Let X X(.t) be a positive
supersolution of class C2(I),

(A2.2) #X] <0 and X>0.

Then the variation of constants

(A2.3) r x/X(t)

reduces (A2.1) to

(A2.4) r" + (2X’/X + p(t))r’ + ([X]/X)r O.

The implication of (A2.2) is the following proposition.
PROPOSITION A2.1. Assume (A2.2). Then (A2.l) is disconjugate on I (i.e., no

solution x(t) 0 has two zeros on I). If, in addition, I , o) is a half-open interval,
then (A2.1) has a solution x Xo(t) satisfying

(A2.5) Xo() X() and 0 < Xo <= X, :o/Xo <= ff/X on I;
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furthermore, any solution x x(t) of (A2.1) satisfying

(A2.6) x >= X, 2/x >= 2IX
at , satisfies these inequalities on 1. The inequalities in (A2.5), (A2.6) are strict

for < < co unlesst[X] =_ 0 for near co.
See [5, pp. 357-358]. If X is a solution of

(A2.7) (o[X] X" + P(t)X’ + Q(t)X O,

then we can write #IX] either as

(A2.8) [X] (p P)X’ + (q Q)X

or as

(A2.9) #IX] (1 p/P)X" + (q Qp/P)X,

when the latter is meaningful. Thus, sufficient conditions for (A2.2) are any of the
following"

(A2.10) X>0, X’__<0 and p>=P, q<=Q,

(A2.11) X>0, X’>=0 and p<=P, q<=Q,

(A2.12) X >0, X">=0 and 1-p/P<=0, q- Qp/P<=O.

(As to (A2.10), cf. [7, Lemma 2A], and as to (A2.11), cf. [6, Exercise 7.2, p. 363].)
PROPOSITION A2.2. Let the coefficients of (A2.1) be continuous on <= < co

(<= oo) and let (A2.1) be disconjugate on <= < co. Let X(t) be a function of class
C2 for near co satisfying (A2.2). Let x xo(t) be a solution of (A2.1) satisfying
xo(to) 0 for some to, <= to < co, and

(A2.13) Xo(t) o(X(t)) as --+ co.

Then Xo(t =_ O.
Proof If Xo(t) O, then x Xo(t) is a principal solution of (A2.1); i.e., any

solution x x(t) linearly independent of Xo(t) satisfies Xo(t)/x(t)--+ 0 as co;
cf. (A2.6) in Proposition A2.1. But, since (A2.1) is disconjugate on [e, co), a principal
solution cannot vanish; cf. [6, pp. 350-361].

COROLLARY A2.1. Let (A2.1) be disconjugate on [o, oo) and let its coefficients
satisfy

(A2.14) p(t) >= ot and q(t) <= cro for large t,

where ero > 0 and c are constants. If x Xo(t) is a solution of (A2.1) satisfying

(A2.15) Xo(t) o(t -c) as --+ oo,

then either Xo(t) 0 or Xo(t) =/= 0 fort > O.
Proof If v v,a(t) is the solution of the Weber equation (AI.1), where 22

-c, then one can choose X(t)= vla(a/zt) (a/zt) as t--+ c; cf. (A1.5)
and (A2.10).
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A3. Existence theorems. Many of the existence theorems of this paper are
obtained from Proposition A3.1 which is a consequence of a result ofNagumo [163.

PROPOSITION A3.1. Let y yl(t), y2(t) C2[0, o) and

(A3.1) y(t) < y2(t) for > O.

Let F(t, y, y’) be continuous for >= O, y(t) < y < y2(t), y’ arbitrary, and such that
solutions of
(A3.2) L[y] =- y" F(t, y, y’) 0

are uniquely determined by initial conditions, that y(t), y2(t) are sub- and super-
solutions,

(A3.3) L[yl] > 0, L[y2] < 0 for > O,

and that for every T > O, there exists a continuous positivefunction OT(X) for x __> 0
such that

(A3.4) IF(t, y, y’)l _-< 0T(lY’I) for 0 <- <= T, x dx/c/)r(X oo.

If Yo is a number satisfying

(A3.5) y,(0) =< Yo < y2(0),

then there exists at least one solution y y(t) of (A3.2) on 0 <= < oo satisfying

(A3.6) y(O) yo and y, < y < y for > O.

Furthermore, if lyl(t)l, ly2(t)l _-< R R(T) for 0 <= <= T and

(A3.7) x dx/Or(x) 2R,
R/T

then any solution y(t)of (A3.2)on 0 <= <__ r satisfies ly’(t)l <-_ M for 0 < <= r.
Actually, Nagumo’s result concerns a finite interval and the existence of a

solution y y(t) of a two-point boundary value problem where, in place of (A3.6),
we require

y(O) Yo, y(T)= Yr and y(t) < y(t) < y2(t) for 0 < < T,

and Yo, YT are given satisfying (A3.5) and y(T) <__ YT < Yz(T) It is clear that
Proposition A3.1 follows from a limit process, by letting YT lYe(T) + yz(T)]/2
and T--+ oo through a suitable sequence.

In applications above, we shall choose

(A3.8) 4)T(X)- Cllxl / C2,

where C C(T) > 0, C2 C2(T) >- 0 are constants. Obviously, such linear
functions are admissible, and we write the corresponding M as

(A3.9) M(T) M(T; C1, C2, R).

Thus, if C > 0 and T >__ 2R, (A3.7) shows that we can choose

(A3.10) M(T; C, C, R) 4RC + 1.
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Remark. It is clear from Nagumo’s proof that Proposition A3.1 remains valid,
with a suitable modification of the inequalities in (A3.6), if either y- yl(t) or
y y2(t) is a solution of (A3.2).

COROLLARY A.31. In (A2.1), let p(t), q(t) be continuous for 0; qo a constant,

(A3.11) q(t) = qo > 0 for = 0;

X(t) C2[0, ) satisfies
(A3.12) X(O) l, X > O, X’ = O, X] 0 for tO.

(i) Let H(t, y) be continuous for O, y = 0 and

(A3.13) H(t, O) O and IH(t, alX(t))l = AX(t) for t=O,
where al, A 0 are constants. Then, if
(A3.14) I/ll < qoal/A and 0 < a <= ax,

the equation

(A3.15) L[y] y" + p(t)y’ + 2H(t, y)= 0

has a solution satisfying

(A3.16) y(O) a, O < y < aX for > O.

Of course, a can be chosen arbitrarily (with a suitable adjustment of A) if the second
condition of (A3.13) is replaced by ]H(t, Y)I _-< Ay; cf also Proposition A3.2.

(ii) Let A, B, a, e be positive constants. Let H(t, y) be continuous for >__ O, y
arbitrary,

(A3.17) IH(t, y)l <-_ AIyl + BX(t) for >= O.

Then, if 0 <= a <= a and

(A3.18) 121 < qo min (a(Aaa + B)- 1, e(Ae + B)- 1),
the equation (A3.15) has a solution satisfying

(A3.19) y(0)=a, -e,X <y<alX fort>O.
(iii) Let p(t) satisfy

(A3.20) p(t) >= ao for large and some ao > O,

and X(t) O(t-u), as , for all N. Let H(t, y) be continuous for > O, y
arbitrary, and

(A3.21) [H(t, Y2)- H(t, Yl)I <= AIy2 Y[ and [21 < qo/A.

Then (A3.15) has at most one solution satisfying

(A3.22) y(O) a and y O(X) as .
Proof. On (i). We apply Proposition A3.1, using the solution y 0 as a

subsolution and y aiX as a supersolution, for

L[alX ax(d[X qX) + 2H(t, alX <__ X{-alqo + [2IA} < 0.
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On (ii). We apply Proposition A3.1, using y alX as a supersolution and
y -eX as a subsolution.

On (iii). The difference x Y2- Yl of two solutions of (A3.15), (A3.22)
satisfies a differential equation of the form

(A3.23) x" + p(t)x’ + 2ql(t)x O,

where ql(t) is a bounded measurable function, ql(t)= 0 if yl(t)= yz(t) and,
otherwise,

ql(t) [H(t, Y2)- H(t, Yl)]/(Y2

so that Iql(t)l =< A. Thus, condition (A3.21) on 2 and Proposition A2.1 imply that
(A3.23) is disconjugate on _>_ 0, and (iii) follows from Corollary A2.1.

COROLLARY A3.2. In (A2.1), let p(t), q(t) be continuous for >= 0; Pl P2 positive
constants,

(A3.24) q(t) > 0 for >_ 0;

X(t) C2[0, oo) satisfies (A3.12) and

(A3.25) X’/X <_ -pl <0 fort >_ O.

Let P(t), H(t, y) be continuous for > O, y >= 0;

(A3.26) P(t) p(t) >= P2 > 0 for >= O.

(i) If H(t, y) satisfies (A3.13), and

(A3.27) 121 < alplp2/A and 0 < a <=
then the equation

(A3.28) Loy y" + P(t)y’ + 2H(t, y)= 0

has a solution satisfying (A3.16).
(ii) If A, B, al e,, H are as in Corollary A3. l(ii),

(A3.29) 121 < PzPl min (al(Aa + B)- 1, e,(Ae + B)- 1) and 0 < a <=
then (A3.28) has a solution satisfying (A3.19).

Proof. On (i). This assertion follows from Proposition A3.1 if we verify that
y alX is a supersolution. Note that

Lo[alX] <= al(P p)X’ alqX + 2H(t, a, X)

(alP2X’/X + IRI(A))X =< (-alplp2 +
Thus Lo[alX] < 0 when 2 satisfies (A3.27).

On (ii). This is proved by verifying that y alX is a supersolution and u
-,X is a subsolution if (A3.29) holds.
PROPOSITION A3.2. In (A2.1), let p(t), q(t) be continuous for > 0 and X(t)

C2[0, 0o) satisfy (A3.12). Let H(t, y) be continuous for >= O, y > 0 and such that

(A3.30) H(t, O) O, q(t)y H(t, X(t)y) is nondecreasing in y
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(e.g., let q(t) >= 0 and H(t, y) be nonincreasing in y or let q(t) >= qo > 0 and IH(t, Y2)
H(t, Yl)] =< qolY2 Yl[). Then, for any a > O, the equation (A3.15) has a solution

y y(t) satisfying

(A3.31) y(O) a, O <= y < aX and y’ <= (X’/X)y <= aX’ O fort>= O.

If H(t, y) is nonincreasing with respect to y and X(t) 0, as , then the solution
y is unique.

Proof Introduce the new dependent variable

x y/X(t),

so that y xX(t), and (A3.15) becomes

(A3.32) x" -(p + 2X’/X)x’ xd[X]/X + {q(t)x H(t, Xx)}/X.
The right side vanishes for x x’ 0 and is nondecreasing in x. Hence, (A3.32)
has a solution satisfying

x(O)=a, x>__O and x’__<O fort>__O;

see Hartman [4] or [6, Theorem 5.2 and Exercise 5.3, p. 434 and p. 575]. The
corresponding solution y of (A3.15) satisfies (A3.31).

Since y(0) a and y() 0, the uniqueness follows from the monotonicity
of H; cf. 6, Exercise 4.6(c), p. 472 and pp. 574-575] for the analogous situation
when [0, ) is replaced by a compact t-interval.
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ON THE ASYMPTOTIC BEHAVIOR OF
VOLTERRA INTEGRAL EQUATIONS*

JAMES L. KAPLAN’

Abstract. Suppose y(t) f(t) ,(o a(t, s)y(s) ds is a system of Volterra integral equations, and let
r(t, s) be the resolvent kernel corresponding to this system. If f(t) is continuous and o-periodic, it is
shown that under suitable restrictions on r(t, s), the solution y(t) is asymptotically o-periodic. These
conditions generalize a previous result of Miller, Nobel and Wong.

For the perturbed system x(t)= f(t)- o a(t,s){x(s)+ g(s,x(s))} ds, if the resolvent kernel is
"sufficiently close" to an Ll-function, then Ix(t) y(t)l 0 as for a suitable class of perturbation
terms g(t, x). If the resolvent is of convolution type, this generalizes a theorem of A. Strauss. Finally,
it is shown that if the resolvent kernel is of convolution type, and is in L 110, ), then the Cesro integral
mean of Ix(t) y(t)l converges to zero, for perturbations which are bounded and diminishing.

I. Introduction. Consider the systems of Volterra integral equations

(1.1) y(t) f(t) a(t, s)y(s) ds,

(1.2) x(t) =f(t) a(t,s){x(s) + g(s,x(s))} ds,

where x, y, f and g are vectors in R, a(t, s) is an n n matrix, and R" is Euclidean
n-dimensional space. Let]. denote any vector norm in R".

The resolvent system corresponding to system (1.1) is

(1.3) r(t, s) a(t, s) a(t, u)r(u, s) du

and its solution r(t, s) is called the resolvent kernel. It is well known [3] that if
a(t, s) is locally L in (t, s), and if r(t, s) exists and is locally L in (t, s), then systems
(1.1) and (1.2) may be rewritten in the equivalent forms

(1.4) y(t) f(t) r(t, s)f(s) ds,

(1..5) x(t) Y(0 r(t, s)g(s, x(s)) ds.

Furthermore, we shall assume that f(t), a(t, s), r(t, s) and g(t, x) are sufficiently
smooth to insure the local existence and uniqueness of solutions of (1.1) and
(1.2) and the continuability of solutions so long as they remain bounded. Sufficient
conditions for these hypotheses to be valid may be found in [3].

We are interested in providing sufficient conditions for the solution of (1.1)
to be asymptotically periodic. Theorem 2.4 shows that if f is continuous and
periodic, and if r(t, s) is "sufficiently close" to being an L-function, then the solution
y(t) of (1.1) is asymptotically periodic.

* Received by the editors February 2, 1971.

t Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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We also discuss a recent result of A. Strauss [5] comparing the solution of the
unperturbed system (1.1) with the perturbed system (1.2) when [g(t,x)[
<_ q)(t)(1 + Ix[), where q(t)is small in some sense. Theorem 3.2 gives sufficient
conditions so that Ix(t) y(t)l - 0 as --, o. Finally, Theorem 3.5 compares the
solution of (1.1) with the solution of (1.2), provided that Ig(t, x)l =< 2(0, where
2(0 is bounded and diminishing.

2. On the unperturbed system. We require the following lemmas.
LEMMA 2.1. Let f(t) be continuous and g(t) be periodic. If If(t) g(t)l - 0 as

--+ c, then g is continuous.

Proof. Let to be given and let e > 0. Then there exists T > 0 such that
If(t) g(t)l < e/3 for all > T. If o9 is the period of g, let n be an integer chosen so
that no9 IT, T + o93. By the continuity of f at to + no9, let 6 6(e/3) be chosen.
Now suppose that It tol < 6. Then

Ig(t)- g(to)l =< Ig(t)- g(t + no9)l + Ig(t + no))- f(t + no9)l

+ If(t + no)- f(to + nog)l + If(to + no)- g(to + nco)l

+ Ig(to + no)- g(to)l.

The first and last terms are zero by the periodicity of g. The second and fourth
terms are less than e,/3 since If(t)- g(t)l--, 0 and no) >= T. The middle term is
small by the continuity off at to + hOg. Thus [g(t) g(t0)[ < e and g is continuous
at to.

DEFINITION 2.2. f(t) is asymptotically co-periodic if there exists a continuous
co-periodic function p(t) such that If(t) p(t)l 0 as ---, oc.

The following lemma gives a characterization of an asymptotically co-periodic
function in terms of its period. It is a corollary to a well-known similar result
due to M. Fr6chet 2] for almost periodic functions.

LEMMA 2.3. The continuous function f(t) is asymptotically co-periodic if and
only if given > O, there exists T T(e) such that

f(t + nog) f(t)[ <e for all >= T, n= 1,2,....

We are now prepared to state and prove a theorem about the asymptotic
behavior of the solutions of (1.1). This result generalizes Lemma 4.1 of Miller,
Nohel and Wong [4].

THZOREM 2.4. Let f(t) be continuous and co-periodic. Suppose that the resolvent
kernel r(t, s) corresponding to (1.1) satisfies r(t + o9, s + o9) r(t, s),

o

(2.1) lim Ir(t, s)l ds 0,

t+h

fl(2.2) lim Ir(t + h, s) ds +
h0

Ir(t + h, s) r(t, s)l ds O.

Then the solution y(t) of (1.1) is asymptotically co-periodic.
Proof. Let e > 0 be given. Let T T() be chosen by (2.1) so large that

It(t, s)l ds < - whenever > T,
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where [[fll sup If(t)l for e R. Then using (1.4), we see that

foly(t + nco) y(t)l Ir(t, s)l If(s)l ds <= f Ir(t, s)l ds < e.

Moreover, by (2.2), y(t) is continuous. By Lemma 2.3, y(t) is asymptotically
periodic.

The proofofthe corresponding results given in [4] required stronger hypotheses
on r(t, s) in order to be able to construct a contraction mapping. In addition to
the hypotheses of Theorem 2.4, Miller, Nohel and Wong required that

for allt>_0,

lim It(t, s)l ds 0 for each fixed T > 0.

3. On a result of A. Strauss. We now turn our attention to a comparison
of the solutions of (1.1) and (1.2). In order to do this, we first state a theorem due
to A. Strauss [5.

THEOREM 3.1. Let r(t,s) be the resolvent kernel corresponding to (1.1). Let
y(t), x(t) represent the solutions of (1.1) and (1.2), respectively. Suppose r(t, s) satisfies

(3.1) sup Ir(t,s)l ds B < ,
t_>_O

(3.2) lim r(t, s)l ds 0 for each fixed T > O.

Let g(t, x) satisfy

(3.3) Ig(t,x)l qo(t)(1 + Ixl) fort O, Ixl < ,
where qg(t) 0 as . If IlYll < , then Ix(t) y(t)l 0 as .

It should be noted that if r(t, s) is of convolution type, that is, r(t, s) r(t s),
and r e LI[0, ), then r satisfies (3.1) and (3.2). In fact, for resolvents ofconvolution
type, r e L if and only if (3.1) holds. We may think of conditions (3.1) and (3.2)
as being, in some sense, the generalization of an Ll-function to functions of two
variables. Ll-functions, however, have an additional property which is not shared
by functions of two variables which satisfy (3.1) and (3.2). That property may be
described as the property ofhaving a "small" integral over sets of"small" measure.
Using this property we are able to state the following theorem.

THEOREM 3.2. Let x, y and r be as in Theorem 3.1. Suppose r satisfies (3.1) and
(3.2) and has the following additional property:

(i) Given e > 0 there exists 6 > 0 such that if A is any set contained in [0, t]
with m(A) < 6, then

s)[ ds < e.
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Suppose that g(t, x) satisfies (3.3), where qg(t) is such that q < and q9 satisfies"
(ii) Given z, fl > O, there exists T T(, fl) such that

m{t’t > T, Ifi0(t)l } </3.

/f Ilyll < , then Ix(t) y(t)l as .
Remarks. Condition (ii) represents a relaxation of the condition qg(t) 0 as

to allow a broader class of perturbation terms. It holds, of course, when
qg(t) 0 as , and will also hold if q(t)e LI[0, ) fq L[0, ). In this way,
if r(t, s) r(t s), r e L 1, then Theorem 3.2 generalizes Theorem 3.1.

Example 3.3. Letfbe asymptotically o-periodic. Let r(t, s) r(t s)e LI[0, ct3).
Let Ig(t, x)l =< qg(t)(1 / Ixl), where q is the function described as follows:

l/t for0< t< andtq[n- 1/2" +1 n+ 1/2" +]

qg(t)= 2 fort=n,

linear on In 1/2" + , n] and In, n + 1/2" + a]
for n 1,2,.... Then qg(t) satisfies (ii) although qg(t)-p 0 and qg(t)q LI[0, ).
By combining Theorem 2.6 and Theorem 3.2 we see that x(t), the solution of (1.2),
is asymptotically co-periodic, in spite of the fact that the perturbation term is
not periodic, nor is it small in either the L-norm or the L-norm.

Proof of Theorem 3.2. The proof follows the proof of Theorem 2 in [53. It
proceeds in three stages.

PROPOSITION 1. Every solution of (1.2) exists on [0, ).
The proof of Proposition is identical to the proof of Proposition 1 in [53.
PROPOSITION 2. Let Ilyll < . Then Ilxll < .
Proof. Let 6 be chosen by (i) so that A [0, t] and re(A) < 6 implies

1
Ir(t, S)l ds <

3 q

Now let T be chosen by (ii) so that if we let

A {t’t T, Iq(t)l 1/(3B)),
then m(A) < 6.

Since x(t) exists on 0 _<_ < by Proposition 1, there exists M > such that
Ix(01 _-< M on U0, T3. Choose P so large that

y +B q (1 +M)+2/3 <P/3.

We claim that Ix(t)l < P for e [0, ). If not, then there exists > T such that
Ix(s)l < P for 0 =< s < but Ix(01 P. Then

Ix(01 y + Ir(t, s)lg(s, x(s))l ds

/ f[T,t]- A Ir(t, s)l Ig(s, x(s)) ds

+ fA It(t, s)l Ig(s, x(s))l ds
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1-<_ Ily +B pl(1 + M)+ B(1 + P)3B

This contradiction shows that Ix(t)l < P on 0, c). Thus Ilxll _-< P < .
PROPOSITION3. Let Ilxll < . Then Ix(t) y(t)l 0 as .
Proof Let Ilxll M and let c > 0. By (i), let 6 /5(e/3 I1oll ( / M)). By (ii),

let T T(e/3B(1 + M), ). Now let T > T be chosen so large that

r(t s)l ds < for > r.
3 o11(1 / M)

Let

A t’t >= T, Ica(t)l
3B(1 - M)

Then re(A) < /5. Now for all _>_ r,

Ix(t)- y(t)l-<_ Ilcpll(1 / M) Ir(t, s)l ds

4- (1 / M) Iv(t, s)l Io(s)l ds
T,t]-A

/ o (1 / M) fA r(t, s) ds <__ c.

Thus Ix(t) y(t)l 0 as c, and the proof is completed.
It should be noted that the above proof represents only a slight modification

of the proof of Strauss [5].
This final example shows that Theorem 3.2 may not hold if we do not assume

that lY < .
Example 3.4. Consider the following one-dimensional example. Let

(t) e Ca( c, or) satisfy
(i) 0(t) > 0 for all e R,

(ii) (t) -+ as -+ c,
(iii) ’(t) >_ 0 for all e R.

Let r(t, s) -o’(s)/(t), and suppose that r(t, s) is the resolvent kernel of some
function a(t, s). Then r(t, s) satisfies (3.1) and (3.2) since

sup ]r(t, s)] ds sup ds
t>__0 t>_0

(t)- (0)
sup =< 1,
,o (t)

and

lim Ir(t, s)l ds lim
o(T) o(0)

,--, ,- (t)
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Let y(t) be the solution of (1.1). Then y(t) may be represented using (1.4) as

y(t) f(t) + -Jts) ds.

It is obvious from this expression that f(t) may be chosen so that y(t) will satisfy
y(t) > 0 for all __> O, and y(t) as . Define

(, x)
lYt01

Clearly,

1
g(t, x)-- [ylXl [y(1 + Ix)

and 1/y(t) 0 as m. Hence g(t, x) satisfies (3.3). Now x(t), the solution of
(1.2), may be written as

x(t) y(O r(t, s)g(s, x(s)) ds

’(s) Ix(s) sy(t)+
(t) y(s

Observe that

’(s) Ix(s)l
0 for 0 _< s < t.

(t) y(s)-

This implies that x(t) >= y(t). Therefore,

fO ’(s) Ix(s)l
dsIx(t)- Y(O x(t)- y(t)--

o(t) y(s

(o)r’(s) y(s)ds= 1 1 ast>-- (t-- y(--
Thus Theorem 3.2 fails.

We remark that we may take 0(t) e in the previous example and obtain
the classic kernel r(t, s) -e -"-).

Further remarks. We observe that the function (p(t) of Example 3.3 is a dimin-
ishing function that is, + q(s) ds - 0 as --, . Further, the class of diminishing
functions is closed under addition, and (p can be written as the sum of an Lx-
function and a function which converges to zero, both of which are diminishing.
This example, and others, lead to the belief that the class of diminishing functions
is related to the class of perturbation terms for which Theorem 3.2 is valid. This
belief is further enhanced by the fact that diminishing functions are known to

play an important role in perturbation theory for asymptotically stable ordinary
differential equations [61. We remark that the class of bounded diminishing
functions is the same as the class of bounded distributions converging to zero.
Along these lines, we have the following theorem.
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THEOREM 3.5. Let x(t) and y(t) denote the solutions of (1.1) and (1.2), respectively.
Suppose r(t, s) r(t s), and r LI[0, c). Let g(t, x) satisfy

[g(t, x)[ __< 2(0 _-< K

for some constant K, where ft + 2(s)ds 0 as --, oe. Then if [lYl] < oe,

lim
1 fo

r
Ix(t) y(t)l dt O.

Before we can give the proof of this theorem we require some notation.
Denote by L(f) the Laplace transform of the function f;

;oL(f)(s) f(t) e -s dr.

Now let 2(0 -> 0 satisfy fl / 2(s)ds 0 as --, oe (that is, 2 is diminishing), and
define A(t) f+ 2(s) ds. We shall write f(t) OL(g(t)) for > 0 iff(t) => Mg(t)
for sufficiently large. We shall write f(t) Ag(t) as --, to if f(t)/g(t) A as- o.

We now state several lemmas.
LEMMA 3.6. L(2 A(0) A(0).
Proof. Consider L(A)(s). Integrating by parts, and using the fact that A’(t)

A(t + 1)- A(t), we have

f) A’t)e-t lfoe-StA(t) dt +- e-St[.(t + 1)- ,(t)] dt
S 0 S

A(O)
+-[L(2(t + 1))(s)- L(2(t))(s)].

S S

Now L(2(t + 1))(s) eS[L(2)(s) f e-2(t)dt]. Therefore,

s A(0)- esT1jo e-St2(t) dt
L(A)(s) L()(s)+

es- es- 1

Now, using the fact that

lim e-2(t) dt 2(0 dt A(0)
s-0

and applying L’Hospital’s rule, we obtain

L(A)(0) L(2)(0)- A(0).

The following lemma is a Tauberian theorem for Laplace transforms. Its
proof may be found in [1].

LEMMA 3.7. Let L(h)(s) converge for s > O. If L(h)(s) c/s for s --, O, with
> O, c real, and if h(t) OL(t- 1) for > O, then

_ill c
for oh(z)dz

r(), + 1)

where F is the usual gamma function.
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LEMMA 3.8. If f(t) g(t) for all >= M > 0, where IIf < and g <
and if 7 6 LI[0, ),

lim Ir(t s)l (f(s) g(s))ds O.

The proof of Lemma 3.8 is simple and is omitted. We may now proceed with
the proof of Theorem 3.5.

Proof. Define

0, 0__<t__<2,
,(t)=

(t), t>2,

and let S,(t) ’,+ /(s) ds. Now since r L[0, c), we know that L(Irl)(0)
Thus

L Ir(t- 2)l(S,(s)- 2(s))d (0)= g(lr[)(0). L(X- 2)(0)

L(lrl)(0). A(0) 0

by Lemma 3.6, and because A(0) 0. Hence, by Lemma 3.7, with

h(t) Ir(t- 2)l(X(s)- i(s))ds,

),= 1, c=0, wehave

T
[r(t s)l (X(s) i(s)) ds dt O.

By Lemma 3.8, since (t) (t) A(t) 2(0 for > 2, we have

T
Ir(t s)l (A(s) ),(s)) ds dt O.

But f Ir(t s)l A(s) ds 0 as oo, by Theorem 3.1, because A(t)
Therefore,

0 =< - Ix(t)- y(t)l dt <__ - Ir(t- s)l/l(s)ds dt 0

as T c, and the theorem is proved.
Remarks. It is suspected that the stronger conclusion j’t + Ix(s) y(s)l ds 0

as c holds. It is also not known whether a result such as Theorem 3.5 is
valid if we assume that Ig(t, x) __< ),(t)lx[, where 2(0 is bounded and diminishing.
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ON A NEW DISCRETE ANALOGUE
OF THE LEGENDRE POLYNOMIALS*

M. WAYNE WILSON

Abstract. A new system of orthogonal polynomials has been introduced recently by the author.
These polynomials exhibit many of the "nice" properties of the Legendre polynomials. The evidence,
theoretical and computational, implies that, as a discrete analogue to the Legendre polynomials, these
polynomials are "superior" to the classical Hahn polynomials. In this paper, proofs of the announced
results are presented and further development and generalizations are indicated.

1. Introduction. Recently we have introduced a new set of polynomials
orthogonal on a finite point set (Wilson [193). These polynomials, a striking
analogue of the Legendre polynomials, have many of the behavioral characteristics
of ultraspheric polynomials, yet they are not Fej6r "generalized Legendre poly-
nomials" (Szeg6 14, 6.5]). In this paper, we provide proofs of the results previ-
ously announced.

The usual discrete analogue of the Legendre polynomials, well studied in the
literature (recently, Karlin and McGregor I10], Levit [11, Wilson I18]), is the
special case of the Hahn polynomials defined by equal weights. (These are some-
times called Gram or Chebyshev polynomials ofleast squares.) Numerical evidence
indicates that the polynomials discussed here are a superior analogue than the
Hahn polynomials. In numerical applications, where the "closeness ofthe analogy"
is of importance, the new polynomials perform better. (See Wilson 20], although
the text has some minor errors.) The performance is expected, however, since the
new polynomials converge like 1IN2 to the Legendre polynomials while the Hahn
polynomials converge like 1IN.

In contrast to the Hahn polynomials, the new polynomials do not have a
difference "Rodrigues formula," nor do they have a known closed form recurrence
formula. Rather, they are obtained by the method of Forsythe 7]. The Hahn
polynomials are really a family of discrete analogues to the Jacobi polynomials
{P,’)(x)}. The new polynomials are also a particular set belonging to a class of
analogues of the ultraspherics (and perhaps, of Jacobi polynomials). Other known
members of the set are {T,} and {U,}, the Chebyshev polynomials of first and
second kind. One may ask, what is the nature of other polynomials of this class?
Are they "good" analogues? Section 7 discusses these questions.

Virtually all that is known about these new polynomials is the orthogonality
relationship. A number of recent papers have been concerned with obtaining
positive expansions of polynomial sets in terms of other polynomial sets (Askey
[1], [21, [3], [41, [5], Wilson 16]). This paper illustrates the use of, and the power
of, such results. By continually exploiting the positivity of expansion coefficients,
we are able to obtain qualitative properties, where quantitative results have not
(perhaps cannot) been obtained. It is somewhat surprising that so much can be
obtained from the inner product.

Received by the editors November 3, 1970, and in revised form May 24, 1971.
? IBM Scientific Center, Houston, Texas 77025.
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2. The inner product. Let 4) rc/(N + 1) and , 4)/2. (These two "angles"
will appear frequently.) Let ti cos ib and wi sin ib, i= 1, 2,..., N. (Note
that the ti are the zeros of UN(x), and extrema of TN(x), a most propitious point set
in approximation theory !) Let [.,. IN be the inner product defined by

N

If, gin 2 tan , wif(ti)g(ti)
i=1

and (.,.) be the usual integral inner product associated with the Legendre poly-
nomials. For notational ease, we shall let

N

If, g] wif(ti)g(ti).
i=1

Although [.,. IN and [.,. ]] are, strictly speaking, only inner products on the
space of polynomials of degree at most N 1, and bilinear forms on C[- 1, 1 and
L2- 1, 1], we shall let context be the guide, and speak only of inner products.

In reality, we should use qN, 0N, tlN), wi"(N), but, except for a few minor occur-
rences, N will always be understood. However, note that the usual economization
of this point set is easily utilized. If M 2N + 1 then bM 4N/2, t)
w(M) WlN) and tan M (COS ON)(tan ON)/(1 + COS2i

Observe that the points are symmetric about the origin, and the weights at
symmetric points are equal, so that [1,f]N 0, f an odd function, and

[g,f]N [1,fg]N,f, g e C[- 1, 1].
Further, the trigonometric identity (Ryshik and Gradstein [13, 1.344])

N {cotp, p= 1,3,5,...,
(2.1) sin kpb=

0, p=0 2 4k=l

shows that [1, 1IN 2 (1, 1) for all N. This innocent identity is the keystone to
obtaining the results of this paper. Virtually every property of the polynomials
defined herein ultimately rests upon it.

Although Riemann sum considerations (Rice [12, 2-4]) show that
It", t"]N --, (t", t") as N o, n fixed, we can show that this convergence is strictly
increasing with N, and of order N-2.

LEMMA 2.1. Forfixed n, N > n > 1,

(i) Itn, tn,+
_

Etn, thin < Etn, tn]N+ < (tn, n) 2/(2n + 1),

(ii) It", t"]N (t", t") + O(N-2)as N o,

(iii) It", *
2-2n 2nl) 2n-2k+ 1

tin (2n+ 1) k=o tan(2n-2k+ 1)"

Proof We show part (iii) first. Note first that
v__ 0 sin iq5 cosZnib. Applying the identity

itn, ,IN [1, t2n]q

(2.2) sin y cos x }[sin (x + y) sin (x y)]

to the identity

tn (2k)Cos2nx-" 2 -2n 2 COS 2(n- k)x +
t.k= o
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we obtain

(
sin ib COS2n i 2-2n ]sin (2n + 1)ib

+ sin(2n 2k 1)ib
k=O k+l

Application of (2.1) after substitution of sin ib cos2" ib into It", t"]v, and use of
the identity

k+l 2n+l k+

yields (iii).
To show the monotonicity of (i), note that from (iii), It", t"] is a positive com-

bination of terms of the form tan 0/tan P0, P 1, 3, 5, ..., 2n + 1. Elementary
calculus shows that g(x) tan x/tan px is continuous and strictly decreasing on
[0, /p), p 2. Thus, since 0 /(2(N + 1)), for N n, tan 0/tan P0, P 3,
5, ..., 2n + 1, is strictly increasing with N, with limit lip. The positive combina-
tion implies that It", t"] is strictly increasing with N, N n.

Taking the limit as N (0 0) in (iii) we obtain

lim It", t"]u
2- z. +

iu-, 2n+ i

The summation is easily shown to be 22"
completing part (i).

2n+ 1)k

so that the limit is 2/(2n + 1),

To show the order of convergence, we note the series expansions

X3 2X n2

tan x x + - + + ..., X2 <
4

1 X X3

cotx x2 < 7
2

x 3 45

so that

tanx 1 (p2_1}x2__ (p2
tan px p 3p 45p

1)(p2 + 6)x4

Since It", t"]N is a positive combination of terms tan 0/tan p), p 1, 3,
5,..., 2n + 1, and since limN-.oo It", t"JN (t", t") is obtained by letting --+ 0,
the result follows, which completes the proof of the lemma.

Letting Zp tan 0/tan p,, the first few inner products are explicitly

[1, l-IN 2,

It, tin [1 + Z3]/2

It2, t2]N [2 + 3Z3 q- Z5]/8

It3, t3]N [5 q- 9Z3 + 5Z -+- Z7]/32.
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3. The polynomials. We let qk(t;N), k 0, 1,..., N-1, be the monic
form of the orthogonal polynomials of [. ,. IN. Taking account of the symmetry of
the inner product, the polynomials are given by the recurrence

qo =- 1, ql =- t, qn+l tq,- ,(N)q,_l, n 1,2,.-., N- 2,

where ft,(N) [q,, q,]N/[q,_ 1, q,-1]. The polynomials are even or odd with n.
Explicitly,

I+Z3I(N)
4

1 nt- Z3 + Z -Z(N) --,
4(1 -t- Z3)

1 +Z3 + Z5 +Z7 +Z3(1-Z5 +Zv)-Z2
fl3(N)--

4(1 -+- Z3)(1 nt- Z3 -+- Z --Z)
Further, we have

[qo, qoJs 2,

I+Z3[ql ,ql]
2

1 + Z3 + Z Z2

[q2,q2]N
8

There does not appear to be a simple closed form for ft,(N), so that, at the
moment, the Forsythe [7] technique appears to be the most efficient method of
calculating the polynomials.

Applying Wilson [17], which shows how the convergence of [1, k] affects
other quantities of a discrete system, we have ft,(N) n2/(4n2 1) + O(N-2).
Computationally, it appears that the ft,(N) are monotonic increasing with N for
fixed n, and monotonic decreasing in n for fixed N.

Letting k, be the leading coefficient of the Legendre polynomial P,(t), that is,
k. 2"(1/2)./n!, and defining Q.(t; N) k.q,(t; N), we have, by use of Wilson [17,
again, the following theorem.

THEOREM 3.1. Using the preceding notation,

(3.1) Q.(t; N) P.(t) + O(N-2).

4. Inner products of classical polynomials. Among the most remarkable
features of this new system ofpolynomials {Q,(t;N)} are their expansion properties.
Equally remarkable is that these properties are derivable from the behavior of the
inner products of the Chebyshev polynomials of the first and second kind,
T,(x) and U,(x).

Observe that .,. ] and the polynomials T, and U, are "made for one
another," since

T,,(cos y) cos ny, U,(cos y)
sin (n + 1)y

sin y
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LEMMA 4.1 For n + m even, n > m > O,

(i) IT,, Tm]N

-tan,sin4 Cos4-cos(n+ cos4)- cos(n- m

(ii) IT,, T,,]N is finite, strictly increasing with N, 2N + > n + m, with limit

I 1

(n + m)2 +
(n-- m)2-

Note that IT,, T,,]u is zero if n + m is odd, is negative if n + m is even, m 4= n,
and is positive for n m (which is necessary from the inner product definition).

Proof Recalling that T,(x)T,,(x) 1/2[T,+,,(x) + T,_,,(x)] for n >__ m, and that
ITn, Tm [1, TnTml, it suffices to consider [1, T,]N, 2N => n. Now, for n even,
[1, T,]u* Y’,I sin i4)cos in4), which, by applying the identities (2.1) and (2.2),
evaluates to 1/2[cot(n + 1), cot(n- 1)]. This can be rearranged to -sin 4)
(cosq-cosnqS)-l. Hence, for n even, [1, T,]u= -2tanOsinq.(cosb
-cos nb)- 1, thus showing (i).

To show the monotonic nature, we shall consider the reciprocal, observing
that

-2 cot,
(cos cos n)

[1, T]N sin q5

=-1+
sin nOl 2

sin,J
n=0,2,4,...

using half-angle formulas (, b/2). For n 2, 4, this is q- [U,_ I(COS @)] 2.
Now on [cos (re 1], U,_ l(X) is increasing from zero to n. (cos (n/n) is the zero on
[- 1, 1] closest to 13

Now sin nx/sin x > if

sinnx-sinx=2sin(n-2 1) x cos ,n )2
x_>0,

which is true for 0 =< ((n + 1)/2)x _<_ re/2, since n 2, 4, Thus, sin nx/sin x >
for 0 _<_ ((n + 1)/2)x < re/2, so -2/[1, T,]u > 0, strictly increasing with N if
< rc/(n + 1), that is, if n < 2N + 1. Thus [1, T,]u is negative, strictly increasing

with N, with limit -2/(n2 1), thus showing (ii).
LEMMA 4.2. For n + m even,
(i) IT,,, U,] tan ,[cot (n + m + 1)t + cot(n m + 1)],
(ii) IT U,]zv is finite, positive, and strictly increasing with N, N > n >= m > O,

with limit 2(N + 1)/((n + 1)2 m2).
Again, IT,,, U,]N is zero if n + m is odd.
Proof Since (sin ib)T,,(cos i4))U,(cos ib) cos imqb. sin i(n + 1)4, part (i)

follows using identities (2.1) and (2.2) as in part (i) of Lemma 4.1. Part (ii) follows
identically to part (i) of Lemma 2.1.
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Although we already know [P,,P,,]N O, n + m odd, and
(P,, P,,) 26m,,/(2n + 1), as N - m, we need, for later use, the nature of this

convergence. The proof of the following lemma is an immediate consequence of
Lemma 4.1 and the two identities (Szeg6 [14, 4.9 and exercise 84]).

[n/2l

(4.1) P,(t) gkg,_kT,_2k(t),
k=0

where go 1, gk (1/2)k/k! > 0, and

(4.2) P,(t)Pm(t k(n, m)P,+ 2(t),
k=0

n>m,

where e(n, m) > 0.
LEMMA 4.3. For n + m even, N >__ n >= m >__ 1,
(i) [P,, P,,lu < 0 and strictly increases with N to limit O, if n > m,
(ii) 0 < [P,, P,]u and strictly increases with N to limit 2/(2n + 1).

5. Expansion properties. The ultraspherical polynomials {P(,’)(t)} for
e [-1/2, 1/2] have a very characteristic set of sign properties, when expanding
one set in terms of another set. Writing

(5.1) P’) D,(o,fl)P(’t)
k=O

it is trivially clear that D,](, fi) [D,](fi, )]-1 > 0, and that D, 0, n + k odd.
For 1/2 _> > fi => -1/2, and n + k even, D,(e, fl) > 0, and (except for e 1/2,
fl =-1/2)O,(fl, e)< 0, k > 0. The excepted case 1/2, fl 1/2 has the
expansion

(5.2) T, 1/2[U,, U,_ 2].

(Recall that for e 1/2, 0,- 1/2, the ultraspherics are respectively the classical
polynomials U,, P,, T,.) Askey [1] gives an explicit formula for D,(e, 3).

For two given polynomial systems {p,(t)}, {q,(t)} (normalized to have positive
leading coefficients), if we expand polynomials of one system in terms of terms of
the other,

p,(t) Dq(t), n 1,2,...
k=0

q,(t) dp(t), n 1,2,
k=0

then, if D, >__ 0, d, __< 0, k 0, 1, ..., n 1, n 1, 2, we shall say, by analogy
with (5.1) and succeeding discussion, that the system {p,(t)} is above the system
{q,(t)} and that the system {q,(t)} is below the system {p,(t)}. (For precision, if the
systems are finite, we assume they have the same number of elements.)

This section is primarily devoted to proving, via a sequence of lemmas, the
following.
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THEOREM 5.1. The system {Q.}, for fixed N, is below the system {U.}, and
above the systems {P.}, {T.}.

To establish notation, we write, suppressing and N dependence,

U. A.Q. + A.-2Q.-2 + "",

"U,+ U,_ +...Qn an an- 2 2

(5.3)
Q" P" + B,_ 2P,_ 2 -k- ...,
P, Q, + b’-zQ,-2 +’",

Q, C,T, + C,_2T,_2 + ...,
T, cQ, + c,-2Q,-2 +....

We show that A, B, C are positive, the a,, c, are positive, and all aj, bj, cj are
negative, j n 2, n 4, .... We shall also show a number of monotonicity
properties which are useful later.

LEMMA 5.1. For N > n, writing

Q,(t N) P,(t) + B,_ 2(N)P,_ 2(0 + B_ ,(N)P,_ ,(t) + ...,
we have Bnn_2j (N) strictly decreasing with increasing N to a limit ofzero with order
O(N-2), j 1, 2,....

Proof We use a refinement of the argument in Wilson [16], which with
Lemma 4.3 establishes the nonnegativity of the B;_ 2j(N). Note first that in express-
ing Q,(t; N) as above, we have utilized the fact that only polynomials Pj of the same
parity of n appear in the expansion. For the sake of simplicity, we assume n even.
The proof for n odd is the same except for notational changes. Let n 2m.

Writing Qzm(t; N) as -’j=0 Bzj(N)PzJ, where BT,(N)= 1, and imposing the
orthogonality conditions [Qzm, Pzj]N 0, j 0, 1, m 1, and [Qzrn, Pzm]N
K > 0, we observe that B"(N)=_ (Bf)(N),B’z(N), ..., Bn2m_2, 1) is propor-

tional to the solution B*(N)= (B;(N), B(N), ..., B*(N)) of the system
AraB*= 6, where 6 (0,0, ..., 0, 1)t, and A Am(N has elements Aij(N
=- [P:, P:3.

Now Am is a Stieljes matrix, having positive diagonal elements and negative
off-diagonal elements, and thus (see Varga [15, pp. 81-87]) it has a positive inverse.
(It is positive definite since it is a Gram matrix; see Davis [6, p. 176] .)

Partitioning

Am Am-i Vm
V A,,,m’]

where V =_ (Ao,m,Al,m,..., Am_l,m)< O, we have, by a formula of Frazer,
Duncan and Collar [8, pp. 112-115],

A, /Mxa M12
M21 M22

where M22 lAin_ ill Aml, and m12 -mzzAn 1Vm.
Therefore,

M12 and B’(N) -A’IB*(N)
M22
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As stated earlier, A2,_1 > 0, and -V, > 0 by Lemma 4.3, so B"(N)> O.
Further, since A,,_ (N + 1) > A,,_ (N), and V,,(N + 1) < Vm(N), by Lemma
4.3, we have A2,- (N + 1) < A2,- a(N) (Varga [15, p. 87]) so that B"(N + 1)
< B"(N). The limiting value and order is a consequence of (3.1).

LEMMA 5.2. For N > n, writing

,(t; N) C",r,(t) + C",_ r,_ (t) + ...,
we have that C," 2gog and C’_ 2j(N) strictly decrease with increasing N, oforder
O(N-2), to the limit gg,_j, given by the identity (4.1).

Proof The proof is immediate from the identity (4.1) and Lemma 5.1, or by
using a similar argument to Lemma 5.1.

LEMMA 5.3. In the expansions (5.3),for N > n, we have A",_ 2j > O, b_ 2j < O,
c,-2j < 0,j 1,2, 3,..., while A, > 0, b," > 0, c, > 0.

Proof A_2j [U,, Q,-2j]u/[Q,-2j, Q,-2j]u and Lemmas 5.2 and 4.2 show
the numerator term positive, showing A,]_ 2j > 0. The b,_ 2j result follows similarly
from Lemmas 5.1 and 4.3, while the c,"_ 2j result follows from Lemmas 5.1 and 4.1.

LEMMA 5.4. For N > n, writing

"u.(0+ u. (0+...Q,(t N)= a, a,-z -2

we have a, > 0, a,_ 2j < OfOr j 1, 2,....
Proof Because of the length, we shall only sketch the proof. The Ui(x),
1,2,..., N 1, are orthonormal with respect to the inner product (.,.),

defined by

2 N, sin2 ib./(cos i)g(cos i),(f’g)
N+I=

so that, as a Fourier coefficient, we have

a,_ 2p(N) (Q,U, U,_ 2p), pe {0, 1,..., In/2]}.

For p 0, by examining the leading coefficients, it is clear that a," > 0. Assume
p 1,2, ..., In/2]. Since sin ib w/1- cos2 ib, we have

1

(N+ 1)tan [Q"’x/1/ -xZ"-zvJ’’a-2p

Now, for 0 < x <

sinx
cos 2kx

7"C ---- 1’

SO

2 4
(N + 1) tan 0a,_ 21, -[Q,, U,_ 2p -[Q,, K. U,_ 2,,]

4
--[Q,, K. U,_ 2p],
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where n __> 2, and

K(x) 1 Te(x)
k= 4k2- 1"

Since T2q(N+ 1)_+j(cos iqS) T(cos iqS), we can show
M

K(cos ib) SN,jT.(cos idp) + sur+ 1(cos iqS) + S;,
j=l

where N 2M or 2M + 1,

1 1 1
Su,j--4j2 +

1 4[q(N + 1)- j]2q=l 4[q(N + 1)+j] 2 +

0, N 2M,

N 2M + 1,q/-"l (2q- 1)2(N + 1)2- 1’

S= 1q 4qZ(N + 1)2 1"

By using the psi (digamma) function, the series may be summed, and it can
be shown that

SN, > Szv,+l, j 1,2,..., M- 1,

and SN,M > 2Sv.
Now, substituting, and using orthogonality of Q., we have

a-2,, rc(N +-41)tan
Using known identities on U,T,, to obtain expressions involving U-functions

only, and using

g2(u+ 1)-tj+2)(cs ib) Uj(cos iqS), and [Q,, gu]u 0,

one can show (for each of the four cases obtained from letting N 2M,
N 2M + 1, n 2r, n 2r + 1) that the expression is negative (recall that
[Q,, Um]N > 0, m n,n + 1,..., N- 1, by Lemma 5.3), which completes the
proof.

At this point, we have proved Theorem 5.1. Let us remark here that what we
have shown is that the three matrices (a,- 22}), (b,"- 22}), (c,- 22}), with i, j 0, 1, , m,
where n 2m or n 2m + 1, are M-matrices (Varga [15, 3.5]), which have non-
negative inverses. The really difficult problem, illustrated by Lemma 5.4, involves
determining when a nonnegative matrix has as its inverse an M-matrix. We
conclude this section with the following lemma.

LEMMA 5.5. For N > n, the coefficients satisfy, for n even, C". > C_ 2 )’’"

> C"2 > 2C, and for n odd, C". > C’_ 2 )’’" > Cnl
Proof Substituting Tk 1/2[Uk- Uk-2], To Uo and T 1/2U1 into the

expansion for Q. C."_ 2jT._ 2j to obtain Q. a"._ 2jU.- 2.i, the inequalities
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above hold if and only if the a,"_ 2j satisfy a," > 0, a,"_ 2j < 0, j 1, 2,’’’, SO the
inequalities follow directly from Lemma 5.4.

6. Properties of the Q-polynomials. We now prove a number of properties of
the {Q,(t; N)} polynomials, and also state some properties which, from compu-
tational experiment, we suspect are valid.

THEOREM 6.1. Q,(t; N) takes its maximum absolute value on [-1, 1 at the
endpoints. Further, Q,(1 N) is strictly decreasing, with order O(N-2), to the limit
value 1, with increasing N.

Proof The proof is an immediate consequence of Lemma 5.1.
By way of estimating Q,(1;N), we can obtain a rough estimate using the

monotonicity stated in Lemma 5.5 and the explicit formula C," 2. (2n)!/(4"(n !)2),
so that Q,(1;N)< [(n + 1)/2]. C",, where Ix] here means greatest integer con-
taining x. Using Stirling’s formula, we have, for n > 1, independently of N,

1 < Q,(1 N)< (n + 2)/(cn) ’/2.

For n 29, the right-hand value is 3.25, while Q29(1 ;30)-- 2.42. We have had
little success in attempting to find an explicit formula or a bound depending on
both n and N for Q,(1 ;N).

THEOREM 6.2. Ifthe zeros ofQ,(t N) are designated cos O"),j 1, 2, n, then

j 1/2 0,)
j + 1/2

n+lr< < z j=l 2,... n.
n+l

Proof Writing (5.3) as

Q,(cos O;N)= C cos nO + C,"_2 cos (n- 2)0 +...

and letting n 2m, and x 20, we obtain

Q,(cos x/2)= C, cos mx + C,"_ 2 cos (m- 1)x +... + C.
Lemmas 5.2 and 5.5 imply the result by direct application of Theorem 6.4 in
Szeg6 [14]. The proof for n 2m + follows similarly.

There are two additional properties of ultraspherics (Legendre polynomials in
particular) that the Q,(t;N) appear to satisfy from numerical evidence.

CONJECTURE 6.1. The sequence of successive relative maxima of [Q,(t; N)[
on [0, 1] is an increasing sequence.

CONJECTURE 6.2. For N > n + m, there is a positive product linearization
formula. That is, Q,(t; N)Q,,(t; N) appears to be expandable as a nonnegative
combination of Qj(t;N),j O, 1,..., n + m. With respect to the second con-
jecture, we have verified computationally that the fig(N) do not satisfy the appro-
priate inequalities that would allow the use of the results in Askey [3], [4].

Because these polynomials share, or appear to share, many of the properties
of the ultraspheric polynomials, it is quite fair to ask, "Could these polynomials in
essence be ultraspheric polynomials?" That is to say, could Q,(t;N)

h,(N)P(,’)(t), where (N), such that (N) 0 as N o ? Or perhaps they
are Fej6r "generalized Legendre polynomials" (Szeg6 [14, 6.5])? We show the
latter question is answered in the negative (which implies a negative answer for the
first question also).
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LEMMA 6.1. For N > 4, N finite, the sequence Qo, Q1, Q2, Q3, Q4 is not pro-
portional to a sequence of Fej& "generalized Legendre polynomials."

Proof The Fej6r "Legendre polynomials" associated with a sequence
ao, al, a2, a3, a4, are defined by

F,(cos 0) 2ot, cos nO + 21,- cos (n 2)0 +

2a(,_ 1)/2a(,+ 1)/2, n odd,
-" 2t /’/even.

Without loss of generality, we take ao 1, and write explicitly the first 5 poly-.
nomials as

1, 2acos 0, 22 COS 20 + a2, 2a3 COS 30 + (ZI( 2 COS 0,

2a4 cos 40 + 2ala3 cos 20 + a2.
For the monic forms q,(t; N) of 3, writing

[n/2]

q,(cos 0; N) 3),j cos (n 2j)O,
j=0

we have

3)0o 1,

3)11 1,

3)22--" 1/2, 3)o (1 fll)/2,

3)33 1/4, 3)31 (3 4(fl -[- fi2))/4,

3)44-- 1/8, 3)42 --(1 1 2 f13)2,

3)40--(3- 4(fl + f12 + /3 -- 8/1/2))/8"

If the two sets are proportional, that is, if there exists ki such that F,(cos 0)
kiqi(cos 0; N), 0, 1, ..., 4, then, necessarily, 43)203)40 3)313)42" Writing

everything in terms of cos 4, we were able to show, after some extremely painful
algebra, that 43)2o3)40 3)313)42, as a rational function in cos b, for 0 < b < 7/5,
was one signed (never zero) so that the condition could not hold.

(The last step of the procedure involved the symbolic factoring of a 13th
degree polynomial using the REDUCE system on the IBM 360/91 at the Watson
Research Center.)

A few other comments are in order. First, because of the O(N- 2) convergence,
these polynomials are not Hahn polynomials. The work ofWynn [21 and Hahn [93
then shows there is no difference analogue of "Rodrigues’ formula" for these
polynomials.

7. The general class of polynomials. Letting " represent summation with
first and last terms weighted by 1/2, consider the general inner product, for
a => -1/2,

N+I

[f g] 2" (Wi) + 2f(ti)g(ti),
i=0
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where wi sin ib, ti cos ib, and letting (0) =- 1. Let q(,)(t;N) be the discrete
orthogonal polynomials defined analogously to those in 3. Riemann sum con-
siderations (Rice [12, 2-4]) show that these polynomials are discrete analogues
of the ultraspherics P(,’)(t). In fact, for cz + 1/2, cz 1/2, the inner products
are well known and generate U, and T, exactly (up to a constant factor). Since U,
and T, (the latter requires the to and tN+ points) are (up to a constant factor)
P(,’) for 1/2, -1/2 respectively, it is only natural to examine what happens
when a 0 (the Legendre case). This motivated the current investigation.

This raises a whole host of questions. Do the q(t;N), suitably normalized,
share similar properties to P(,’)? What is the convergence order of [.,. ]), for
general ? Do the q,(t; N) have similar interrelationships for different cz as the
ultraspherics have? For 1/2, 0, -1/2 we have demonstrated some of these
interrelationships.

Another very general question of interest concerns the characteristic sign
configurations of expansions of 5. We have shown in Theorem 5.1 that {Q,} is
above {P,}, and implicitly, {Q,} is above {P?’)} for [-1/2, 0]. Here we state,
on very scanty numerical evidence, the following conjecture.

CONJECTURE 7.1. There exist numbers 1,2, functions of N, satisfying
-1/2 < =< 2 1/2, and such that the system {Q,} is above the system
{P(,’)} for e [- 1/2, ] and below the system {P(,’)} for e [(x2, 1/2].

Clearly, if this is so, cz __> 0 and tends to 0 with increasing N. On the other
hand, 1/2 >= 2, and we would suspect also that (x2 -- 0 with increasing N. How
large a gap is A,(N) 2(N) Zl(N)9.
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A GENERALIZED CAUSALITY OF LINEAR CONTINUOUS
OPERATORS DEFINED ON DISTRIBUTIONS*

VACLAV DOLEZAL"

Abstract. The paper deals with a qualitative property of linear continuous operators defined on

distributions, that is, with a property appearing as a generalization of the traditional causality. The
traditional causality of an operator A means that supp Ax S whenever supp x S, where S is any
interval IT, ). Here, causality is defined in the same way, but S is any member from a certain family of
subsets of Rm, called a scale.

A theorem is proved which gives necessary and sufficient conditions for an operator to be causal
with respect to a given scale.

As an application there is considered a slightly generalized convolution-type operator; it is shown
that this operator is causal with respect to a scale which consists of all translations of a fixed cone.

In this paper an extension of the traditional causality concept is discussed.
First, the concept of a scale is introduced, that is, a scale N is defined as a family of
subsets of R which satisfies certain requirements. It is shown that, in particular,
we can take for a scale the collection of all sets which are translations of a fixed
cone in Rm.

If A is a linear operator defined on distributions which is continuous (with
respect to the convergence in 9’), then A is called causal with respect to a scale f,
if the support of Ax is contained in some S e N whenever the support of x is con-
tained in S. We use this concept and a certain representation of linear continuous
operators given in [2] to prove a theorem which gives necessary and sufficient
conditions for a linear continuous operator to be causal with respect to a given
scale.

Based on this result, a theorem is then proved that describes a scale with
respect to which an operator A is causal, provided A is a slight generalization of a
convolution-type operator.

First, let us introduce several concepts and carry out some preliminary
considerations. Let R" stand for the Euclidean m-space; if A Rm, let A, A and
Int A denote the closure, complement and the interior of A, respectively.

DEFINITION. Let S be a nonempty proper subset ofR S will be called a normal
set if

(i) IntS=S,

(ii) there exists an Xo e R" such that S 2x0 S for every/l > 0.

Furthermore, let 9 stand for the space of all smooth functions on R with compact
support, and let the convergence in 9 be defined in the usual way;let 9’ be the dual
of 9, that is, the space of all linear functionals on 9 which are continuous with
respect to the convergence in 9 (see [1]). Then we have the following lemma.

LEMMA 1. Let S be a normal set, and let__f 9’ then f 0 on S if and only if
(f, q) 0 for every q 9 with supp q c S.
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Proof. Owing to (i), S is an open set; hence, sufficiency is trivial. Conversely,
let f= 0 on S and let 0e9 be such that supp q9 c Sc. If x0 is the point with
property (ii), define functions qg,(t), n 1, 2,... by qg,(t)=(t + xo/n); then
clearly (p, e 9 and supp q, supp (p xo/n, i.e., supp q, S xo/n. Hence,
by (ii), supp (p, c S, and consequently, (f, q),) 0.

On the other hand, it can be easily verified that (p, q) in 9; thus, by con-
tinuity off, (f, qg) 0 as required.

LEMMA 2. Let S be a normal set and let f 9’; then f 0 on S if and only if
(f, q)) 0 for every q) e 9 with q) 0 on S.

Proof. In view of Lemma 1 it suffices to show that supp q S if and only if
0 0onS.

1. Let (p 0 on S; then A {t’0(t) 4= 0} Sc, and consequently, supp
-ASo

2. Co__nversely, let supp (p S; then A supp q9 S, so that A
0} (SC) Int S. Hence, q 0 on Int S, and since 0 is continuous, we have

(p 0 on Int S S by (i), which finishes the proof.
DEFINITION. The family ( {So "So Rm, a Rm} will be called a scale, if

(i)* each So is a normal set,
(ii)* a So for every a Rm,
(iii)* b So implies that Sh
As an example of a scale, let us consider the following situation" If e and

t= (tl,t2, "", t,,), let IIt[[ (i=1 tzi) /2. Let p > 0 be fixed, and for every
a R define

(1) Sa {f.. I1[I 2 2 ]2([2m am _Jr_ a 2 a2m}.

Clearly, each So is a paraboloid opening to the right of the tin-axis, and satisfies the
condition (i); moreover, taking for Xo any point of the positive part of the tin-axis,
inclusion (ii) is satisfied. Hence, every So is a normal set.

On the other hand, we have a So, and it can be easily verified that implication
(iii)* holds too consequently, the family f# {So :a Rm} is a scale.

Let us now discuss a more sophisticated example of a scale.
DEFINITION. Let S be a proper subset of R"; the set S will be called a cone, if S

is closed, convex with nonempty interior and such that 2x S whenever x e S
and 2 >_ 0.

Then we have the following theorem.
THEOREM 1. Let S be a cone; then the family

(2) fff { S + a’a6Rm}

is a scale.
Proof. First of all, we shall show that each S + a is a normal set. It is clear

that for proving this it suffices to show that S is normal.
Thus, choose xo e Int S and let us show that S- Xo S. Actually, let

x S; then, due to convexity of S, x + xo S, and we even have x + Xo Int S.
Indeed, by assumption there exists an > 0 such that z Rm, z xo < e implies
z S. Consequently, if e R and [l (x + xo)ll < , we have x e So.
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Thus, x + ( x) e S, i.e., x + Xo elnt S; hence, S Int S Xo, and con-
sequently, (Int S)c- Xo Sc. The relation (Int A)C= A concludes the proof of
the above inclusion.

Next, observe that if Xo Int S, then also 2Xo Int S for any 2 > 0; conse-
quently, we have S 2Xo S, and condition (ii) holds.

As for condition (i), we can reason as follows" we have Int S c S, and con-
sequently, Int S c S S. Conversely, let x e S and show that x Int S. Actually,
choose an Xo e Int S and show that every point zz 2Xo + (1 2)x with 0 <
=< belongs to Int S. By assumption, there exists e > 0 such that Xo <
implies S; choosing a fixed 2 with 0 < 2 __< 1, let r/ be a point such that
z < 2e, so that r/ 2x0 (1 2)x < 2e. Then we have 2-1r/ /-1

(1 2)x- Xo < e, and consequently, 2-1r/ 2-1(1 2)xeS. Since 2-1(1
2)x e S, we have 2- lr/e S and thus r/e S. Hence, zx e Int S for 0 < 2 =< 1.
On the other hand, x-z =21X-Xo ,sothatxeIntS;hence, ScIntS,

and requirement (i) is satisfied. Thus, S is normal.
Next, since 0 S, we have a e S + a for any a Rm; consequently, (ii)* holds.
Finally, ifbeS+a, then b-aS; ifxeS+b, we have x=b+y with

y e S. Consequently, writing x a + (b a) + y, it follows that (b a) + y S,
so that x e S + a. Hence, (iii)* is satisfied, and the theorem is proved.

Let us now turn to causality of operators. Let stand for the space of all
distributions in @’ which have a finite order, that is, fe , exactly if there exists a
continuous function F(t) on R" and a multi-index k such that (f, o) (-1)., F(t)Dkq)(t) dt for every q) (see [1]).

Next, let be a linear subspace of ’ such that , / @’; a linear
operator A "/--, @’ is called continuous if x, x, e , n 1, 2, ..., and x, - x
in ’ implies that Ax, Ax in @’. In [2] we have proved a representation theorem
for a linear continuous operator A" - ’; for the present purposes we shall
need only the following assertion.

Let A’ @’ be a linear continuous operator, and let f A,5 for every
a R then, .for any fixed q) , Oo(a) (f, q) } @ and

(3) (Ax, o) (x, (fo,
.[’or every x and q) @.

Note. In order to avoid misunderstanding, equation (3) should be interpreted
as

((Ax)(t), 99(t)) (x(a), (f(t), q)(t))),

where the "arguments" and a indicate the involved relations; having this in
mind, we shall use the shorter notation of (3) in the sequel.

DEFINITION. Let c {S" S Rm, a Rm} be a scale, and let A’ ---, ’ be
a linear continuous operator; the operator A will be called causal with respect to
c5 if supp Ax S whenever x e 0 and supp x S.

Observe that the traditional causality (m 1) is obtained by setting S
[a, ).
Now, we are ready for stating the main result.
THORZM 2. Let (# {So’So Rm, a Rm} be a scale, and let A ’ be a

linear continuous operator; then A is causal with respect to c5 if and only if supp AcSo
So .[or every a Rm.
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Proof. 1. Assume first that supp A(3 S for every a R’, i.e., fa Aa
0 on S,, and let x be such that supp x__ Sh, i.e., x 0 on S. Referring to

Lemma 1, let q) 9 be such that supp q) ___S.__Now, if a Sh, then Sa c S by
property (iii)* of a scale, and consequently, S S]. Thus, supp q9 S], and since

f 0 on Sa, we have by Lemma 1, Oo(a) (fa, qg) 0. Hence, 00 0 on Sh,
and consequently, by Lemma 2, (x, o) 0. However, by the above proposition,
(x, o) fax, q)). Thus, summarizing, fax,
c S, so that, in view of Lemma 1, Ax 0 on S. Consequently, supp Ax S,
so that A is causal with respect to

2. Conversely, let A be causal with respect to c. Since a for any a e R
and supp 6a {a}, we have supp c5 c S by requirement (ii)* in the definition
of a scale; hence, by causality of A, supp AcS Sa and the theorem is proved.

In the majority of physical applications the operators involved are of convolu-
tional type. It turns out that a scale can easily be constructed with respect to
which such an operator is causal; actually, this can be done for operators that are
slightly more general than convolutional ones, as is apparent from the next theorem.

If A is a subset of R’, let ,;U(A) signify the convex hull of A; then we have the
following theorem.

THEOREM 3. Let ki 9’, 1, 2,..., n, have a bounded support and let 2i(t),
/zi(t), i= 1,2,..., n, be infinitely smooth .functions on Rm; furthermore, let the
operator A’9’ 9’ be defined by

(4) Ax /i(]i * (lli))).
i=1

If the set K ( UT= supp ki) has nonempty interior and if

(5) s {z- e K, _>_ 0} R,
then the family {S + a’a R’} is a scale and the operator A is causal with
respect to .

Proof. First of all, since each ki has a bounded support, k * x is defined for
every x e 9’ and the operator A k* is linear and continuous (see [1]); hence, A
defined by (4) is clearly linear and continuous. Moreover, for any a e R we have

(6) A6, 2i(k,* lz,(a)6)= /a,(a)2i(Pk,),
i=1 i=1

where P, signifies the operator of shifting by vector a; however, properties of the
support of a distribution and (6) imply immediately that

(7) supp Afa a + U supp ki.
i=1

Consequently, by (5),

(8) supp A6 S + a.

On the other hand, the set S is clearly closed with nonempty interior and has
the property that y c--S, >__ 0 implies y e S. Moreover, the set S’= {z’z K,



174 VACLAV DOLEZAL

>_ 0} is convex; actually, let Y l, Y2 S’, fl [0, 11 and y fly + (1 fl)Y2. If
either yl or Y2 is zero, then clearly y S’. Thus, assuming that both Y and Y2 are
nonzero, we have ya ez, Y2 2z2, 01,02 > 0 and z,z2e K. Setting 7
=flel+(1-fl)2-lflel, we have 7e[0,1], and consequently, z=yzx
+ (1 7)z2 K; hence, / (fle + (1 fl)ez)Z e S’. An easy calculation shows
that/ y; thus, S’ is convex, and since S S’, the set S is convex, too.

Summarizing our results, it follows that S is a cone; hence, by Theorem 1,
our family a is a Scale. Finally, Theorem 2 and inclusion (8) conclude the proof of
our theorem.

The above results can be easily modified for the case that the restriction on
boundedness of supports of ki is removed then, of course, the domain of operator
A has to be restricted in order that ki * x remain meaningful. Let us consider a
simple situation of this kind.

Let R’ [0, )’, and let ’+ {x’x @’, supp x R } assuming that
kick’+, i= 1,2,..., n, define A again by (4). Then A’’+ ’+, and A is
linear and continuous, that is, Xp, x ’+, Xp --, x in @’ implies Axp Ax in @’
(see [1]). We cannot apply Theorem 2 directly, since @’+ 75 ; however, we
can overcome this difficulty as follows" Let () be an infinitely smooth function
on R such that z() for > 1, () 0 for __< 2 and 0 __< () __< 1 every-
where, and set, for every e R", v(t) 1--[’= :(ti)"

Next, define an operator A’’ --, ’ by Ax A(vx); clearly, this definition
is meaningful, and/ is linear and continuous. Moreover,/ A on ’+ and we
have as before, supp/6 c S + a for every a e R". Observe also that here S R.
Thus, if Int K is not empty, we conclude as above that supp Axc S + a whenever
xe’+,suppx c S+aandaeR’.

In conclusion, let us make a few comments on a possible extension of the
above results.

The members of a scale, as defined above, are clearly unbounded sets with
nonempty interior. On the other hand, we would get a meaningful definition of
causality of an operator if we replaced the scale by any nonempty family of subsets
of R". This fact suggests the following generalization.

A family {S "S R’, a R"} will be called a generalized scale if there
exists a collection } of scales {S,’S Rm, a Rn} such that S, f’l S
for every a e R".

Clearly, every scale is a generalized scale, but not conversely, since require-
ment (i)* need not be satisfied.

Then we can easily verify that Theorem 2 remains true if the term "scale"
is replaced by "generalized scale".

However, a more direct characterization of a generalized scale is still to be
resolved.
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ERRATUM- ASYMPTOTIC ANALYSIS OF A
DIFFERENTIAL EQUATION OF TURRITTIN*

B. L. J. BRAAKSMA"

In his paper [1] H. L. Turrittin remarks that some corrections have to be
made in the paper mentioned in the title. These are as follows.

In the paper distinguished two cases" the general case m 4: 0, + 1,...,
+ (n 1) and the exceptional case m

_
1,..., + (n 1) (cf. p. 3, lines 8 and

12, p. 5, lines 3 and 7 p. 10, lines 13 and 14). This distinction should be as follows.
The general case. m 4:0 and m is not a fraction of the form

(1) m= +P/Q, whereP= 1,2,...,n- 1, Q 1,2,..., (P,Q)= 1.

The exceptional case. m is of the form (1).
Then (1.10) should read

O<=hP+j<=n-1, O<=h<=n-1, O<_j<__P- 1.

In lines 12 and 2 from below on p. 3 the values v -hQ, -hQ + 1, ...,
should be included if m < 0. In (1.16) the summation over v should extend from
-hQ to o if m < O.

In (2.7) the factor (- 1)(h+ 1)(h/2 + 1) should be replaced by (- 1)(h+ 1)(Qh/2 + 1),
and in the two lines after (2.7) the symbol Iml should be replaced by P.
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PERIODIC SOLUTIONS OF HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS IN THE LARGE*

A. K. AZIZ- AND M. G. HORAK:

Abstract. Sufficient conditions are given for the existence and uniqueness of periodic solutions
in the large for the nonlinear hyperbolic partial differential equation uxy / a(x, y)ux / b(x,y)uy
+ c(x, y)u f(x, y, u, u, u,). The method of proof consists of reducing the given problem to the
finding of a unique fixed point of a certain integral operator in a suitable function space.

Introduction. In this paper we shall investigate the questions of existence
and uniqueness of solutions u(x, y) of the problem

(1.1) Lu u + a(x y)u + b(x y)u, + c(x y)u f(x y, u, U uy),

(1.2) u(x + T, y) u(x, y) u(x, y + T),

provided the functions a, b, c and f are periodic in x and in y with the same period T.
In [1] we dealt with the questions of existence, uniqueness and stability of

periodic solutions of (1.1) in a strip, that is, a solution of (1.1) such that

(1.3) u(x, O) O(x), u(x + T, y) u(x, y)

in the strip
S- {(x,y); - < x < , lyl =< },

where O(x) is a prescribed continuously differentiable periodic function.
Problem (1.1), (1.2) has been discussed by many authors, and the reader may

consult the recent survey article of Cesari [5] and the paper of Hale [61 and the
references contained therein for an extensive bibliography.

In [41 two criteria are given for the existence in the large of periodic solutions
for the equation

(1.4) Ux f(x, y, u, u, u).
In the first criterion [4, p. 183], among other regularity and smoothness

assumptions it is required that f(x, y, u, u, uy) be of the form

(1.5) f e[b(x, y)+ cu + Ox(y)Ux + Oz(x)uy] + e2g(x, y,u,u,, u,).
Equation (1.5) is also discussed in [6] by Hale as an example with the conditions

g/(y) dy 0, O2(X) dx =/: O.
o

The methods used in both [4] and I6], which are very similar, require first
the solution of a modified problem; then using this result, one proceeds to the
solution of the original problem.

* Received by the editors March 9, 1971.
? Division of Mathematics, University of Maryland Baltimore County, Baltimore, Maryland

21228 and Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College
Park, Maryland. The work of this author was supported in part by the Atomic Energy Commission
under Contract AEC-AT-(40-1)3443.

Department of Mathematics, Towson State College, Baltimore, Maryland 21204.
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The aim of the present paper is to obtain in a direct and simple manner a
criterion for the existence of periodic solutions in the large for (1.1). This is
accomplished by an extension of the method used by us in [1]. In the process of
this extension we also weaken certain hypotheses assumed in [1] (e.g., instead of
requiring b(x, y) > 0, we merely assume that b(t, y) dt 0).

The result of the present paper is not contained in the results of [4] and [6],
and on the other hand our result does not include the main results of [4] and [6]
since our hypotheses exclude the cases where a(x, t)dt O, b(s, y)ds 0
(see the statement of Theorem 2.1 below).

2. Existence and uniqueness. In this section we give a criterion for the
existence and uniqueness of the solutions u(x, y) for the problem

(2.1) Lu Uxy + a(x, y)u + b(x, y)uy + c(x, y)u f(x, y, u, Ux, uy),

(2.2) u(x + T, y) u(x, y) u(x, y + T).

It is known [1, p. 168] that

Lu f(x, y, u, u,,, u)
if and only if

1
(2.3) u(x, y)

/(x, y)

where
(i) fy/fl a,
(ii) (eft)x/eft b,

(iii) 7(x, y, u, Ux, u) f(x, y, u, Ux, u) + lax + ab c]u,
(iv) A(x, y, u,

and (x) and b(y) are arbitrary.

that

(2.4)

() + (X.,) 4(,) + A({.,. u. Ux. u,) d d,

We seek first to find a function u(x, y) defined on R I I, I [0, T] such

Lu f(x, y, u, ux, uy),

u(x, O) u(x, T), u(O, y) u(T, y),

ux(O, y) ux(T, y), uy(x, O) u,(x, T).

Suppose u(x, y) satisfies (2.4). Then u(x, y) satisfies (2.3) along with the conditions

u(x, O) u(x, T), u(0, y) u(T, y), uy(O, y) uy( T, y).

Since

uy(O, y) + a(O, y)u(O, y) uy( T, y) + a( T, y)u( T, y),

we obtain from (2.3),
(fl)(0, y) f(2.6) 4(Y)

(efl)(T, y) i-fl)(O, y)
A(, y, u, u,, u) d,
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which is well-defined provided
*T

(2.7) t b(s, y) ds 4:0 for y e I.
0

From u(x, O) u(x, T) and (2.6) for b above, we see that

g,(x) =/(x, (x, o) (x, )[(/)(r, ) (/)(o, )

(2.8) A(, , u, Ux, u) d dtt

+ q)A(, r/, u, ux, u,)d dr

which is well-defined provided

(2.9) a(x, t) dt :/: 0 for x e I.

The substitution of q and as given by (2.6) and (2.8) in (2.3) yields

s(, r x, y)
q(rl) d dr

(2.10)

+ p- 7(, r, u, Ux, u,)s(, ;x, y) d d

+ ,/(, rt, u, Ux, u)
s(,;x, y)

q(q)

where

+ 7(, rl, u, Ux, uy)s(, rl;x, y) d dq,

s(, r/;x, y) exp a(x, t) dt b(s, rl) ds

p(x) exp a(x, t) dt 1, q(y) exp b(s, y) ds 1.

Hence if u satisfies (2.1) and (2.5) on R and if (2.7) and (2.9) hold, then u satisfies
(2.10) on R. Conversely, ifu satisfies (2.10) on R, then it also satisfies (2.1) and (2.5).

Before stating our main result, we first introduce certain definitions and
hypotheses which we shall need in the sequel.

Let E denote the set of real numbers and assume that the following hypotheses
hold:

H f(x, y, u, ux, u,) is continuous on E and it is periodic in x and in y with
period T; f satisfies the Lipschitz condition

f(x, y, u, p, q) f(x, y, u, p, /)l _-< L[lu l + IP l + Iq /I].
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U2 a(x, y), ax(X, y), b(x, y) and c(x, y) are continuous on E2 and a, b and c
are periodic in both variables with period T; moreover,

a(x,t) dt 4= O, b(s, y) ds O onI [0, T].

Let

]A sup + Iq(r/)l

{ 1 foWfo: fo’f} 1+ i(x)l + (, ;x, y)d d

2 sup + exp a(x t) dt dl

f13 sup + exp b(s y) ds d- ]q(y)[

P4 sup
0 <=q <_ T,(x,y)eR

ax(X, t) dt+ b(x, rl)

#5= sup [flr f] s( rl x

i(-rl- d dr/+ s(, q;x, y) d d//

p(x) +A sup [a(x, y)[, B sup p--(x)

C sup I(a, + ab c)(x, y),
R

p (1 + A + p4)//1 + P2 + P3 "+- BPs.

ax(X, t) dt

Let Cp denote the space of all continuous functions u on R, such that u, u are
continuous on R and u(O, y) u(T, y), u(x, O) u(x, T), ux(O, y) u,(T, y),
u(x, O) u(x, T). The norm in C is defined by

Ilull sup lul + sup luxl + sup lull.
(x,y) R (x,y)eR (x,y) R

The equation (2.10) leads us to consider the integral operator K on Cp defined by

(Ku)(x, y) (, , u, Ux, u)
s(, x, y)

dq(tl)

+ - (, 11, u, u,, u)s(, tl;X, y) d dr

(2.11)

+ 7(, q, u, u, uy)s(, q;x, y)
dq(r/)

+ (, ti, u, ux, uy)s({, rl;x, y) d{ d//,
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with (Ku)x and (Ku)y given by

(I(u)x(X, y) ) (, , u, u, u,)Sx(’ x, y)
q(rl)

(2.12)

+ 7(J (’ ’ u, Ux, u,)Sx(, ;x, y) d d

+ ,( u u u,)Sx(’ ;x, y)
d d

+ (, , u, Ux, u,)s(, o;x, y) d do

+ 2(x, , u, u, uy) exp a{x, t) dt d

+ 7(x, , u, u, uy) exp a(x,t) dt d

k P2(x) a(x, t) dt y(g, , u, u, u,)s(,q(q)q, x, y)
dg dq

+ (, , u, Ux, u,)s(, ;x, y) d d

+ 7(, Y, u, u, uy) exp b(s, y) ds d.

Now we state our main result as the following theorem.
THEOREM 2.1. Suppose
(i) Hypotheses H, H2 hold;
(ii) the jhnctions a, b, c and the constant L are such that [L + C] < 1.
Then there exists a unique function u(x, y) in the entire plane such that

Lu f(x, y, u, Ux, uy), u(x + T, y) u(x, y) u(x, y + T).

Proof. From the properties of the space Cp, the periodicity of the functions
a, b, c and f and the equations (2.11), (2.12) and (2.13) it follows that K maps Cp
into itself. For u, v e Cv from the definition of we have

(2.14)
I,(, , u(, ,), Ux(, ), u,(, ,))- ,(, , v(, ), v(, ), v,(, ))1

[L + C]llu- v l.

Using (2.14) from (2.11), (2.12) and (2.13) we obtain

(2.15) [(Ku)(x, y) (gv)(x, y)[ _< Pl[L nt- C][[u v 1,

(2.16) (Ku)x(X,y)- (KV)x(X,y)] []/1]-/4 -+- ]22 nt- Bt25][L + C] u- v
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(2.17) I(Ku)y(x, y)- (Kv)y(x, Y)I <- [A#I + #3ILL --k C] Ilu- v

Hence,

(2.18) Ku-

Since e < 1 from Hypothesis H2, by the contraction mapping principle we conclude
the existence of a unique function u Cp such that u Ku. The function whose
existence is asserted by the theorem is obtained by extending u periodically to
all of E2.

3. Concluding remarks. In Theorem 2.1 for clarity ofexposition and technical
convenience we assumed that f satisfies a Lipschitz condition in the last three
variables. However, we can show the existence of a solution (not necessarily
unique) by merely assuming that f satisfies a Lipschitz condition in the last two
variables as in [1]. Moreover, the global Lipschitz condition of Theorem 2.1 may
be relaxed. Suppose there is a number d such that the Lipschitz condition of
Hypothesis H1 holds in D R x [--d,d] 3, with Lipschitz constant L. It can
be shown that the conclusion of Theorem 2.1 holds if d is sufficiently large. In
fact, let

sup If(x, y, u, p, q)l < Me.
(x,y,u,p,q)eD

Now if we require that, besides [Le + C]# < 1, we have

d >__/Me/(1 pC),

then the set

Ue {u Cp’(sup lu(x, Y)I + sup lux(x, Y)I + sup lur(x, y)[) <= d}
R R R

is mapped into itself by the operator K. Using Le instead of L in the remainder of
the proof of Theorem 2.1 leads us to the desired conclusion.

Finally we note that under the transformation x + y, x- y, the
differential equation

changes into (2.1). Moreover, the periodicity and Lipschitz conditions placed on
a, b, c and f in H and H2 are satisfied if the functions fi, , g and f have the cor-
responding properties.

REFERENCES

1] A. K. AzIz aND A. M. MZYF,RS, Periodic solutions of hyperbolic partial differential equations in a

strip, Trans. Amer. Math. Soc., 146 (1969), pp. 167-178.
[2] L. CF,SARI, Periodic solutions of hyperbolic partial differential equations, International Symposium

on Nonlinear Differential Equations and Nonlinear Mechanics (Colorado Springs, 1961),
Academic Press, New York, 1963, pp. 33-57; Intern. Symposium on Nonlinear Oscillations
(Kiev, 1961), Izv., Akad. Nauk SSSR, 2 (1963), pp. 440-457.

[3] --, A criterion jbr the existence in a strip ofperiodic solutions ofhyperbolic partial differential
equations, Rend. Circ. Mat. Palermo (2), 14 (1965), pp. 1-24.

[4] --, Existence in the large ofperiodic solutions ofhyperbolic partial differential equations, Arch.
Rational Mech. Anal., 20 (1965), pp. 170-190.



182 A.K. AZIZ AND M. G. HORAK

E5] --, Functional analysis and differential equations, Advances in Differential and Integral Equa-
tions, Studies in Applied Mathematics 5, Society for Industrial and Applied Mathematics,
Philadelphia, 1969, pp. 143-155.

6] J. K. HALE, Periodic solutions of a class of hyperbolic equations containing a small parameter,
Arch. Rational Mech. Anal., 23 (1966), pp. 380-398.



SIAM J0 MATH. ANAL.
Vol. 3, No. 2, May 1972

RIEMANN-STIELTJES INTEGRATION OF OPERATOR-VALUED
FUNCTIONS WITH RESPECT TO VECTOR-VALUED FUNCTIONS

IN BANACH SPACES*

EDUARD PRUGOVECKI
Abstract. The concept of Riemann-Stieltjes integrals is generalized to operator-valued integrands

and with respect to vector-valued functions. Integrals of this type appear in perturbation theory of
linear operators and in quantum scattering theory. Different versions of such integrals are defined
and their existence for given classes of functions is investigated. Some simple examples are explicitly
considered.

1. Introduction. In the course of deriving Hilbert space versions of the
Lippmann-Schwinger equations and of the transition operator in quantum
scattering theory, operators represented by integrals of the form

(1.1) I (I)(H, )T d.F

have been encountered [1] ;here (H, #) is a function of # e 1 and of a self-adjoint
operator H acting in a Hilbert space ocg, while F. is the spectral function of another
operator which does not commute with H, and T is a bounded operator on
If Ez is the spectral function of H, then by using the spectral theorem for H, one
obtains

(1.2) I 0(2,/) d,E, T duFf,.

After introducing an appropriate notion ofiterated Riemann-Stieltjes integrals 1],
one can write (1.2) in the form

(1.3) I d. 0(2, ) d(ETF.).

A typical example of integral representation of the form (1.1) can be provided
for the wave operators f_+,

(1.4) f+ s-lim eim e-intPo,

where H0 H and P0 is the projector on the absolutely continuous subspace of
with respect to H0. It is well known that these operators play an important

role in perturbation theory of linear operators [2], [3] and the quantum theory [4].
In [1] it is shown that

(1.5) _+ s-lim duFu,
,--,+_o + iq-H

where Fu is the spectral measure of Ho.
Received by the editors January 8, 1971.
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It is the purpose of this paper to define generalizations of integrals of the
type (1.1) and (1.3), to investigate where they exist and to establish some of their
basic properties.

Since the publication of[1], other work on integrals of the type (1.1) and (1.3)
has been brought to our attention. As far as we could determine, integrals of the
type (1.1) were first introduced and discussed by Daletskii and Krein [5], who
encountered them in problems on the perturbation theory of linear operators.
Later on, integrals of the type (1.1) and (1.3) were encountered by Birman [6], [7
in quantum scattering theory. This has given rise to a systematic study [8], [9]
by Birman and Solomyak in which these operators are looked upon as transformers
on cross-spaces. Some more recent work has been done by Solomyak [10.

In this paper we intend to define n-dimensional Riemann-Stieltjes integrals
of the type (1.1) and (1.3) as operators on a Banach space f. However, since the
applications which we have in mind [1], [4, [11 occur in Hilbert spaces, most of
the illustrations and many of the results are confined to the case when f is a
Hilbert space. The use of Banach spaces rather than Hilbert spaces in the basic
definitions is, however, justified since these definitions and the elementary
properties of these integrals are not any more involved in Banach spaces than in
Hilbert spaces.

In 2 we define the concept of strong Riemann-Stieltjes integrals and show
that they possess most of the elementary properties expected of any integrals.
In 3 we define the concept of vector-valued functions of bounded norm-variation
and prove the existence of strong Riemann-Stieltjes with respect to such functions.
We proceed to prove in 4 the existence of such integrals with respect to a much
wider class of vector-valued functions, but we can achieve this only by restricting
ourselves to integrands with Bochner-integrable strong derivatives. The concept
of weak Riemann-Stieltjes integrals is introduced in 5; all the properties and
basic results on strong integrals are shown to hold in a frequently more general
context for weak integrals. Finally, in 6 we introduce the concept of cross-
iterated Riemann-Stieltjes integrals, which covers the case of the integral in (1.3).

2. Strong Riemann-Stieltjes integrals. Consider a vector-valued function

f...o on an n-dimensional closed and nondegenerate interval A c E", assuming
values in a complex Banach space ; the intervals considered in this paper will
always be closures of intervals of the form (ul,vl) (u,,v,), where
u, ..., u, e R U oe } and v, e [1 [_J _[_ O(3}. Let A(2, ..., co) be an operator-
valued function with range in the Banach algebra 3(Ac) of bounded operators on
W. We intend to give a meaning to the symbol

(2.1) I fAA(2,..., o)f(d2

by following the analogy with the definition of Riemann-Stieltjes integrals.
In fact, the definition of I in (2.1) will be such that it will represent a Riemann-
Stieltjes integral when f...,o assumes values in the space C of complex
numbers (endowed with the usual norm-topology) and when the operator-valued
function A(2, ..., o9) is, in fact, a complex function.
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Suppose that A [a,b] x... x [a,,b and that

(2.2) a 2o < 2 <... < 2 bt, ..., a, (DO < 60 <’’" < COk bn

are subdivisions of[a, b], ..., [a,, b], respectively. The above points determine
a simple subdivision of A into nondegenerate closed subintervals [2_ , 2 x
x Imp_ 1, mp] of A, which have no inner points in common; in this context the
term ’simple" refers to the geometric configuration of this subdivision in which the
intervals of the subdivision have sides parallel to the coordinate hyperplanes, and
the common points of any two neighboring intervals of the subdivision constitute
a whole side of each one of those two intervals.

In the sequel whenever we talk about subdivisions we shall have in mind
simple subdivisions. We shall refer to

)(2.3) fi max [(2k 2k-1 +’’" + (Op p-1)2] 1/2

k= 1,’..,K
p= 1,’",P

as the norm of the subdivision F given in (2.2). For arbitrarily chosen inter-
subdivision points R IRk- 1,2k], "’", Op lop- , p] we can build the vector-
valued Riemann-Stieltjes sums

K P

Q(F) ... A(2i,..., Op)f(Ak...),
(2.4)

k p=

where we have introduced the following vector-valued function on intervals
(l,fl] x x (,,fl,] ""

f((a,, fl,] x x (a,, fi,]) Z (- 1)z(z, ,,(2.5) ,,, ,n,,
here Z(e) denotes the number of e-symbols appearing in the set {T a,’", 7,}
for given f...,.

Let us consider now the strong limit (i.e., the limit in the norm in f)

K P

(2.6) s-lim A(2,, ..., co;)f(Ak,...,p)
60 k=l p=l

taken for sequences of subdivisions of A with norms converging to zero. If this
limit exists and is independent of the particular choice of subdivisions and of
inter-division points 2,, ..., COp, we shall say that the integral (2.1) exists and has
the value (2.6). We shall call this integral the strong Riemann-Stieltjes integral
(in f) over A of A(2, ..., co) with respect to fx...o.

In case A is an infinite interval we define the corresponding integral in the
same manner in which improper Riemann-Stieltjes integrals are ,defined, i.e., by
starting with finite subintervals A m2 ... of m (m [..J m2 QJ A) and
taking the limit:

(2.7)
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The above integral will be called the improper strong Riemann-Stieltjes integral
of A(2, ..., co) with respect to f...o, as opposed to the weakly improper strong
Riemann-Stieltjes integral in which the "s-lim" in (2.7) would be replaced by a
limit in the weak topology of.

The above definition can be generalized immediately to functions A(2, .-., co)
which are unbounded linear operators. When we drop the requirement that
A(2, ..., co)e 3() we have to impose the following restriction.

Condition C. For any finite nondegenerate subinterval Ao of A there is a
6(Ao) > 0 such that f((2k- 1,2k] X X (cop_ 1, cop]) is in the domain of definition
of A(2,, ..., O’p) for all 2, e[2k-l,2k], "", cop e [COp-I,cop] and for any sub-
interval [2k- 1,2k] X X [cop_ 1, cop] of diameter smaller than 6(Ao).

When the above condition is satisfied, we shall say that A(2,..., co) is
strongly integrable on A with respect to fx..., if the strong Riemann-Stieltjes
integral (2.1) exists when A is finite, or if the improper strong Riemann-Stieltjes
integral (2.7) exists when A is infinite.

The above defined integrals (2.1) possess most of the elementary properties
of Riemann-Stieltjes integrals, in particular, the following property.

PROPOSITION 2.1. Suppose Ai(, .’., co) and fJ)..oe are defined in A.
If Bi, 1, 2, are bounded operators on and cj,j 1, 2, are complex numbers,
then

f(1)+ czf(2))(d,,]., dco)BtAI(2, co) + BzAz(2, co)](c

.=2 ._ c A#,..., co)f(d,...

and the integral on the left-hand side of the above relation exists if the integrals on
the right-hand side of that relation exist.

The statements in the above proposition are a straightforward consequence
of the obvious relation

2 2

i=lj=l

between the Riemann-Stieltjes sums of the respective integrals.
PROPOSITION 2.2. Suppose A and Az are two nondegenerate closed intervals in

[R" having no internal points in common, and that A A U A2 is also a closed
interval in ". Then

fa A(), co)f(d) dco)
(2.8)

VA A

if all the integrals appearing in the above relation exist.

Proof. The Riemann-Stieltjes sums (2.4) define a multivalued function of the
subdivision F, different values being obtained for different inter-subdivision
points. If F1 and F are simple subdivisions of A1 and A2, then respective simple
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refinements F’ and Fz can be built in such a manner that by combining F’ and
Fz we obtain a simple subdivision F of A. Let A’ F’ and A Fz be two closed
intervals intersecting in an (n 1)-dimensional interval A". By choosing for any
two such intervals a common inter-subdivision point (lying in A"), we shall obtain
values Q’(F’), Q’(Fz) and Q’(F) for the respective Riemann-Stieltjes sums such that

O’(r) O’(ri) +
In the limit, this relation yields (2.8).

PROPOSITION 2.3. If T is a bounded operator on f, then A(2, ..., oe) is strongly
integrable on A with respect to Tfx...o, if and only if A(2, ..., oe)T is strongly
integrable on A with respect to fx...,o moreover,

[A(2, oe)T]f(d2 do)) fa A(2, oe) [Tf(d2 doe)].

The proof of the above proposition is obvious and it relies on the identity

[A(2,, ..., oe’p)T]f(Ak...p) A(2,, ..., CO’p)
1 {;k- 1,k} ne{top- x,op}

A(2,, ..., oe’p)(Tf)(Ak...p)
in which (2.5) was used.

PROPOSITION 2.4. If Gx..., is a family of linear operators on f, the operator Sa
mapping any f [Sa] into

(2.9) S(x) f A(,, co)(f)(d2 do)),

and with domain of definition [Sa] consisting of all fe for which the above
(proper or improper) integral is defined, is a linear operator.

The above proposition is a straightforward consequence of Proposition 2.1.
For the linear operator Sa we shall frequently employ the notation:

Sa fa A(2, ..., oe)G(d2.., doe).

If the above operator is bounded and [SA] is dense in , we shall say that
A(2, ..., oe) is strongly integrable with respect to G

In the case of integrals of operator-valued functions with respect to operator-
valued rather than vector-valued functions, one can introduce

(2.11)

instead of (2.10). The definition of the above integral would proceed in an obvious
manner by means of Riemann-Stieltjes sums of the form

K P

k=l p=l

However, in the case of operator-valued functions on a Hilbert space W, we
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would obviously have that SA S, provided that S, is densely defined. Thus,
in this practically most interesting case, (2.11) can be reduced to (2.10).

Other types of integrals, such as

(2.12) f6 A(2, ..., o)G(d2... &o)B(2,...,

can be defined by following the same general recipe. It is easy to reformulate
many of the results of this paper for the case of integrals of type (2.12).

3. The existence of strong integrals with respect to functions of bounded norm-
variation. We define the norm-variation V[f...,o] of f...,o over the finite non-
degenerate interval A [al,bl] x... [a,,b,,] as

(3.1) V,[fx...] sup f((/k-1,/k] X X (O.)p_l, (Dp])
k=l p=l

where the supremum is taken over all possible simple subdivisions of A. If A is an
infinite interval, then, by definition,

(3.2) V[f...,] sup V,[f...,],
AA

where A varies over the set of all finite subintervals of A.
LEMMA 3.1. Suppose the strong Riemann-Stieltjes integral of A(2, ..., o) with

respect to fz... exists. Iffz... is of bounded norm-variation VA[fz...] and A(2,
is uniformly bounded on A,

(3.3)

then

(3.4) A(2, co)f(d2... dco) _< CV[fx...o].

Proof. For finite A, the above result follows immediately from the following
estimate on the Riemann-Stieltjes sum Q(F) defined in (2.4):

K P

IQ(F)II- ] A();,, ..., ’,,)1 IIf(A...p)ll cv[L...].
k=l p=l

The result can be immediately extended to infinite A by taking the limit (2.7)
and noting that Vo =< Vs when Ao A.

THEOREM 3.1. Let f... be of bounded norm-variation on A and suppose
A(2, o) (f) is continuous on A in the uniform topology of B(W). Then:

(a) if A is finite, A(2, o) is strongly integrable on A with respect to f...
(b) if A is infinite and IIA(2, ..., o)]l is bounded on A, then A(2,..., o) is

strongly integrable on A with respect to f...o.
Proof. (a) Let {(2kk’, "’", Opp’)} determine a subdivision F’ which is a refine-

ment of the subdivision F given by (2.2), so that 2ko 2k, "", Opo cop. Denote
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by l,kk, ,’’’, (_)pp, the points preceding ’kk’ ,’’’, 6%#, respectively. If F is so fine
that

(3.5) IIA(2’, ..., o’) A(;", ..., o9")11 <

whenever (2’,..., 09’) and (2", ..., 09") belong to the same interval in F, then

IIQ(F) Q(r’) __< y... y A(,..., o’)- A(Z,,,...,
k,k’ p,p’

f((.,,,2,,] ’" (&pt,’,egpp’])

=< e ... f((.g,,2,] x x (&vv’, %v,3)11 < e Vlf...o,I.
k,k’ p,p’

Due to the continuity of A(2, ..., co), for any e > 0 there is a 6(e) such that the
inequality (3.5) holds for all subdivisions F of the compact interval A with norms
not exceeding 6(e).

(b) Suppose A is infinite and that A1, A2, is any sequence of closed finite
intervals with disjoint interiors and such that U Ag A. Then by Lemma 3.1,

A(2,..., og)f(d2.., do9) <_ CVa(f...

This implies that the improper strong integral (2.1) exists, thus completing the
proof.

We shall apply the above theorem to proving the existence of two types of
strong Riemann-Stieltjes integrals in Hilbert spaces.

Let be a complex Hilbert space with inner product ( l" ), which is linear
in the second argument. For any given g, h .Y#, denote by Ig)a(h[ the linear
operator which yields (hlaf)fwhen it acts on fe J. It is well known that for any
trace-class operator T there are two orthonormal systems gl,g2, and
hi, h2, and a sequence of nonnegative numbers al, a2, such that

(3.6) T 2 Igi)ai(hi
i=1

(3.7) TII1 a,,
i=1

where I1" IIx denotes the trace-class norm.
LEMMA 3.2. If E,, x N", is a spectral function in the complex Hilbert space

and T is of trace-class, then for any f J{’ the vector-valued function fx TE,,f is

of bounded norm-variation on ", and

(3.8) V[ZExf3 < 2llZlll{llfll 2 + Ilfll +

Proof. Let us consider the case when T Ig><hl. Denoting by E(A) the
spectral measure determined by Ex and using the identity

(hiE(At)f) 1/2{(f + hIE(AO(f + h)) + i(f + ihlE(AO(f + ih))

-( + i)(flE(&)f> -(1 + i)(hlE(kk)h)},
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where k (k, ..., p) and U Ak A, we easily arrive at the result that

(3.9)
VA[(hlExf)g <= sup Ilgll

_< 1/2[gll{llE(A)f + h){[ 2 q-- IE(A)(f + ih)[[ 2

+

for any finite closed interval A
In the general case with T given by (3.6) we obviously have

VA[TE] <__ ajV[(hjlExf)gj].
j=l

Combining this inequality with (3.9) and with estimates like

we obtain

IIE(A)(f + h)ll Ilfll + Ilhll Ilfll + 1,

Va[TEf] < 1/2 IT ,{(2 + /)If 2

from which (3.8) immediately follows.
THEOREM 3.2. Suppose A(x), x A, is continuous in the uniform topology of

B() and that [[A(x)[I <= C for all values of x in the closed interval A [". If T is

a trace-class operator on the Hilbert space and E, x ", is a spectralfunction,
then A(x)T is strongly integrable with respect to E and

(3.10) fA A(x)TE(dx)II<=6C[T[II"
Proof. The existence of

f A(x)TE(dx)f fa A(x) TE) (dx)f

follows from Lemma 3.2 and Proposition 1.4. Furthermore, from Lemma 3.1
and (3.8) we obtain that

A(x)TE(dx)f 21lTIIx{llfll 2 + Ilfll + 1}

for all f e .. By letting f vary over the unit sphere Ilfl[ 1, we arrive at (3.10).

4. Existence of strong integrals with differentiable integrands. In the
preceding sections we have managed to prove the strong integrability ofA(2, ..., o)
with respect to f... by imposing on f...o, the very stringent condition of norm-
boundedness. If we discard this condition in favor of more relaxed conditions on
f..., we find that it is necessary to impose some more stringent conditions on
A(2, ..., o) in order to establish the existence of the considered integrals (2.1)
and (2.7). We shall prove next the existence (2.1) by using a method of Daletskii
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and Krein [5] based on the existence of derivatives of A(2, ..., 09). In this context
we define the strong partial derivative

(4.1)
3A(2, ..., o9)

s-lim
A(2 + A2, ..., o9) A(2, ..., 09)

c2 a,--,o A2

with corresponding definitions of partial derivatives with respect to the other
variables.

The following lemma and theorem represent a generalization of Theorem 1.1
in [5]; the employed results on Bochner integrals can be found either in Chap. III
of [12], or can be easily deduced from the theorems contained in [12].

LEMMA 4.1. If dB(2)/d2 B(Y) is Bochner integrable on [a, b] with respect to
the Lebesgue measure, and if fz 2 [a, hi, is any function with values in Y’, then

(4.2)

+ sup IIAII fa<2<b
d2’

for any a 20 < 21 < 2,= b and 2k-1 <= 2 <- 2.
Proof. Straightforward algebra yields"

k=l k=l k=O

n-1

B(2’,)f- B(2’3f- [B(2,+ 1)- B(2)]f.
k=l

By taking advantage of the existence of the Bochner integral of dB(2)/d2 with
respect to the Lebesgue measure, we obtain the relation

(B(2,+ 1) B(2,))f d2----7- d2’ f

k=l

N (2) d2’ max llfll
k= 1,...,n

from which (4.2) immediately follows.
TNoN 4.1. Suppose the operator-valued function A(2)e () has a strong

derivative dA(2)/d2 for all 2 in the closed finite interval [a, b] and that dA(2)/d2 is
Bochner integrable on [a, b] with respect to Lebesgue measure. If

f Xs(.)f(d), Xs(2) Zs(2’) d2’,
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exists for the characteristic function s(2) of any Lebesgue measurable set S c [a, b]
then A(2) is strongly integrable with respect to f and

(4.3) A(2)f(d2) < IA(a)fol[ + IIA(b)f[I + sup Ix d2’.
a<2<b d2’

Proof. The Bochner integrability of dA(2)/d2 (with respect to Lebesgue
measure) on the interval [a, hi, which is of finite measure, implies that for given
1 > 0 there is a simple operator-valued function

D 1(2) BkZk(2), Bk 3(f),
k=l

where gk(2) is the characteristic function of some measurable subset of [a, b],
such that

(4.4)
dA(2)
d2

DI()

According to the assumptions stated in the theorem,

Xk(2)f(d2), Xk(2) Zk(2’) d2’,

exists. Hence the difference I{Qk(F)- Qk(F’)[[ of any two Riemann-Stieltjes sums
for Xk(2) can be made arbitrarily small by choosing sufficiently fine subdivisions
F and F’ of [a, b]. Thus, if QD(F) and QD(F’) are the corresponding Riemann-
Stieltjes sums of

D 1()() d)’ + A(a) BkXk(2) + A(a),
k=l

then we can achieve

(4.5) ]QD(F)- QD(F’) <- [[Bkl[ [[Qk(F)- Qk(F’) < e
k=l

for all sufficiently fine F and F’.
If QA(1-’) and QA(1p’) denote the corresponding Riemann-Stieltjes sums for

A(2), we can obviously write

QA(F)- QA(F’)II =< QA(F)- QD(F)[[ + IIQD(F)- QD(F’)[[ + QA(F’)- QD(F’)I[.

Let F be the subdivision a 2o < 21 <’" <
B(2) A(2) D(2) and fx f f we obtain

b. Applying Lemma 4.1 to

[QA(F)--QD(F)I[ <= I][A()’o)-A(a) + B,X,(2’o)J(f,-fO
k=l

dA(2)+ sup IIf-fll D(2)
o_<_< d2

d2.
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In the limit of finer and finer subdivisions, 2; a and Xk(2o) Xk(a)= O.
Consequently, the first term can be made arbitrarily small for all sufficiently fine
subdivisions. Thus, in view of (4.4) we conclude that for any given e > 0,

for all sufficiently fine subdivisions of [a, b].
The same argument can be applied to IQA(F’) Qo(F’)I so that after taking

into consideration (4.5), we obtain

IIQA(F)- Qa(F’)II < 3

for any sufficiently fine subdivision of[a, b]. This establishes the strong integrability
of A(2).

By again applying Lemma 4.1, only this time to A(2) and f, and going to the
limit of finer and finer partitions (which gives rise to 2’, --, b and 2) - a) we obtain
(4.3).

THFORZM 4.2. Suppose the conditions imposed in Theorem 4.1 on A(2) and fx
are satisfied on any finite closed interval in [1. If IIA(2)fll 0 when
and if

sup, Ilfxl <

dA(2’)
d2’<

then the improper strong Riemann-Stieltjes integral of A(2) with respect to fz
exists and

(4.6) dA(2)
d2

d2.

Proof. For arbitrary b > b we obtain from (4.3)"

A(2)f(d2) A(2)f(d2) A(2)f(d2)

_--< [A(bl)f [+ IlA(b)fb + sup IIf |’
2R

The conditions specified in the statement of the theorem insure that the right-hand
side of the above relation can be made arbitrarily small by choosing b sufficiently
large and b > b. Hence the integrability on 0, + oe) follows.

A similar argument can be used for (-oe, 0]. Finally, (4.3) leads directly to
(4.6).

THEOREM 4.3. /f the strong derivative dA(2)/d2 of the operator-valued function
A(2) 3(4) is Bochner integrable on [ with respect to the Lebesgue measure,
then A(2)T, T 3(##), is strongly integrable on with respect to any spectral
function E and

(4.7) A(2)TE(d2)
dA(2)

T
d2

d2.
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Proof. Since dA(2)/d2 is Bochner integrable on [1, (dA(2)/d2)T is also Bochner
integrable on 1. Furthermore, for any f

X(2)E(d2)f X(2) dE,f

exists since X(2) is continuous and Ex is a spectral measure. In view ofthe additional
fact that

sup Eft[ fl,
2R

we can say that all the conditions stipulated in Theorem 4.2 for the existence of

sf A(X)rE(dIf

are satisfied. Thus the linear mapping f Sf is defined for all f e, and by (4.6),

;oo dA(2)f+oo dA(2)
Sf] < sup Ezf[I T d2= f T d2

XR’ d2 d2

This completes the proof.
The above theorem can be used to establish the existence ofintegrals ofthe type

(4.8) (, H)E(d2),

which are exemplified in (1.5), and in which (2, H) is a function of the self-adjoint
operator H. For example, if q 4:0 and

(4.9) 0(2, H)

then

2-H + itl’

dO(2, H)
d2

-(2-H+ ir/)-z

is Bochner integrable on R1 if H is bounded"

2- [[H + it/

2

nil 1 2

+ 2+ IIH[[ + it/
d2.

However, ifH is unbounded, there are arbitrarily large 121 such that

11(2 H + ir/)-2ll
and d(2, H)/d2 is not Bochner integrable on N 1. To prove in this case the existence
and boundedness ofintegrals oftype (4.8) we need the concept ofweak integrability,
which will be introduced in the next section.
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5. Weak Riemann-Stieltjes integrals. We shall say that the vector f in the
Banach space is the weak limit of a sequence fl, f2, 5f if and only if b(f)

lim b(f,) for every continuous linear functional b 5f’ from the normed con-
jugate space 5F’ of. In that case we shall write f w-lim f,.

Weak versions of the strong integrals (2.1) and (2.7) can be defined by replacing
everywhere in the definitions of these integrals strong limits by weak limits. Thus
the following definitions"

A

K P

(5.1) A(2,..., co) dz... d,of...o w-lim A(2,, .-., cop)f(Ak...p),
60 k=l p=l

(5.2) faA(2,..., co) dz... dofz...,o w-lira fa A(2, ..., co) dz...df...,
An’*A

do not require any more detailed clarification beyond the reminder that if the
operators A(2, ..-, co)are not defined everywhere in , then Condition C in 2
has to be satisfied.

It is useful to note that if A(2, ..., co) is a multiple of the identity operator,
A(2, co) a(2, co)l, then for any q ’,

fa A(2, co) dz df..., fa a(2, ..., o9) dz...,oqg(fz...,).

All the basic properties of strong integrals are retained in the present case of
weak integrals. We state these properties without proof.

PROPOSITION 5.1. If Bi, 1, 2, are bounded operators on f and cj, j 1, 2,
are complex numbers, then

and the existence of the integrals on the right-hand side of the above relation imply
the existence of the integral on the left-hand side.

PROPOSITION 5.2. If A, A and A2 are closed intervals in " and A A 1.3 A2,
and if Ax A2 contains only boundary points of A1 and A2, then

leA(2,..,

co) dz

]A

provided that all the integrals in the above relation exist.
PROPOSITION 5.3. If T is a bounded operator on F, then A(2, co) is weakly

integrable on A with respect to Tf... if and only if A(2, ..., co)T is integrable on A
with respect to f...,o moreover,

A(2, ..., co)T d... d,of...,o f A(2, ..., co)d.., doTf...,o.
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PROPOSITION 5.4. If G...o is a family of linear operators in gg, the mapping
which takes f6 f into

Sly(f) fa A(2, ..., )d;... d,G..f,

with domain consisting of all vectors ffor which the above integral exists, is a linear
operator in f.

The proofs of the above four propositions are completely analogous to the
proofs of Propositions 2.1-2.4.

If the operator defined by (5.3) is bounded and defined everywhere in W,
then we shall say that A(2, , 02) is weakly integrable with respect to G...o.

The results of 3 and 4 can be expanded considerably when dealing with
weak Riemann-Stieltjes integrals on (complex) Hilbert spaces. For example, if
we denote by A’(2, ..., 02) the conjugate in f’ ofthe bounded operator A(2, ..., co),
then Lemma 3.1 can be reformulated under more general conditions as follows.

LEMMA 5.1. If A(2, ..., 02) is weakly integrable on A with respect to the function
f...o f of bounded norm-variation VA[f...,o], and for any dp f’ there is a constant
Co such that ]]A’(2, 02)bl] < Co for all(2, 02) A, then

(5.4) 02) d... d,of...,o)<=CoVA[fz...].
The proof of the above lemma runs along the same lines as the proof of

Lemma 4.1 once it is observed that

K P

Ib(Q(F))I IIA’(R;,, ..., co’p)gbll Ilf(Au...p)ll CVVf...].
k=l p=l

A similar alteration in the proof of Theorem 3.1 yields the following result.
THEOREM 5.1. Let fz...o be of bounded norm-variation on A and suppose

A’(2, ..., 02) 3(:T’) is continuous on A in the strong topology of (’). Then:
(a) if A is finite, A(2, 02) is weakly integrable on A with respect to f...o
(b) /f A is infinite and {{A(2, 02)b{[ is bounded on A for every d f’, then

A(2, 02) is integrable on A with respect to f...o.
Theorem 5.1 can be used to prove the existence of weak (but not strong)

integrals of the type

fA(x) A(@)
ap(, x)B(x) dl(X) dcTE fA,x, ,, 0(, y)B(y) dy doyTE,

Y

ay d#(x),

on a Hilbert space Yf; in the above equation the weak Riemann-Stieltjes integral
on the right-hand side defines the expression on the left-hand side, and T is a
bounded operator, @(, x) is a complex function on Ax) x A),/2 is a measure on
A) ", E is a spectral measure on A) " and dig(x) is the measure of the
set A ffl I(- , z] x x (- , 0211, where y (z, 02). Integrals of this type
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have been encountered in [1] (cf. also [4], [11]); e.g.,

o, + oo, , e-im + z-i’tT dt dEx fto, oo, ,e-itn+X’tdydzayTEz’

O’y e-t dt,

where H is some self-adjoint operator in W and e > 0. According to Theorem 5.1
and Proposition 5.4, if TE.g is of bounded norm-variation for all g e f, if B(x)
is continuous in the strong topology of(,) and if (I)(, x) is a continuous function
(and if IIB(x)ll is bounded in case A(x) is infinite), then (5.5)exists.

PROPOSITION 5.5. Suppose the operator-valued function B(x) (2/) is such
that B(x)g is Bochner integrable and IlB(x)gll 2 is #-integrable on A(. If A(x) is of
finite measure # and ((, x) is continuous and bounded on A x A, then

(5.6) (x, ) d, d B(x) d#(x) TE
(x) A()

exists; furthermore, if B(x) is uniformly strongly continuous on any finite closed
subinterval of A, and TEcg is of bounded norm-variation for all g ;Of, then (5.5)
also exists and is equal to (5.6).

Proof. For any f, g e .gf, the function

(f fB(x)du(x)TEg
is of bounded norm-variation. This easily follows from the inequality

(fl f <= f flB(x)E(A2)g) dlt(x)

< {(B(x)f +-=-2

+ (B(x)f + iglTE(a2)(B(x)f + g))

+ x/(B(x)f[TE(A2)B(x)f)
+ x//(gl TE(A)g> } dtx(x)

which holds for any A A) and A2 A); the assumptions on B(x) insure
the existence of the above integrals. Hence, by invoking Theorem 3.1 and taking
into consideration that for the complex function O(x, ) continuity on a closed
finite interval implies uniform continuity on that interval, we conclude that

a()
B(x) dlt(x)TE/

exists.
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For the difference in the Riemann-Stieltjes sums for (5.5) and (5.6) we have
the following estimate:

(xu, ’,) x,)p(A))E(AI) B(x) dp(x TE(AO g
k

provided that ](x, ) C for all x and o. The equality of (5.5) and
(5.6) is a consequence of the fact that due to the assumptions made in the statement
of the proposition, the above difference can be made arbitrarily small for su-
ciently fine subdivisions of x o. The proof of the proposition is complete.

Let us introduce the weak counterpart of (4.1):

A( ..., ) w-lim
1

o [A( + , ..., )- A(, ..., )].

If OzA is a bounded operator, we shall denote by A’ its conjugate in

(xA’dp)(f) dp(cxAf)= lim
1

x-,o -[b(A(2 + A2, ..., o)) b(A(2, ..., o))].

Now, in analogy with Lemma 4.1 and Theorems 4.1-4.3, we can state the following
lemma.

LEMMA 5.2. If for some 4)’ the vector-valued function xB’(2)q5 is Bochner
integrable on [a, b] with respect to Lebesgue measure, then

O(B(2)(f fk-1))
k=l

for that c e f’.

I(B(2’,)f)l + I(B(&))I

+ sup IIAII IlOx, B’(2’)b d2’
a< ,Z <b

THEOREM 5.2. Suppose that for every dpef’ the vector-valued function
xA’(2)b is Bochner integrable on [a, hi, with respect to Lesbesgue measure and that

exists for every measurable set S [a, b]. Then A(2) is weakly integrable with
respect to f and

4) A() dffx -< Ick(A(a)f)l / 14(A(b)fb)l
(5.7)

for all e f’.

+{sup,_X_b Ilfll}fflcxA’(2)cklld2



RIEMANN--STIELTJES INTEGRATION 199

THEOREM 5.3. Suppose the conditions imposed in Theorem 5.2 on OA’(2) andf
are satisfied on any compact interval in 1 and that w-lim A()Of 0 for 2 - +_ .
If f =< const, for 2 1 and

z,A’(2’)[[d2’ < +

for all f’, then the improper weak Riemann-Stieltjes integral of A(2) with
respect to fz exists and

A(2)d N sup I111 111’(2) d2.

A(2)T is weakly integrable on with respect to any spectral measure E and

for all g e .
The proofs of the above lemma and theorems can be easily obtained from

the proofs of Lemma 4.1 and Theorems 4.1.3, respectively, by minor modifica-
tions of those proofs; these modifications consist mainly in replacing estimates
for I1" by estimates on I(" )1 (with varying over ’) and in substituting weak
limits for strong limits.

Theorem 5.4 can be used to establish the existence of the weak integral

(5.8) (2, H) dEz

in cases where the existence of its strong counterpart (4.8) cannot be established
by using Theorem 4.3 and when

(5.9) [[cz*(2,g)gl[ d2 < +

for all g ovf. However, when (2, H) is given by (4.9), and therefore

c3z*(2, H) (2 H it/)- 2,

the convergence of (5.9) can be readily verified only for a dense set of vectors g,
rather than for all g e .)ft. For example, if F(A) is the spectral measure of H, then

k+ 1

k IA- p- irl[ 4
dullFugll2 <-- [(2’k’rl)]2llF((k k + 1])gl[ 2
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(,- k)2 q- r/

l/t/2
1

2 for2 =< k,

(- k- 1)2 q-/2

and consequently,

k=

fork<2_<_k+ 1,

for2>k+ 1,

I)F((k, k + 1])gl] 0(&, k, /) d

+ rcr/-< 2 IIV((k,k+ll)g

The series on the right-hand side of the above relation converges only for a dense
set of vectors g e .Yr. To establish the existence of (5.8), we need the following result.

PROPOSITION 5.6. Suppose that for all g the function czA*(2)g is Bochner
integrable with respect to Lebesgue measure on any compact interval in N a. Let

< tk-1 < tk < tk+l < be a sequence which is such that

+ {(5.11)
k

IA(tk)(E,k+ 1- E,k) + II(E,+, E,)fl[ IcxA*(2)gll d2

converges for all f, g .Yr. Then A(2) is weakly integrable on with respect to Ex and

does not exceed in value (5.1 1).
Proof. The proof follows as an easy consequence from the observation that

A(2) dzE A(2) dz(E E,_ ,).

In fact, according to (5.7) the convergence of (5.10) implies that

converges for all f, g e .Yr. This establishes the existence of

w-lim A(2) dxEx,
a--
b- +

i.e., of the improper weak Riemann-Stieltjes integral of A(2) with respect to Ex.
Let us apply the above proposition to investigating the existence of (5.8)

with (2, H) given by (4.9). Let us take tk k. Using the estimate

+oo 1
I*(k, H)gll2 2 21 F((m, m + 1])g 2

--o (Ikl- m)2 q- r/
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we obtain

*(k, H)glE((k, k + 1

_
]*(k, U)g ]E((k,k + 13)fl

k k=

f 2 2 2 IIf((m m + 1])gll
=-m=o(Ikl m)2 +

llf] IlF((m,m+ 1])g2
=o :_ (Ikl m): +
+

k2 q2"=0 +
In a similar manner, by using (5.10) we have
+ +1

+ +
E((k,k+ l)fl F((m,m+ l)g O(2,m,)d2

k=- dR
+

E((m n m n l)f sup (m )
mnmn

sup (2,m,q) {IF((m- 1,m])g[
m+n2m+n+

}lE((m + n, m + n + 1])f
+

2 f gl %k2
k=

Thus, in the present case, (5.11) converges and consequently the existence of (5.8)
with the integrand (4.9) is established.

6. Cross-iterated Riemann-Stieltj integrals. In [1] we have encountered
integrals of a more general nature than weak or strong Riemann-Stieltjes integrals.
These integrals are of the general form

A more specific example is provided by (1.3).
In order to avoid too many technicalities in defining (6.1), let us assume that

A(2, -.., p) () for all (2, ..., p)e A(. If A( is a finite closed interval of the
form

A)= [a,b x x
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and a subdivision F of Atl) is given,

al 2o < 21 <". < 2r bl, "., as PO < [91 <’’" < PN bs,

then we define Riemann-Stieltjes sums for (6.1) as follows"
K N fQc(r) Y A(2,, ..., p’,) B(2,,..., p,, a,..., o)d d,of......,o(Ak...,)
k= ’JA(2)

(6.2) < 2 P, P, P,,/k-1 2k-- k, < <

here, for A (el, 1 X X ((Zs, s] we have introduced

1 e{!’k,,k l} se{Pn,Pn 1}

in analogy to (2.5). The cross-iterated Riemann-Stieltjes integral I over Atl) is
then defined by

I w-lim Q(F)

in the limit of finer and finer subdivisions F of Atl.
If A 1 is infinite, then we define the improper cross-iterated Riemann-Stieltjes

integral over Atl in the expected manner by (in abbreviated notation)

(6.3) fa A d B df w-lim f A d f B df
(1) (2) A(o)- At1) A())

in the limit of monotonic sequences of sets Ao1) which cover Atl).
It is worthwhile noting that a strong version of (6.1) can be defined"

(6.4) s-lim Q(F).

Furthermore, by replacing the weak second integral in (6.1) and (6.4) by its strong
version, we can also define the integrals

(6.5) fa,, A(2’ P) dz dP fa(2 B(2’ P’ a’ c)fz’"P"" (da dc)’

(6.6) A(2, ..., p)(d2.., dp) fa(:, B(2, p, a, o)f...p... (da... dco)

in the obvious manner.
When 5f C and fz..., is a complex function of the form u,...pv,,...o, then

it is easily seen that (6.1) assumes the form of an ordinary iterated Riemann-
Stieltjes integral"

A(2,..., p) dx... dpux..,of B(2,..., co) do-.’dv...o.
(1)
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It is easy to see that the above definitions imply that

A(2,..., p) dz...d, f B(2,..., co) d... d,ofz...,o

f d...do p)B(2, ..., og)d...,of...o,

with analogous relations holding for (6.4)-(6.6). Hence, we can state that

f d d f D(2, co) d. df...

is of the same degree of generality as (6.1).
All the basic properties of weak and strong Riemann-Stieltjes integrals,

which are stated in Propositions 2.1-2.4 and 5.1-5.5, are preserved by the cross-
iterated Riemann-Stieltjes integrals.

PROPOSITION 6.1. For B1, BI

f d, f [BDa(x, y)+ B2D2(x, y)] drfxr

S f d ;l’x,Y),fx - B2 f dx f2(X,y) dfx,
and the existence of the integrals on the right-hand side impl the existence of the
integrals on the left-hand side.

PROPOSITION 6.2. For closed interals A A2, A A A2 such that AI ( A2

contains onl boundar points of A and A2,

fa dx f D(x y) drf,r fa dx f D(x y) drf,r + fad f D(x y) drfxr,

provided that the aboe integrals exist.
PROPOSITION 6.3. If G (), then the mapping taking f f into

whenever the above integral exists, is a linear operator.
Naturally, we expect that some cross-iterated integrals can be written as

weak Riemann-Stieltjes integrals. For example, it is easily seen that the integral
in (5.5) is equal to

f(x, B(y) d, f,, *(’ y)Tar dE"

PROPOSITION 6.4. Suppose D’(x, y)
and that in case A(’) A(y) is an infinite interval, IldpD’(x, Y)II <-_ C,for all (x, y) A()
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x Ay) and any 49 f’. If fxy is of bounded norm-variation on Ax) x A{y), then

and both of the above integrals exist.

Proof. The integral on the right-hand side of (6.7) exists by Theorem 5.1.
If A(x) x A() is finite and Q(F) and Q(F) denote the respective Riemann-

Stieltjes sums of the first and second integrals in (6.7), then by using Lemma 5.1
we easily obtain that

14((2c(r)- Q(r))[ <__
k

D(x’, y)drfr(A0 D(x’, y’Of(Ak x AI)

=< sup ID’(x’, y) D’(x’, y’)qS][ f(A, x A,)
k yA

Since D’(x’, y) is continuous, we can find for every e > 0 some 6(0 such that for
any subdivision F of norm smaller than 6(0,

sup IID’(x,, y)- D’(X’k, Y’OII <

for all k and 1. Hence

k

This establishes (6.7) as well as the existence of the cross-iterated integral in (6.7).
In the case A() is infinite and A,) A() is finite, we can always write the closure

of A(r)- A,) as a union of a finite number of intervals with disjoint interiors
(naturally, we always assume that the faces of the considered intervals are parallel
to the coordinate planes). For the respective Riemann-Stieltjes sums Qc(F) and
Q")(F) we easily obtain by using Lemma 5.1"

Hence, we deduce the existence of the cross-iterated integral over A(x) x A().
Furthermore, since (6.7) has been established for A(x) x A(,r), it can be extended
immediately to A(x) x A() by letting A(,) ---, A().

The case when A(x) is also infinite can be treated in a similar manner.
Let us consider two spectral functions Ex and F, corresponding to the bounded

self-adjoint operators A and B on .9/. If O(A,/) is weakly integrable with respect
to TF,, Te 3(W), then by using the spectral theorem for self-adjoint operators
it can be immediately deduced from the definition of cross-iterated integrals that

(A, #) d,TF d (, la) dEzTF.,

For (I)(2, g) 2mln we have O(A,/) A"/" and consequently,

AmTB" A’I" duTFu du 2"l" daExTF,.
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If ,.,. Dmn/].mlzn is a polynomial with operator-valued coefficients Din., then by
applying Proposition 6.2 we obtain

DmnA"TBn= 2 Dmn}cm[2n) dEzTFu.
m?l

REFERENCES

[1] E. PRUGOVEKX, Rigorous derivation of generalized Lippmann-Schwinger equations from time-

dependent scattering theory, Nuovo Cimento, 63 B (1969), pp. 569-592.
[2] T. K,To, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[3] K. O. FRIEDRICHS, Perturbation of Spectra in Hilbert Space, American Mathematical Society,

Providence, R.I., 1965.
[4] E. PRUGOVE(KI, Quantum Mechanics in Hilbert Space, Academic Press, New York, 1971.
[5] Yu. L. DALETSKII AND S. G. KREIN, The integration and differentiation offunctions of Hermitian

operators andapplication toperburbation theory, Voronezh. Gos. Univ. Trudy Sem. Funktional
Anal., 1956, No. 1, pp. 81-105.

[6] M. SH. BIRMAN, On the existence of wave operators, Izv. Akad. Nauk SSSR Ser. Mat., 24 (1963),
no. 4, pp. 883-906.

[7] --, Local criterion of the existence of wave operators, Dokl. Akad. Nauk SSSR, 159 (1964),
no. 3, pp. 445-488.

[8] M. SH. BIRMAN AND M. Z. SOLOMYAK, Stieltjes Double-integral operators, L Topics in Mathematical
Physics, vol. 1, Consultants Bureau, New York, 1967, pp. 25-54.

[9] --, Stieltjes double-integral operators, II, Topics in Mathematical Physics, vol. 2, Con-
sultants Bureau, New York, 1968, pp. 19-46.

[10] M. Z. SOLOMYAK, Double-integral operators in the ring , Topics in Mathematical Physics, vol. 3,
Consultants Bureau, New York, 1969, pp. 79-91.

[11] E. PRUGOVE(KI, Integral representation ofwave and transition operators in non-relativistic scattering
theory, Nuovo Cimento, 4B (1971), pp. 124-134.

[12] E. HmLE AND R. S. PHILLIPS, Functional Analysis and Semi-groups, American Mathematical
Society, Providence, R.I., 1957.



SIAM J. MATH. ANAL.
Vol. 3, No. 2, May 1972

THE NORM CONTINUITY PROPERTIES OF SQUARE ROOTS*

RICHARD BOULDIN"

Abstract. This paper is concerned with linear operators on a complex Hilbert space. There is
no continuous square root function defined on the set of all normal operators. However, this paper
defines a square root function on each of several large sets of operators and establishes the continuity
of each function in the operator norm.

1. Introduction. The purpose of this note is to show that the square root as
a mapping on certain sets of operators is continuous in the operator norm. By
"operator" we shall mean a bounded linear map of the Hilbert space H into
itself and the only topology on the operators which will concern us is the metric
topology induced by the operator norm.

Many difficulties arise from the ambiguity of the phrase "square root."
Some operators do not have any square roots, in other words, there is no operator
B such that B2 A (see [1], [4, [5], [9]), and other operators have an infinite
number of different square roots. In order to confirm this last assertion let A
be a normal operator with an infinite number of reducing subspaces, say
{Hg’i e I} then assuming that A1/2 is one square root of A defined by the opera-
tional calculus for normal operators, we see that -(A1/2/Hg) O) A1/2/H is a new
square root. Clearly, this process gives rise to a different square root for each
iI.

In view of these difficulties one must restrict to a set of operators with the
property that each has a square root and one must derive the square roots of
different operators in that set by the same clearly defined process. Although we
are able to prove the continuity ofthe square root for enough large sets ofoperators
that most practical situations are handled, there is no definition of square root
which is continuous on the set of all normal operators.

2. Theorems showing continuity. For z restricted to an open subset of the
complex plane that fails to intersect some branch cut, for example, a ray which
begins at the origin, there is a definition of z1/2 which is analytic on the given set.
If one such branch cut intersects the unit circle in the point ego then the appropriate
definition of Z 1/2 is the following: Z1/2= Iz] 1/2 ei/2, where z- Iz[ ei and

(0 2n, 0]. Motivated by these basic facts from complex variables, we define
S(O) to be the set of operators A with the spectrum of each, a(A), contained in the
complement of {r ei :r s [0, )} with respect to the complex plane. For A S(O)
we define A1/2 by the following

A/2 1 f Z1/aRA(Z dz
2hi

where Z 1/2 has the definition given above, RA(Z is the resolvent operator of A at z,
and the integral has its usual meaning in the Taylor-Dunford operational calculus.

* Received by the editors March 30, 1971.
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By the spectral mapping theorem for analytic functions we see that A1/2 S(O)
and thus we have defined a square root map from S(O) into S(O). We call this the
principal square root for S(O).

THEOREM 1. Assume that a(A) t.J a(B) does not intersect {r ei’r[O, )}.
For any e > 0 there exists a 6 > 0 such that IIA 1/2- B1/211 < e provided
IIA-BII <6.

Proof. Using the second resolvent equation we note that

A1/2 B1/2
l fcz/ZRA(z)dz l fc2rci

zl/ZRB(z) dz

2rci-
1 fc zl/Z[Ra(z) RB(z)] dz

2rci
zl/Z(Ra(z)[B- A]Rn(z))dz.

Choose an appropriate parameterization so that c {z(t)’t [0, 1]} and observe
the following inequality"

f z(t)l/2RA(Z(t))[B A]R(z(t)) dt

<= | IIz(t)a/ZRa(z(t))[B a]R(z(t))ll dt
d0

_-< lIB All sup {IzlX/zllRa(Z)ll IlRn(z)l }.

The first inequality uses the convergence of the integral in the norm topology;
see [6]. Since c is compact and all three of the functions Izl x/z, IIRa(z)ll, and IIR(z)ll
are continuous in a neighborhood of c, it follows that the above supremum is
finite. Thus the theorem is proved.

COROILAR 1. If the sequence of operators {Ak’k 1, 2,... } converges in
the operator norm to Ao S(O), then for all k sufficiently large, say k >= p, we have
Ak S(O) and sal/2, k p, p -k- 1 } converges in the operator norm to A/2(k

Proof. Use Theorem 1, the upper semicontinuity of the spectrum [36, p. 86],
and the norm continuity of inverses [3, p. 245], to draw the above conclusion.

If A is a normal operator with spectral measure EA(. ), then regardless of
where a(A) is located we can define A 1/2 to be z 1/2 dEA(Z), where z1/z has branch
cut {r ei "r [0, )}. Since Z1/2 is continuous on the complement of {r ei "r [0, )}
in the complex plane, the Hilbert space operational calculus is certainly applicable.
Moreover, it follows from 15 Corollary [2, p. 879] that if A is a member of some
S(O) then the preceding definition of A 1/1 agrees with the A 1/2 determined by the
principal square root for S(O). In the following, A1/2 is defined using EA(" and
(-, 0] as the branch cut for z 1/2.

LEMMA 1. If A is a normal operator with a(A)c {z’Rez >__ 0}, then
II(A / )1/2 A1/2II < E1/2 for any > O.

Proof. It is trivial to see that Re (z1/) >_ (Re z) 1/2 for z such that Re z _>_ 0.
Consequently inf {Re ([z + ]1/2)’z a(A)} >__ el/2 or inf {Re (zl/2)’z a(A + e)}
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/31/2, and by the spectral mapping theorem for analytic functions, we deduce
that inf {Re z’z tr([A + e]1/2)} >__/31/2. Thus if z is in the closed convex hull of
a([A +/311/2), then Re z /31/2 and by the Hausdorff-Toeplitz theorem we see
that z W([A +/311/2)- implies Re z __> /31/2. (Here l/V- denotes the closure of IV.)
Certainly it is true that z W([A +/311/2 + A1/2) implies Re z _>_ /31/2. Because
the spectrum is contained in the closed numerical range we conclude that
z 6 tr([A + /311/2 t_ A1/2) implies Re z >_ /31/2", then

(1) 1/inf {Izl "z tr([A +/311/2 + A1/2)} _< /3-1/2.

Because (A +/3) 1/2 and A 1/2 are both functions of A in the Hilbert space
operational calculus, these two operators commute, and it follows that
([A -+- /311/2 + A1/2) is a normal operator. The invertibility of the operator
([A -k- /311/2 _+_ A1/2) follows from the above inequality for its spectrum, and the
spectrum of this inverse is given a trivial algebraic form of the spectral mapping
theorem. For any normal operator the norm equals the spectral radius and by (1)
above,

(2) ([A -I" /3]1/2 -i" A1/2) -1 --r(([A + /3]1/2 + A1/2)-1)<=/3-1/z.

Because /3 [A +/3]- A ([A +/311/2 + A1/2)([A + /31/2 A1/2) we see that
[A +/3]1/2 A1/2 =/3([A +/3jl/2 + A1/2) and the lemma now follows from (2).

THEOREM 2. Let L be a closed half disc bounded by {r ei’r [-m,m]}.
There is a uniformly continuous square root map on the set of normal operators
with spectra contained in L; this means, .for /3 > 0 there exists fi > 0 such that
a(A) U tr(B) L and IIA B < 6 imply that [[A 1/2 B1/2[[ < /3.

Proof. Clearly we can take (- zc, 7r] such that a(eiA) tr(eiB)
{z’Rez _>_ 0}. It is straightforward to see that (eiA)1/2= ei/ZA 1/2 and

(eiB)l/2= ei/ZB 1/2. Consequently we may prove this theorem assuming that
L {z’Re z _>_ 0, Izl _-< m}.

Let/3 > 0 be given and choose 3) > 0 such that 3) 1/2 < :/3. By Lemma 1 we
have (A + 3))1/2 A1/2[1 < 3)1/2 and II(B + 3))1/2 B1/2[[ < 3)1/2 for any normal
operators A and B. If tr(C) L, then clearly tr(C + 3)) c {z’Re z >= y}, and if C
is normal, then I[[(C + 7)- z]-ll[ <- 3)-1 for any nonpositive real z. Using this
estimate for the norms of the resolvents of A and B in the proof of Theorem 1,
one obtains 6 > 0suchthata(A) U a(B) c Land [I(A + 3))- (B + 3))1 IIA BI[
< 6 imply that [[(A / 3))1/z (B / ?,)1/211 </3/3. By the triangle inequality the
theorem follows.

COROLLARY 2. For any positive m there is a uniformly continuous square root

defined on the set of self-adjoint operators A with All <_- m.

Proof. Take L to be {z’Im z >= 0, Izl <= m}.
Although there is no analogue to Corollary for normal operators with

spectrum contained in L, if the spectrum of each operator is sufficiently sparse,
then a result is possible.

THEOREM 3. If {A’k 1, 2,... is a sequence of compact normal operators
which converges in norm to the normal operator Ao, then ._o_kyA1/z’k 1, 2,... }
converges in norm to A/2.
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Proof. Let Ek and Eo denote the spectral measures for Ak and Ao respectively.
Let the spectra of Ak and Ao he written {Zkj’J 1, 2,... } and {Zoj’j l, 2,... },
respectively; further let the modulus of these points be nonincreasing asj increases.
Define Pkj to be Ek({Zkj})and note that the following formula holds by 15 Corollary
[2, p. 879]"

1 fc (Ak z)- dz.Pkj
2ti

We can apply Theorem 3.16 [8, p. 212] to conclude that {Pkj:k 1,2,
converges in norm to Poj Eo({Zoj}). Clearly it follows that {AkPkj:k 1,2, }
converges in norm to AoPoj and so {Zkj:k 1,2, ) converges to Zoj.

Since there are an uncountable number of rays originating at the origin,
we can choose one, say R, which intersects a(Ao) in no nonzero point. For an
appropriate definition ofz 1/2 we can conclude that {(Zkj) 1/2 :k 1, 2, converges
to (Zoj) 1/2 for j 1, 2,... and consequently {2jP.=I (Zkj)l/ZPkj" k 1, 2,... }
converges in norm to jP._ (Zoj)X/EPoj.

One notes that A/2= j= (Zkj)/2Pkj and A/2= j=l (ZoJ)l/2Poj" From
this, the triangle inequality, the indexing scheme for the eigenvalues, and the
normality of the operators one concludes that

(3)
p p

A/2]1 <= Z E (Zo )X’ZPo + xl + IZo + xl x+2
j=l j=l

for any positive integer p that we choose. By choosing p sufficiently large we get
that [Zop + 1[ 1/2 < e/3, and by the continuity of isolated eigenvalues there is some

m such that [Zkp+[1/2< a/3 provided k >= ma. The conclusion of our first
paragraph was that we can choose m2 such that the first term on the right of (3)
is not greater than e/3 provided that k __> m2. Clearly this suffices to prove the
theorem.

The next theorem is further evidence that we can handle operators with a
thin spectrum.

THEOREM 4. lf {Ak" k 1, 2, } is any sequence ofoperators which converges
in norm to Ao (an invertible operator with countable spectrum), then for some
positive integer p the sequence {A/2" k p, p + 1,... converges in norm to A/2.

Proof. There are an uncountable number of rays originating at the origin
and consequently one of them, call it R, must not intersect a(Ao). Because this
spectrum is compact there is some > 0 such that inf {]z w]’z tr(Ao), w R} e.
By the semicontinuity of the spectrum there exists some positive integer p such
that R does not intersect a(Ak) for k => p. Thus we deduce this theorem from
Theorem 1.

Although we have restricted our attention to bounded operators we would
like to give a brief indication of how results can be derived for closed linear
transformations which may fail to be bounded. For a discussion of convergence
in the generalized sense the reader is directed to [8, pp. 200-213].

THEOREM 5. If {Ak’k 1, 2,... } is a sequence of nonnegative linear trans-

formations from H into H and if the sequence converges in the generalized sense
to the nonnegative linear transformation Ao, then .,xk’dl/2 "k 1, 2,..-} converges
in the generalized sense to A/2.
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Proof. By Theorem 2.25 [8, p. 206] for any e > 0 we know that {(Ak + e)-1.
k 1, 2,... } converges in norm to (Ao + e)-1. By our Theorem 2 we see that
{(Ak + e)-1/Z.k 1, 2,... } converges in norm to (Ao + e)-1/2 and by Theorem
2.25 of [8] this implies that {(Ak + 01/2" k 1, 2,.... } converges in the generalized
sense to (Ao + 01/2.

Although our Lemma was proved for bounded operators, the proof is the
same, step for step, if one assumes that A is a nonnegative linear transformation
from H to H. Consequently [[A/2- (Ak + e)l/2[[ < 1/2 for k 1,2,... and
A/2 (A + ;)1/2 < e 1/2. By part (a) of 2.23 of [8] convergence in the norm

implies convergence in the generalized sense; thus as e goes to 0 we have
A1/2 and,(Ak + 01/2 for k 1 2, converging in the generalized sense to -k

similarly, (Ao + 01/2 converges to A/2. This conclusion, the conclusion of the
first paragraph, and the triangle inequality for the generalized metric prove this
theorem. This triangle inequality follows from the first paragraph on p. 202 and
the fourth paragraph on p. 198 of [8].

3. Some remarks. We conclude by proving a negative result and discussing
other possible theorems.

THEOREM 6. Let N(H) be the set ofnormal operators on H. There is no square
root map on N(H) which is continuous.

Proof. The transformation from the complex numbers into N(H) defined by
z zI is obviously isometric. Therefore the continuous square root on N(H)
induces a continuous square root on the complex numbers. This contradicts
elementary complex variable theory.

If one is willing to restrict to sets of operators which commute pairwise,
then one can prove strong conclusions, just as one would expect. It is easy to see
that our work extends straightforwardly to nth roots other than square roots.
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THE DUAL POISSON-LAGUERRE TRANSFORM
OF A CLASS OF GENERALIZED FUNCTIONS*

J. N. PANDEY’

Abstract. The inversion formula of F. M. Cholewinski and D. T. Haimo for the dual Poisson-
Laguerre transform is extended to a class of generalized functions interpreting convergence in the
weak distributional sense. It is proved that this class of generalized functions contains tempered
distributions defined over (0, ). A structure formula for a class of generalized functions whose dual
Poisson-Laguerre transform exists is also determined.

Further, it is shown that the dual Poisson-Laguerre transform of the class of generalized functions
satisfies the heat equation [xD + (o + x)D]u cu/t, > -1.

1. Introduction. In a series of papers [1]-[4] amongst many others F. M.
Cholewinski and D. T. Haimo have developed inversion and representation
theories for integral transforms whose kernels are functions associated with the
fundamental solutions of various generalized heat equations. Also in the series
of papers [5]-[8] the author has extended the inversion formulas of Cholewinski
and Haimo to various classes of generalized functions interpreting convergence
in the weak distributional sense. The present goal is to carry out such a study for
the dual Poisson-Laguerre transform studied by Cholewinski and Haimo in [1].

For > 1, let L(x) denote the Laguerre polynomial of degree n given by

n! Ldxj
(x"+" e n o,1,2,....

we define functions (x) and A(x) by

d(x) e-Xx dx,

1
aA(x) aft(x).

F( + 1)

Let Vx stand for the differentiation operator [xD2 -t-(-k- 1- x)D]. For any
complex s and real y and t, define

(1) g(s,y;t)= et_ 1
exp 7_5i ]I

where
I,(z) 2"F( + 1)z-I,(z),

2(sy et) 1/2

e 1

I,(z) being the Bessel function of imaginary argument.
Remark. At first it appears that for fixed real values of y and t(t 0), g,(s, y; t)

has branch cut in the complex s-plane. But by expanding I(z) in powers of z one can
see that only even powers of z appear. Therefore, g,(s, y;t) is an entire function
of s for fixed real values of y and t.
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It is well known that for real s, and real y and t, > 0,

-,t F(n+ + 1)
(1) g(s,y;t) e L,(s)L,(y) [16 p. 189(19)3.

,=o n!l-’( + 1)

Therefore, one can easily check that for real s (hence also for complex s),

V’g(s "t),y, g(s,y;t) forn= 1,2,3,....

The following result has been proved by Cholewinski and Haimo [1, Thm. 6.1].
Let 4 be integrable in every finite interval and let

1)b(y) dA(y)Y;

converge for some Xo _>- 0. If

lim
1

h-0+
E4(y) 4(x)] dA(y) 0,

then

(2) lim g(x, y;t)c(y) dA(y) q(x).
tO+

Heuristically one can say that

e-tVxga(x, y; 1) g(x, y; 1 t),

where the differentiation operator e -tvx is defined by

e-Wx Z (- tVx)
r=0 (r)!

In fact, a formal manipulation leads to

for

tV,) (- t) Vxg,(x, y, 1)
;i g,(x,y;1)=

r=O r.

Therefore (formally),

(- t)rgr)(X, y; 1)=r=O r.
g,(x,y; 1 t)

Vg,(x, y ;1) () rg=(x, y t)lt=

tli fo)om+ g(x, y;t)c(y) dA(y)

__
g(x, y; 1 t)c(y) dA(y)

0<t<l,

=tm_ e-tVx g=(x, y 1)qS(y) dA(y)

e- Vx g(x, y; 1)4,(y) dA(y),
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where

e-Vxf(x) lim e-’Vxf(x) for appropriate f(x).
tl

Thus, the inversion formula (2) as established by Cholewinski and Haimo in [1]
can now be stated (formally) in the following way.

Let 4 be integrable in every finite interval and let

g,(xo y; 1)qS(y) dA(y)

converge for some Xo _-> 0. If

fx+h
then

(3

where

[b(y) qS(x)] dA(y) 0,

e-VxF(x) c(x),

F(x) fo g(x, y; 1)qS(y) dA(y).

Here, F(x) is known as the Poisson-Laguerre transform of the function qS(y) with
respect to the kernel g(x, y; 1).

In this paper we shall extend the inversion formula (2) of Cholewinski and
Haimo to a class of generalized functions interpreting convergence in the weak
distributional sense and this established inversion formula will be expressed
rigorously in the form (3). A structure formula for a class of dual Poisson-
Laguerre transformable generalized functions used in this paper will also be
established and it will be shown that this class of generalized functions also
contains the class of generalized functions of slow growth defined over (0,
Some other related results will also be established.

2. The notation and terminology of this work will follow that of [6], [7]
and [8]. Unless otherwise mentioned t,x and y will be understood to be real
variables assuming values in the set (0, oe). The set (0, oe) will also be denoted by
the letter I. The symbol D’(I) will stand for distributions defined over the testing
function space D(I), where by D(I) we mean the space of infinitely differentiable
functions defined over I having compact supports (in I). The topology of D(I) is
that which makes its dual the space D’(I) of Schwartz distributions [13, vol. I,
p. 65].

The testing function space G,(I). For fixed real 0 and fixed real 3 - -1
an infinitely differentiable complex-valued function b(x) defined over I belongs
to G,o(I) if

(4a) )k((])) sup [ex/(e’ +- 1)vk(D(x)[ < oe
O<x<oo

for any k assuming values 0, 1, 2, 3,.... Clearly G,(I) is a vector space with
respect to the field of complex numbers. The zero element of the vector space
G,(/) is the function defined over ! which is identically zero. Since o is a norm,
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the collection of seminorms {)k}=0 is separating [11, p. 8]. The topology in

G,6(I) is generated by the collect’on of seminorms {)’k)=o [12, p. 8]. We say
that a sequence (tkv)- x, where each bv(x) belongs to G,6(I), converges in G,6(I)
to b(x) if for each fixed k, 7k(qS b) tends to zero as v tends to oe. A sequence
(qS(x))= , where each qS(x) belongs to G,6(I), is a Cauchy sequence in G,6(I)
if 7k(bu bv) goes to zero for any nonnegative integer k as # and v both go to
independently of each other. It can be readily seen that G,6(I) is a sequentially
complete, locally convex, Hausdorff topological vector space. The space D(I)
is a subspace of G,6(I) and the topology of D(I) is stronger than the topology
induced on D(I) by G,6(I) and as such the restriction of any member of G’,6(I)
to D(I) is in D’(I).

The testing function space P,6(I). For fixed real , 6, 6 : -1, an infinitely
differentiable complex-valued function tk(x) defined over I is said to belong to the
space P,6(I) if

(4b) (b)--{Ax)} < oe

for all k 0, 1, 2,.... The topology on P,,6(I) is generated by the sequence of
seminorms {ilk}if-0. The concepts of convergence and completeness in P,6(I) are
defined in a way similar to those defined in G,,6(I). The space P,,6(I) is also a se-
quentially complete, locally convex Hausdorff topological vector space. The
restriction of any member of P’,,6(I) to D(I) is in D’(I).

LEMMA 1. For fixed > -1, let g,(s, y t) be the function defined in (1) and
Vr be the differentiation operator
Thenforfixed > 0 and complex s,

k

Vrg(s Y
r=0

[yD2 +(e+ 1-y)Dr], where Dr d/dy.

s, y, et,
1

e 1
g +r(s’ y;t),

where Pr,(a, b, c, d) are polynomials in a, b, c and d with degree depending upon r.

Proof. For k 1, we have

(s_+_.y) + 1] sy
x(s y t)(6) Vrg(s, y; t)

L(et 1)2 e 1 g,(s, y;t) et----g+

[1, p. 279]. Operating on both sides of (6) by the operator Vr repeatedly we get the
result (5) for k 2, 3, 4,.... A rigorous proof can be given by the method of
induction.

LEUMA 2. For complex s, y > O, 0 < <= 1, define the function g,(s, y t) as
in (1), where > -1. Then for fixed 6 > 0 we have, for k O, 1, 2, 3,...,

(7) sup er/(+6- 1)Vkyg(S, Y; t)l =< M,
0<y<o

uniformlyfor all s lying in any compact set f ofthe complex plane and 0 < r < <= 1,
the bound M depending upon k, , f and r.

Proof. For fixed complex s and > 0 we have

F( + 1)(et)/2+ 3/4 _(islX/2 et/2 yl/2)2](8) g(s y; t)
2{rc(et_ 1)}1/2

elsl(lsly) -/2-/4 exp L et- 1 _]’
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y o [1, p. 280]. Further, it is well known that

[(xe,)l/2 yl/Z]Z Axe’
(9) < Ay

et- 1 1- A(et- 1)
for > 0 and

Now fix A in (9) so that

1/(e’+a- 1)< A < 1/(e- 1).

Let

A < 1/(et- 1).

A- 1/(ex+- 1)= r/ > 0.

Therefore, for y > 0 there exists a constant Q > 0 satisfying

(10) ey/(e’ +- X)g(s, y; t)l =< Q e-"y

uniformly for s lying in f and lying in r, 1].
Hence, in view of the relation (5) we have, for y > 0,

e’/te’+- )Vrg,(s, y;t)l _-<
r-0 1)P’ s’y’et’e’- 1

Therefore, there exists a positive constant M depending upon k, a, f and r satisfy-
ing the relation

(11) eY/(el 1)Vkygts, Y, t)l =< M
uniformly for all y > 0, r __< =< 1 and s f. Thus the proof of Lemma 2 is com-
plete.

COROLLARY. For a complex s and fixed in (0, 1], a > -1, the function
g(s, y t) as defined by (1) belongs to the space G,a(I), 6 > O.

Proof The proof is trivial.
From now on we shall choose 6 to be a fixed number greater than zero and

> -1.
LEMMA 3. For complex s, y > 0 andfixed in (0, 1], a > 1, define thefunction

g(s, y; t) as in (1). Then the function (C/CS)mg(S, y; t) is a member of G,6(I)for
fixed s and t.

Proof Let C be a closed circle with radius r and center at s, contained in the
compact set fl of the complex z-plane. Then clearly,

1 c g(z, y;t)
dz,(12) g(s, y; t)=-i

where the integration in (12) is taken in the positive direction. Therefore,

m, fc g(z,y;t)3
g(s, y t)

(z S)m+
dz.

Hence

v, g,(s, y; / (z s)m+
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Assuming that lies in Jr, 1], r > 0, we have in view of Lemma 2,

sup
O<y<oo

g(s, y

COROLLARY. Let g(s, y t) be the function defined in Lemma 3. Then for fixed
lying in any compact subset of (0, 1] and complex s,

is an element of G,,6(I).
Proof. We can easily see that

(vy)mg(s,y t) g(s,y;t) form= 1,2,3,....

Therefore, (?/St)"g(s, y; t) belongs to G,6(I) as {V’g(s, y; t)} does.
LEMMA 4. Let f be an element of P’,6(I) and y > O, 0 < <= 1. Let g(s, y t)

be the function as defined by (1). Then thefunction u(s, t) defined by

(13) u(s, t) (A’(y)f(y), g(s, y; t))

is an entire function of s and

(14) (-s) mU(S, t) (A’(y)f(y), -s) mg(s, y t)) m= 1,2,3,....

Proof We shall prove (14) for m 1, as the proof for any m can be given
similarly by the method of induction. It can be easily seen that the expressions in
the right-hand side of (13) and (14) are meaningful. Therefore,

(15)

where

u(s +/xs, t) u(s, 0
As

A’(y)f(y), ssg(s, y O( ))s,As

O(s,As)
g(s + As,y;t) g(s,y;t) a

As 8sg(s, y t).

Now let C1 and C2 be two concentric circles with center at z s and radii rl
and r2 respectively in the complex z-plane such that the points z s and z s + As
both lie in the inner circle C1 (r2 > r). In view of Cauchy’s integral formula it
can be readily seen that

As Lf. g(z, y; t) dz
(16) O(s, As)= - -2 (z s-( As)’
the integration along C2 being taken in the positive direction.

If fl is a compact set of the complex z-plane containing the circle C, with
an appeal to Lemma 2 we can have a positive constant M satisfying the condition

(17) ey/(el+- 1)Vkyg(S, Y t)l 5 M

uniformly for all s and y > O.
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Therefore,

eY/(e’+a- 1)Vky0(S, AS)I-- IAslM
(r2 rl)r2"

Hence, O(s, As) - 0 in G,6(I) as As - 0.
This completes the proof of Lemma 4.
LEMMA 5. Let f be an element of P’,,6(I), y > 0 and 0 < <= 1, and let g(s, y t)

be the function as defined by (1). Assume also that u(s, t) is the function defined by

u(s, t) (A’(y)f(y), g(s, y; t)).

Then

(18) )m + )m )>u(s, t) ’(y)f(y), g(s,y;t for m 1,2,3,....

Proof We shall prove the result only for m 1, as the result (18) can be
proved for any m in an analogous way by using the technique of induction.

Proof Let belong to the set (r, 1], r > 0. Let At be chosen so small that
+ At e (r, 1]. Note that in the event that 1 we have to take At < 0. Now

u(s, + At) u(s, t)
At A’(y)f(y),-g(s, y;t) A’(y)f(y), Oa

where

g(s, y + At) g(s,y;t) c3
OAt At atg(s’ y;t).

Therefore,

where

.yvxTkna, Fgtk)(s’ y + At) g(k)(s, y t)
At ct

gk)(s’ y

g s y tt1Vyg=(s y, g(s,y;t),

or

0<0<1,

V{0a,} 0 < q < 1,

0<z’ < 1.

Therefore,

eY/(e 1)-TkQ ey/( el
"y’Atl < IAtll 1)O’(k + 2)(S Y + o(At)l

Again, At is so chosen that for all possible variations of At, + At lies in (r,
r > 0. Taking s to be a fixed complex number and appealing to Lemma 2 we get
an obvious constant M depending upon r satisfying the relation

gU + 1)(s, y + OAt) g+ a)(s, y t),

OAtg + 2)(s, y + OAt),

Oktg + 2)(S, y + z’At),

er/(e’+a 1)VkyOMI < MIAtl,
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uniformly for all y > 0. Therefore,

OAt 0 in G,6(I) as At 0.

This completes the proof of Lemma 5.
LEMMA 6. Let f be an element of P’,6(I), y > O, > -1, 0 < <= 1 and let

g(s, y; t) be the function defined in (1). Then the function u(s, t) defined by

u(s, t) (A’(y)f(y), g=(x, y; t))

is a continuous function of s and t.

Proof Assume At to be small enough so that if lies in Jr, 1], r > 0, + At
also lies in It, 1]. Now,

(19) u(x + Ax, + At)- u(x, t)= (A’(y)f(y), O(Ax,At)),

where

0(Ax, At) g(x + Ax,y; + At) g(x,y; t)
or

(20) O(Ax, At)-- {g(x + Ax,y;t + At)- g(x,y;t + At)}
+ {g(x,y; + At) g(x,y; t)}.

In view of Lemma 2 it can be readily shown that each of the bracketed expressions
in the right-hand side of (20) goes to zero in G,(I) as Ax, Ay 0 independently
of each other. This completes the proof of the lemma.

In the next lemma we shall determine an asymptotic order of u(s, t) as ]sl .
LEMMA 7. Let u(s, t) be defined as in Lemma 6 for complex s and 0 < <= 1.

Thenfor 1/(e + 1) < A < 1/(e- 1),

eIs] s -. t,(21) u(s,t)= O P([s[)exp ] A(e- l)
where P(Isl) is a polynomial in is[.

Proof Using the boundedness property of generalized functions, we get

]u(s, t)] _< C max 7,.[g(s, y;t)]
O<_m<_r

for appropriate constant C and a nonnegative integer r. Therefore,

lu(s, t)[ < C
k=O

s,y,t
1

e
,(et 1)

g+k(S’ y; t) ey/(el+’-l)]"

Again,

Ig(s, y;t)[ __< i(o + 1)(et)/2 + 3/4

2{7(e 1)}
y - , [1, p. 280] and

e[S[(is[y)-a/2-1/a exp I--(Isll/2 et/2 yl/2)21
{(islet)l/2 yl/2}2 Aisle 1

<_ -Ay, t>0, A<
et- 1 1-A(et- 1) et- 1

The result (21) follows immediately by choosing A in (1/(e + 1), 1/(e 1)) and
observing that I(2x/ et/(e 1)) - 1 as y 0 + (for any fixed s).
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From now on we shall drop the suffix of g(x, y;t) and represent it only by
g(x, y;t). We shall also assume that e > -1.

LEMMA 8. For x, y > 0 and 0 < <= 1, define the function g(x, y t) as in (1).
Let c(x) D(I), the space of infinitely differentiable functions defined over I having
compact supports. Then

(22) er/(e, +- 1) g(x, y; t)[qS(x) qS(y)] dA(x) 0 as 0 +

un!formly for y > O.
Proof Let us represent the expression in (22) by I and split up the integration

in I which is over (0, or) into integrations on (0, y- q), (y- r/, y + r/) and
(y + t/, oo) and denote the corresponding expressions by 11, I2 and 13 respectively.
Here r/ is an (arbitrary) positive number less than r, the infimum of the support
of (x);

(23)

Now,

I I -4- 12 -4- 13

12 er/(ea 1) g(x, y;t)[b(x) b(y)] dA(x).

(24)

Let us now assume that R is the supremum of the support K of qS(x). Therefore,

II1 _-< / sup
y-rl<z<y+rl

Hence,

R+r }(25) 1121 < M’q exp +6

where

M’ sup
r<z<R

We shall also use the symbol M for supr_<x_< R IO(x)l, Now fix r/such that

R+r tM’r/exp
e + 1

where e is some arbitrary positive number. Therefore an appeal to (25) leads to

(26) 1121
uniformly for y > r/. Next, we consider

(27) 13 er/t e’ 1) fyX
+/

[b(x) qS(y)’lg(x, y; t) dA(x).

If y => R, 13 0. Therefore, we consider the case t/< y < R. Therefore,

(28) 1131 2M eR/ e’+6- 1) g(X, y; t) dA(x).
+r/
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Since Is(z) - eZ/x/z as z oo and I(z) --+ 1 as z --, 0, therefore, for any arbitrary
and positive quantity fl and an obvious constant P, we have

II(z)l =< P eIzl(l+/)

uniformly for all z. Hence

(29) Ig(x,y;t)l _-< P
e’- 1 exp

d- 1

There also exist a constant Q and 0 < 7 < 1 such that

(30) Ig(x, y t)[ =< Q d-l exp
e 1

for all x > 0 and 0 < y =< R. Similarly we can show that for y > 0 and 0 < x __< R,
we have

{_,,1- t(31) Ig(x, y;t)] _< Q , exp
e’

(since g(x, y;t) g(y, x;t)). An appeal to (28) and (30) leads to

(e e’ 1) fo { x(1-7)} dA(x)eR/(e’ d- 1) expIlal < 2MQ ,_ e’- 1

{ R} e’-I
2MQ exp la[ + e+a 1 {1 7 + e’ 1}+

0 as 0+.

Therefore, we have completed the proof of the fact that

(32) 13 --+ 0 as --+ 0+

uniformly for y > 0. Next we consider

Take

(33)

ey/( 1)I1-- g(x, y;t)[(x) 4)(y)] dA(x).

ey/(J1-- g(x, y;t)dp(x) dA(x),

R

IJll M ey/(e’ +a- 1) g(x, y; t) dA(x).

Appealing to (31) we can find a small positive number to such that for 0 < < to,

e/(e, 6- )g(x, y; t) --, 0

as y--+ m uniformly for r <_ x _< R.
Therefore,

(34) J1 --+ 0 as y oo for 0 < < o
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When 0 < y _< N we have in view of (33) and (30),

M eN/(el+ X)Q et(e 1)
(35) IJxl =< {1 7 + et- 1}"+1

0

Joining (34) and (35) we get

ast0+.

(36) Jl0 ast0+

uniformly for y > r/. Now,

J2 ey/(ea 1) fo g(x, y; t)O(y) dA(x),

]J2l M eR/(el +’-1) fo g(x, y; t) dA(x)

R=< M exp +e

et- 1

1
+ I1 {1 7 + e’- 1}

0 ast0+.

But, I1 J1 J2. Therefore,

(37) 11 0 as - 0+,

uniformly for y > t/. Joining (26), (32) and (37) we get

(38) lim sup
tO+

uniformly for y >
If 0 < y =< r/, we split up the integration in I into integrations on 0 < x

< y + r/and y +
and J respectively. Now

Clearly,

I=i+3,

eY/(el 1)

o g(x, y;t)[qS(x) b(y)] dA(x).

(39) Iil <= riM’ er/tea+-1) < e,, > O,

and

(40)

j ey/( e 1)

+o
g(x, y;t)[q(x) qS(y)] dA(x) 13,

IJI 1131
2MQ exp {11 + R/(el +-

(1- 7 + et-- 1)+1
1)}(e,_ 1)0 ast0+.

Combining (39) and (40) we get

(41) lim sup III ,
t-O+

O<y_<_r/.
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Therefore, in view of (38) and (41) we have

lim sup II] =< e, y > 0.
t-0+

Since is arbitrary, our lemma is proved.

3. Inversion formula. In this section we shall establish an inversion formula
for the class of generalized functions P,(I) taking to be a fixed positive number.
It can be readily seen that ifof(y) P’,(I), then A’(y)f(y) G’,(I)and vice versa.
We have proved in 2 that for fixed s (complex) and lying in (0, 1], g(s, y;t) is
an dement of G,(I). Consequently the expression A’(y)f(y), g(x, y; t) which we
also denote by u(, t) is meaningful. W define u(x, t) to be the dual Poisson-
Laguerre transform of the generalized function f(y) belonging to G’,(I). Our
object is to prove that u(, t) converges in the wak distributional sense to f(x)
ast0+.

THEOREM 1. Let the unction g(x, y;t) be defined as in (1)for , y 0 and
0 < 1. Assume that f(y) is an arbitrary element of P’,(I) and O(x) is an in-
finitely dierentiable function defined over I with compact support. Then

A(42) lim (A’(x)(A’(y)f(y) g(x y,t)) (x))= ( L )
t0+

Proof The theorem will be proved by justifying the following manipulations"

(43) (A’(x)A’(y)f(y), g(x, y t)), 4(x)) A’(y)f(y), g(x, y; t))4(x) dA(x),

(44) (A’(y)f(y), g(x, y; 0)(x) dA(x) ’(y)f(y), g(x, y; 0(x) dA(x

(45) lim ’(y)f(y), g(x,y;t)4(x)dA(x <A’ 4).
t0+

In view of Lemma 4, it follows that for fixed lying in (0, 1, u(x, t) is an
analytic function of x. Since 4(x) is smooth and has compact support, (43) is
justified. The relation (44) can also be justified by following the technique of
Riemann sums in view of the asymptotic order of g(x, y;t) for fixed and x lying
in any compact subset of I. Since the proof is very similar to that followed in
proving Lemma 4 of [8, pp. 13-15], the detail is omitted. In order to justify (45)
we have to show that

y;t)4(x)dA(x) 4(Y) in 0+.G,(I) as

Now

Vy g(x, y; t)d(x) dA(x) Vxg(x, y; t)dp(x) dA(x)

because Vyg(x, y; t)= Vxg(X, y; t). Also an integration by parts leads to

Vg(x, y; t)dp(x) dA(x) g(x, y;t){Vxq(x)} dA(x).
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Therefore,

v g(x, y; t)4(x) aA(x) g(x, x; t){VA,(x)} aA(x).

Operating by the operator Vx successively it can be shown that

v, g(x, y; t)(x) A(x) g(x, y;t){V4(x)} A(x).

Therefore,

where (x) V(x). Now in view of Lcmma 8 we have

-1) ksup e/<’+" V g(x, y, t)(x) dA(x) (y 0 as 0+.
0<y<

This justifies (45).
TnOM 2. Let u(x, t) be defined as in Theorem 1 for 0 < 1. The for

() (I),

A(46) (e-V(A’(y)f(y) g(x y, 1)) (x)) ( L )
where the operator e-v is defined by

lim e-v e-v
tl

and for 0 < < 1 the operator e-v is interpreted as

Z (-v)

where

Proof.

Now,

-o" (- tv);i o(-t)g(x, y 1) g)(x y" 1)
r!

,, (_t)
g(x, y;1 t) r=O r! gtr)(x’ y;1) (__ t)N+ g(N+ 1)(X y;3)

(N + 1)!

where e is some number lying between 1 and 1 t. Again, similarly,

[g o (- t)r (o, 1 (- t)(N+ 1)g(N+k+ 1)(X, y )vky (x,y;1-- t)--: r! g ix,y;1) (-i).
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because

Therefore,

Vrg(N+ 1)(x, y;e) y,

sup
O<y<

(- t)g((x y" 1).eY/(e+6-1) kVr g(x,y;1-t)-
r=O r.

__< sup sup
1-t<e<l 0<y<

er/(e 1)g(N + k + 1)(X, y e)
(N + 1)!

B< 0 as N oe (see Lemma 2).
-(N+ 1)!

Therefore, for 0 < < 1, we have the following result in the weak distributional
sense

e-tVxg(x, y 1) g(x, y 1 t).
Now,

(- tVx)r(_tV,)
’(Y)f(Y)(47) ;-i (A’(y)f(y),g(x y" 1))

r=O r=O r.
g(x, y; 1)

by Lemma 4. Letting N oe in (47), we obtain

(48) e-tVx(A’(y)f(y), g(x, y; 1)) (A’(y)f(y), g(x, y; 1 t)).

Now let --. 1-. Therefore, for qb D(I) we have, by Theorem 1,

(e-Vx(A’(y)f(y), g(x, y; 1)), 4)(x)) (A’f,

This completes the proof of Theorem 2.
LEMMA 9. Let dp(x) be an infinitely differentiable function defined over I such

that for c and o both >0,

(49) sup ec’kvxqS(X)[ < for k O, 1,2, 3, ....
O<x<

Then
(i) qS(k)(0 +) exists;

(ii) b(k)(x)=O[e -c] asx, k=0,1,2,3,....

Proof Since (49) is true for k 0, b(0 +) exists. Let xc"(x) + ( + 1 x)q’(x)
p(x); clearly, Ip(x)l -< M e-% x > 0,

o 4- 1- x p(x)
4)"(x) + 49’(x)

X X

An integrating factor of this differential equation is x"+1 e -x. Therefore,

’(x) e-x+ p(x) e-Xx dx + C,

(50) qS’(x) eXx -(+ 1) p(X) e-’x dx + C eXx -(+ 1).
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Hence,

(51) qb(x) q(x) dx + C eXx-(+ 1) dx d, a > O,

where

Obviously,

exists, whereas

q(x) e’x ( + 1) p(x) e x dx.

lim q(x) dx
xO+

does not. Therefore, in view of (51) and the fact that qS(0+) exists we can imme-
diately conclude that C 0. Consequently,

Therefore,

(52)

dp’(x) e’x -(+ 1) p(x) e-x dx.

b"(x) -(0 + 1) e’x -(+ 2) p(x) e-Xx dx

+
p(x)

+ e’x + 1) p(x) e- ’x dx
X

Integrating the first expression in (52) by parts, we obtain

(53)
"(X) eXx -(+2) xa+l e-{p’(x)- p(x)} dx

+ e’x-+ ) p(x) e x dx.

By using the technique used in showing the existence of qS(0+) and qS’(0+) one
can show that p(0+) and p’(0+) both exist.

Therefore, in view of (53) we conclude that 4/’(0+) exists. Proceeding in this
way by induction we can show that bk)(0+) exists for k 3,4, 5,... as well.
This completes the proof of (i). We now proceed to prove (ii).

An appeal to (49) leads to leC(x)l < . Therefore,

b(x) O[e-X], x --+

Let

(54) xdp"(x) + ( + 1 x)dp’(x)= p(x).
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Therefore,

Hence,

[ec"VxcP(x)l [eC’p(x)[ <

p(x) O[e-X], x - oo.

For x, xa > 0 we get by integrating (54)"

X2t(X2) XI)t(X1) - )(Xl) (])(X2) %" (0 %" 1 X2)(l(X2) (0 %" 1 xl)dp(xl)

(55) + (x) dx p(x) dx.

Now, let xl, x2 - independently of each other in (55). Therefore, in view of
the asymptotic order of p(x) and (x) as x - we have

lim Ix24)(x2) xlb(X1) 0.
X2

Hence, in view of Cauchy’s convergence criteria we conclude that x’(x) converges
as x c. Let

lim x’(x)= C.

Letting x and replacing x2 by x in (55), we have

(56) xdp’(x) C + alp(x)- (o + 1 x)ck(x) + [b(x)- p(x)] dx.

Integrating (56) again between (x, x2), we obtain

(57)

where

xck(x)- x4)(Xl)- fl’
C(x2 x)- fx

:

(x) dx

( x)(x) dx + f g(x) dx,

g(x) [4(x) p(x)] dx.

.Letting Xl,X2- oo independently of each other in (57) we can show that C
must be zero in (57). Therefore, from (56) we obtain

(58) ’(x)
-( x)ck(x)

+_
X X

It is immediate from (58) that

’(x) O[e-CX],

Now it is clear from (54) that

dp"(x) O[e-CX],

[(x) p(x)] dx.
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Proceeding this way we can also prove by induction that

Ctk)(x)= O[e-CX], X-- fork=3,4,5,

This completes the proof of (ii).

4. The testing function space S(/) of rapid descent. We say that an infinitely
differentiable function 4(x) defined over ! belongs to S(1) if

m,k()-- sup [xm(k)(x)l
O<x<

for m, k 0, 1, 2, 3,.... The topology on S(I) is generated by the sequence of
seminorms {fl,,k},k=O. We say that a sequence {v(x)}T=l converges to b(x)in
S(1) if flm,k(bv b) goes to zero as v for each fixed m and k. We denote by
S’(1) the space of continuous linear functionals defined over S(I). An element

f of S’(I) is known as the distribution of slow growth or tempered distribution.
In view of Lemma 9 it can be readily seen that for , 6 > 0, G,o(I) S(I) and that
the convergence of a sequence in G,,a(I) implies convergence in S(I). Consequently
the restriction of an element f S’(I) to G,,(I) is in G’,(I). Therefore, for , fi > 0,

G’,(I) S’(I).

The testing .function space G(1). It can be readily seen that for 62 > 61 > 0
and > -1, G,,(I) is a subspace of G,2(I and that the topology of G,,(I)
is stronger than the topology induced on G,,,(1) by G,2(1). Now let 6 be an
increasing sequence of positive numbers tending to a positive quantity 6 from the
left as v . Assuming

G(I) 0 G,(I),
v-’l

we say that a sequence {qS)__ converges in G(I) if it converges in some G,,(I)
and hence in G,+,(I), G ,,+fl), .... We call G(I) the countable union space
of G,(I), 6 - 6- [11, p. i5]. Clearly G(I) = G.(I).

We can also verify quite easily that if a sequence
in G(I), it also converges to in G,(I). Consequently the restriction of any
f G’,(I) to G(I) is in G’(I). In the next theorem we determine a structure
formula of a restriction of f G’,(1) to G(I) when , 6 > 0.

We observe that if 4) G(/) for z, 6 > 0, then in view of Lemma 9, bk)(0 +)
exists and 4k)(x) O I-e- /e’ /- )], x , for k 0, 1, 2,

THEOREM 3. Let f be an arbitrary element of G’=,a(1) and dp, an arbitrary element
of G(I). Then there exist bounded and measurable functions g(x) and polynomials
Q(x) for r O, 1, 2,..., 2k + 1 satisfying the relation

(59) (f, b) (- 1)D+1 g,(x) e’Q(x)dx, (x)
r=O

Here c 1/(e +6 1) and a > O.
Proof Using the boundedness property of generalized functions, we obtain

(60) I(f, q5)l _<- C sup
O<_r<_k
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for appropriate constants C and k, or

[(f, b)[ __< C sup ec’VqS(x)l
0<x< r=0

2k

=< C sup
0<x< r=O

<__ C sup
0<x<oo x 2O D(exp(x)dp((x)) dx

<C sup eQ(x)c((x)l dx.
0<x<oo r=O

P(x) and Q(x) are obvious polynomials. Thus we have

(61) (f, 4)1 <_- C eQ(x)ck()(x)l dx.
r=O

Therefore, in view of the Riesz representation theorem and Hahn-Banach theorem,
we get bounded measurable functions gr(x), r 0, 1, 2,..., 2k + 1, satisfying

2k+l

(62) <f,b> <gr(x),e’Q(x)dp((x)).
r=O

But the regular distribution corresponding to the function f gr(x)eXQ(x)dx
belongs to G’f(I). Therefore (62) can now be written as

(63) <f, (/)> (-- 1)rD+1
’=0

g(x) eXQ(x) dx,

where the differentiation in (63) is done in the distributional sense. Observe that
when b(x)e D(I), (59) is true for f G’,o(I), with z > -1, 6 > 0.

TI-IEOREN 4. Let u(x, t) be the dual Poisson-Laguerre transform off G’,,6(I),
z > 1, > O, with respect to the kernel g(x, y; t). Then u(x, t) satisfies the (heat)
equation

Vu u/t, 0 < <= 1.

Proof We have

u(x, t) (A’(y)f(y), g(x, y t)).

Therefore, by Lemmas 4 and 5,

t) ’(y)f(y), g(x, y t))
This completes the proof of Theorem 4.
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HARMONIC ANALYSIS OF A CLASS OF
DISTRIBUTIONS ON ", n _>_ 2*

YNGVE DOMAR

Abstract. Let I be a compact subinterval of R M. Gatesoupe proved iri [2] that a complex-valued
function f on I is the restriction, to the subset I of a radius, of a radial Fourier transform of a (radial)
function in LI(E") if and only iff is the restriction to ! of the Fourier transform of a function fe LI(E),
satisfying

x)llxlt"-l)/2 dx < o.

He has, moreover, various extensions of his theorem. This paper is inspired by Gatesoupe’s results,
but gives a different and more general approach. We start from an open set U ", and a smooth one-
parameter family of (n 1)-dimensional submanifolds of U with nonvanishing Gaussian curvature
and consider distributions in @’(U) which are constant on each manifold, using a natural extension of
the corresponding notion for functions. Localizing the support of the distribution by multiplying it by
a function in (U), we can characterize the asymptotic behavior at infinity of its Fourier transform by
the behavior ofthe Fourier transform ofthe dilations ofthe corresponding one-dimensional distribution
localized in a similar way. Restricting the discussion to the case in which the manifolds are concentric
spheres we obtain a generalized version of Gatesoupe’s result.

1. Introduction. Let (I) be a real-valued infinitely differentiable function on
an open set U c E", n => 1. We assume that grad (I) does not vanish in U. For
every f ’(E) it is then possible to define f (I) ’(U) in a way which is a natural
extension of the ordinary composition of two functions. The precise procedure for
this is described in 2. For every q @(U), q(f (I)) is well-defined as an element in
’(U), but we prefer to interpret it as an element in ’(E") by extending it to E"
in such a way that it vanishes outside the support of qg. This is of course possible,
and we obtain then a distribution q(f (I)) ’([") with compact support.

Our aim is to investigate the Fourier transform of qg(f (I)). We denote the
elements in [" by x (xl,..., x,_ 1, t) and restrict the Fourier transform to the
set of characters on E" which take the value 1 on the set {x E"’t 0}. The func-
tion ci0 on [ which we obtain by this restriction can be regarded as the Fourier
transform of the projection ao e ’(E) of o(f q)) onto the t-axis.

ao is compactly supported and hence fio has high differentiability properties
and is of at most polynomial growth at infinity. We now assume that n >= 2 and
denote by D the set of all x U for which cdP/cxi 0 for every i, =< < n 1.
Our first result is Theorem 2.7 which shows that the condition D f’l supp (q)
implies that ao (E). Hence for functions q) of this kind, cio tends to 0 at infinity
faster than any power of the norm of the variable.

The situation is more complicated when D f’l supp (q)) is not empty. In order
to explain our results in this case we need some further definitions. Let Xo D
have the property that the determinant It32c/)/c3xic3xj[, 1 < n 1, 1 < j <= n 1,
does not vanish at Xo. Classical results from the theory of implicit functions show
then that D can be represented, locally at Xo, as a curve {((t), t), Jo}, where Jo
is an open interval and where is an infinitely differentiable function from Jo to

* Received by the editors May 6, 1971.- Department ofMathematics, Uppsala University, Sysslomansgatan 8, S-752 23 Uppsala, Sweden.
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’- . We define F as the function with values ((t), t), e Jo. It can be proved that
q’ does not vanish on J0. Hence we can define foude@’(Jo) and b

0(f q)e ’(R), for e (Jo), by applying the procedure described above,
this time with n 1. Since bo has compact support it has a Fourier transform

The discussion in 3 concerns the asymptotic behavior at infinity of
when the support of q e @(U) is included in a sufficiently small neighborhood of a
point xo e D where Ic2/cxcxl does not vanish. We prove Theorem 3.5 which
states thato can be estimated at infinity by means of finite sequences of associated
functions bo, and that the remainder term can be forced to tend to 0 at infinity
faster than any prescribed power ofthe norm of the variable. The pertinent relation
is (3.3), where 2 denotes the index of the characteristic values of the matrix

O- (XO) XiXjl2(I) (Xo)), l <_ <_ n l, l <= j n

nonsingular by our assumptions, and where 6 represents a nonvanishing function
in C(R), such that 6(u) x/ (principal value) if u e [, ]u] >= 1.

Theorem 3.5 contains the essence of the paper, expressed however in a
rather implicit form. Section 4 is devoted to the establishing of more explicit
connections between the classes of o and b0 which are associated with a given
f ’([) and a given Xo e 9. The results are expressed in terms of certain classes
K of functions on [, described in Definition 4.2. K can, for instance, be chosen to
be LP(R), 1 N p =< oe, as well as polynomially weighted LP-spaces.

Theorem 4.3 states that if , e @(Jo), q4to) 4 0, where to is the t-component of
Xo, then Xo has a neighborhood Uo c U such that

implies gtq,aaa,,- 1- K

if q e (U) has support in Uo. Theorem 4.4 is a result of the converse type" If
q e (U), q(xo) - 0, and if Xo is the only point in D 71 supp (q)) with t-coordinate
to, then to has a neighborhood J1 C Jo such that

cio6x3,- 1-x e K implies o K

if e @(Jo) has support in J1. Theorems 4.3 and 4.4 are of a local type, but it is
very easy to construct global theorems out of them and Theorem 2.7, using the
fact that e and/q, are linear in q and , respectively. One such global result is
given in Theorem 4.6. It concerns radial distributions and generalizes results of
M. Gatesoupe [2]-[5]. It should be pointed out here that the origin of this in-
vestigation was a desire to discover whether Gatesoupe’s results could be obtained
in a more general setting. As mentioned in a concluding remark, there are many
further possible applications for the methods and results of this paper.

2. Preliminaries. In this section we shall give some preliminary definitions
and introduce notational conventions. We shall also formulate and prove Theorem
2.7.

Our assumption is that is real-valued and infinitely differentiable in the
open set U c [", n _>_ 1, and that grad (x) :/: 0 if x e U. The following discussion
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is primarily applicable to the case n > 2, but with a proper interpretation of the
concepts involved it applies to the case n 1 as well.

For every c
and simple results from the theory of implicit functions we have that Ec is either
empty or an (n 1)-dimensional infinitely differentiable submanifold of U, not
necessarily connected but without multiple points and closed when considered as a
subset of U. We have at the same time a dependence on c of very regular type. The
precise properties of the family {Ec}cR are expressed in the following well-known
lemma, where we have adopted the notations"

x (x,..., x,), , (x,..., xi-, xi+,’", x,),

({i,v) (x, xi- ,, v, xi+ , x,), <= <= n.

LZMa 2.1. Let xo U and (c/cxi)(Xo) g= 0, for a certain i, 1 <= n. Then
there exist open sets V c "- and I c , and an infinitely differentiable real-valued
function fii on V I, satisfying (b({i,/3({i, c)) c on V 1, and such that (, c)
-+ (i, fli({i, c)) is a bijection of V x I onto a neighborhood Uo c U of xo.

DevyIVIOy 2.2. For every c e , v denotes the uniform unit measure on Ec
with respect to the Euclidean metric induced by the coordinates in [". For every
(p e (U), F, denotes the function on with values

(2.1) Fo(c) fv (p(x)lgrad O(x)]- dye(x), c

We shall show that q9 --, Fo maps @(U) continuously into @(R) and we shall
then need the following lemma.

LFMMa 2.3. Let Xo U and let i, V, I, fl and Uo satisfy the conditions in Lemma
2.1. Then there exists a strictly positive function Yi C(V x I) such that for every
(p e (U), with supp ((p) c Uo,

(2.2) F,,(c) fv
!f c I, while F,,(c) 0 !f c q I.

Proof. By the assumption, the support of q9 is included in the image of V I
under the bijection mentioned in Lemma 2.1. Hence supp (o) is disjoint from Ec,
when c q I, and it follows therefore from (2.1) that Fo(c) 0 when c q I.

In the case c e I, we use Lemma 2.1 which shows that we can express the right-
hand side of (2.1) as an (n 1)-dimensional integral with { as integration variable.
This gives (2.2), where

((I)
,(,, c) -x,(,, ,(,, c)) ,, c)

for ({, c) e V I hence 7 e C(V 1) and 7 is strictly positive.
LEMMA 2.4. (p Fo maps (U) linearly and continuously into @(), such that

supp (Fo) c (I)(supp (p)). Let f @’(). The relation

(2.3) (fo (I), q0> <f, F,>,
where o varies in (U), defines a distribution f e @’(U).
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Proof. The second assertion follows obviously from the first by the definition
of distributions in U as continuous linear functionals on @(U).

The linearity is evident, and the relations between the supports follow directly
from (2.1). Hence it remains to show the continuity properties of the mapping
(D -, Fo. Using the linearity and a standard compactness argument, we see that it
suffices to prove the following.

Every Xo U has a neighborhood Uo U such that (D F is continuous
when restricted to functions (D with supp (99) Uo.

But grad does not vanish. Hence there exist for every Xo U an index
and V, I, fli, Uo, yi satisfying the conditions in Lemma 2.1 and Lemma 2.3. Then
the desired continuity of the restricted (D ---, F0 follows from (2.2).

We shall now introduce some useful conventions in our notations. If W is an
open subset in E’, m _>_ 1, we do not distinguish in our notation between a function
in (W), and the function in @(E’), which we obtain by extending the former
function, defining it as 0 on [mW. For every (D e (W) and g e ’(W), (Dg is a
distribution in ’(W), but we use the notation (Dg as well for the distribution on
’(W) which we obtain by assigning the value 0 to points in Nm\ W. Formally this
extension is achieved by the defining relation

(2.4) ((Dg, (Do> <g, (D(Do>-, (Do

a relation which then can be interpreted to hold for (Do e C([") as well. In the
following we shall also take the liberty of giving (D(x)g(x) a meaning for every
x e m, if (D e (W) and g e C(W), by interpreting it as 0 if x W. Using this last
convention we have that (2.2) holds for every c e , due to the fact that (, c)

(D(i, [i(i, C)) is a function in @(V I).
In the following we shall let the nth coordinate x have a special standing, and

it is convenient to put x t. We always use the same notation for a function
(Do C([) as for the function in C(E") with values (Do(t) for every x E".

In all that follows, except for the last section, we shall keep f ’([) fixed.
For every (D (U), (D(f ) is of course compactly supported.

LEMMA 2.5. For every (D (U), the relation

(2.5) <%, (Do> <(D(f @), (Do>,

where the left-hand (Do varies in C(R), defines a compactly supported distribution

% in ’(). For every , C(),

(2.6) %o ,ao.
Proof. The right-hand q)o in (2.5) should here be interpreted as a function in

C("). Oo 0 in C() implies that q)o --’ 0 in C("), and this proves the first
statement. Furthermore, if , C() and Oo C([), (2.5) shows that

(aoo, (Do> <O(D(f o), (Do> <(D(f q), ’(Do>

<ae, 0(Do> <Oao, (Do),

and this proves (2.6).
Remark. The distribution % can be described as the projection of (D(f o)

onto the t-axis.
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We assume in the following that n _> 2 and introduce a certain exceptional
subset D of U.

DEFINITION 2.6. D is the set of all x e U for which (c30/cqxi)(x) vanishes for every
i,l<__i<__n-1.

THEOREM 2.7. Let f @’(JR), q9 @(U), D f’) supp (q))= ;25. a is defined by
Lemma 2.5. Then ao ().

Proof. In the following the notations are adopted for the case n >= 3, but the
arguments can, properly interpreted, be applied to the case n 2 as well.

By (2.5) and (2.3) we have, for every (p @(U), qgo C(),

(2.7) (aq,, (Po) (fo O, qgq)o) (f, Fooo).
Take Xo e D. Then there exists an index i, 1 =< =< n 1, such that (c3/cxi)(Xo)

=/= 0. We choose V, I, fii, Uo and yi so that all conditions in Lemma 2.1 and Lemma
2.3 are satisfied, and we assume that p e (Uo). As mentioned above our conven-
tions give that (2.2), with PCPo instead of q, holds for every c e R; thus

qo(t)q((t/,, t), fli((t/i, t), c))y,((t/,, t), c) dt/i dt, c ,Fooo(C)
where

and

We thus obtain

t/i-- (X1, "’", Xi-1, X,+I, Xn-1)

(t/i t) (X1, Xi- 1, Xi+ 1, Xn- 1, t).

(2.8) Fooo(C) fu,_ qo(t)P(t/i, t, c) dt/i dt, c 6 ,
where ql e ("). Equation (2.8) can be written

j qo(t)q2(t, c) dt,F,,o(C)

where o (e). Hence (2.7) gives

qo> f (f, q2(t, "))Po(t)dt.

The function o on [ with values (j q2(t, .)), 6 , belongs to @([). Varying
qo, we find that ao q.

This proves Theorem 2.7 in the case when q 6 (Uo). We had chosen Xo
quite arbitrarily in the complement of D. Since ao is linear in q, the usual compact-
ness argument proves the theorem in the general situation.

Remark. Theorem 2.7 implies that under the assumptions of that theorem,
the Fourier transform o of ao tends to 0 at infinity faster than any power of the
norm of the variable.

3. An asymptotic expansion. We assume in this and the following sections
that n >_ 2 and use the notations and conventions introduced in 2. For a given

f s @’([) we continue the investigation of the associated functions ao, q s (U),
but we now restrict the attention to points in D and to corresponding functions 99
with support in prescribed neighborhoods of these points.

It is convenient to put (x l, "", x,_ 1), x (, t), thus writing instead
of ,. We also write Xo (o, to), Co (Xo).
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LEMMA 3.1. Let Xo D have the property that the determinant

cxicx(Xo) 1 <= <= n 1, 1 <= j <= n 1,

does not vanish. Then there exist an open interval Io, containing Co, and an infinitely
differentiable function (o, %) from Io to " ["- , where an corresponds
to the t-component in [n, and with the following properties:, has nonvanishing derivative. For every sufficiently small neighborhood V of
o n- there exists an open interval I with Co I c Io, such that if we put
J %(I), then

(V x J) fq O f’) Ec if cq I,

(Vx J) f’)D[’) Ec= {a(c)} if ceI.

Proof. The points in D f) Ec are obtained by solving the system of equations

(x) c,

x-(x)=O, l_<_i__<n- 1.
cx

By the theory of implicit functions we have, locally at Xo, a unique solution of
the form x a(c), with infinitely differentiable a, if

(3.1)

at Xo. But

X X2 X

20 (2() (20
OX X OX X2 OX (X

(Xo) __-.(Xo) (Xo) 0 (Xo) 0
X GX2 (Xn- Xn

Hence our assumption shows that (3.1) holds at Xo.
From this, all the statements in the lemma follow by elementary arguments.

The nonvanishing of ’n is thus a consequence of the relation

((c))’.(c) 1,

obtained by differentiating the first equation in the system.
We associate in the following with each Xo D, where ]t32/c3xit3xjl O,

a fixed interval Io, satisfying the properties of Lemma 3.1. For every such Xo
we give the following definition.

DEFINITION 3.2. W denotes the inverse of the function % on Io, defined in
Lemma 3.1. W is by the lemma an infinitely differentiable function on Jo %(lo).
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For every f ’(), f W is the distribution in ’(Jo) which we obtain by applying
Lemma 2.4 in the case n 1. For every @(J0) we put b, g,(f W).

We need a remark on this definition due to the circumstance that the discussion
leading up to Lemma 2.4 is formulated with regard to the case n => 2. In analogy
to (2.3) the formal definition off W is given by

(3.2) (f ep, ,) (f, Go),

’ e (Jo), where, in analogy with (2.1),

(3.3) G,(e) ,(,(c))[’,(c)l

for every c, if according to our conventions we interpret the right-hand side of (3.3)
as 0 if c q Io.

As was mentioned in the Introduction, our main object in this investigation is
to discuss the asymptotic behavior at infinity of the Fourier transform of the
distribution 0(f ), where o (U). The Fourier transform is ofcourse a function
on [", but we restrict the study to the one-dimensional subspace of characters
which take the value 1 for points x (, 0), [,-1. Thus we discuss only the
values of the Fourier transform in the t-direction. The Fourier transform, restricted
in this way, is by definition the function with values

(tp(fo ), Z,), u 6 N,
where for every u e R,

(3.4) Z,(x) e -2’’",

Hence, by (2.5), we have the following lemma.
LEMMA 3.3. The restriction of the Fourier transform of q(f ) to the characters

with value 1 at the points (, 0), "-1, coincides with the Fourier transform
a of a.

Lemma 3.3 gives the main motivation for our study of ao and its Fourier
transform. We remind the reader of the remark after Theorem 2.7, which states
that if D supp (0) , then do tends to 0 at infinity faster than any inverted
polynomial. We shall now formulate and prove Theorem 3.5, which shows that if
Xo e D satisfies the conditions in Lemma 3.1, and if the support of o is included in
a sufficiently small neighborhood of Xo, then ci can be asymptotically estimated in
terms of functions ,, , e (Jo). In order to describe the asymptotic relation, we
introduce a fixed function 6, given by the following definition.

DEFINITION 3.4. 6 is a nonvanishing function in C([R) such that it satisfies, for
lu] => 1, the condition

where we take the principal value of the square root. Thus

6(U) X/f ein if u >__ 1,
6(u)=[e-i=/4 if u=< 1.

THEOREM 3.5. Let Xo D, and assume that the matrix

X (X (Xj
1 < < n < j < n

is nonsingular at Xo. Let 2 denote the index of its characteristic roots.
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Then there exist a neighborhood d c do of to, a neighborhood V1 of o,
V1 x J1 U, and a nonvanishing function co C(Jx) such that, given any open set
J Jx and any q) (V1 x J), there exist (Op), Op !(J), with o co(q)
and with the following properties:

We define, for every nonnegative integer q the function Sq on [R by
q-1

(3.5) d,aaa,-,-a fi- zp + S.
p=O

Then, for every given rn > 0, Sq(u)-- O(gl -m)

as lul c, if q is chosen large enough.
Remark. Since (t30/t3x,) (Xo) g= 0 if Xo e D, the nonsingularity of the matrix is

equivalent to the assumption in Lemma 3.1.
In the proof of Theorem 3.5 we need the following lemma, essentially due to

M. Morse and J. Milnor.
LEMMA 3.6. Let A be a real-valued function in C(W1 x Ix) where W x 11 is a

neighborhood of (0, Co) JR"- x R, such that (c3A/t3xi)(O, c) O, C ff Ix, for every
with 1 <= <__ n 1. Furthermore, we assume that (c32A/tVxi 3x), 1 <= <= n- 1,

1 <= j <= n 1, is nonsingular at (0, co) and the index of its set of characteristic
roots is denoted by 2.

Then there is a neighborhood V2 x I of (0, Co), where we can change the co-
ordinates by a bijective mapping (x, c) (y, c), infinitely differentiable as well as its

inverse, such that the c-coordinates are unchanged and the points (0, c) arefixed, and
such that the values of A in V x 12 can be expressed as A(O, c) + B(y), where B
is a nondegenerate quadratic form of index 2.

Proof ofLemma 3..6. The only difference between this lemma and Lemma 2.1 in
Milnor [7] is the presence of the parameter c and the requirement that the mapping
and its inverse be infinitely differentiable functions of (x, c) and (y, c) respectively,
instead of differentiable functions of x and y, respectively. Milnor’s method to
construct new coordinates can, however, be applied also in our case, and it gives
the desired differentiability.

Proof of Theorem 3.5. By (2.7) we have for q) e (U), u ,
(3.6) ao(u) (ae,
Here Z, is defined by (3.4). We now apply Lemma 2.3 in the case when n, and
put ft, fi, y, 7. If Uo is a sufficiently small neighborhood of Xo and q) e @(Uo),

(3.7) Fq,x.(c re._, e-2=i,a(,c)q)({, fi({, c))y({, c) d{

for every c e [. We recall here the conventions by which we interpret the integrand
as 0 for those (, c) e [" which are not contained in the support of(, c) q)(, fl(, c)).
With the notation taken from Lemma 3.1 we can write (3.7) in the form

(3.8) fR.-, e-Z’i"a((c)+’q)(e(c) + o, [3(Oo(C) + o, c))7(eo(C) + o, c)do,
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c [, assuming that Uo was chosen so small that ao(C is well-defined for all (, c)
in the support of (, c) --+ q(, fl(, c)).

We now denote by A the function (, c)--+ fl( + So(C)), defined in a neigh-
borhood of (0, Co)e JR". By Lemma 2.1 we have in this neighborhood

( + o(C), A(, c)) c.

Differentiating, we obtain in this neighborhood

(3.9) &--. + o(C), A, c)) + x,( + o(C), A(, c))bx, ) 0,

l<i<n-1.

But A(0, c) ,(c), and hence (3.9) gives that

cA
(0,c)=0, l<in- 1,
X

due to the fact that (c) D. Differentiating (3.9) once more we easily obtain

t2(I) 63(I) c32A
((c)) cX,

Hence (O2A/Ox Ox))(O, Co) is a nonsingular matrix with index 2, with 2 defined as in
the formulation of the theorem.

We are therefore in a position to apply Lemma 3.6 in order to perform a
transformation of (3.8). We see from this lemma that there exist a neighborhood
V x Iof(0, co)in"-t x ,withI = Io (I o defined by Lemma 3.1) an infinitely
differentiable bijection p of V x I onto a neighborhood of Xo e U, and a positive
function z e C*(V 1), such that, for e (p(V I)),

(3.10) F,x,(c e-2*tiuan(c) ;,_, e-2*tiuB(y)(49(o(y c))z(y, c) dy, u , c ,
where B(y) is a nonsingular quadratic form of index 2, and such that

(3.11) p(0, c) (o(C),/(o(C), c)) (c)

if c e Ix. The representation of Foxu by means of (3.10) instead of (3.7) facilitates to a
considerable extent the discussion of the behavior of Foxu for large lu], due to the
fact that we have an explicit expression ofthe Fourier transform ofthe function with
values e-2,riB(y), y n- 1.

We assume in the following that u e , lul >= 1. It is well known from the
elementary theory of distributions, that there exist positive constants a and b, both
independent of u, such that the function z - e- 2=,= on [ has as Fourier transform
the function z a(a(u))- eb=’-’ on . It follows from this that there exist a
constant Co 4:0 and a real quadratic form C(r/) on "-, both independent of u,
such that the function

y - 2niuB(y) yG"-1

has the Fourier transform

rl -+ Co(6(u))- Z(3(U)) -(n- ) eiC(q)u
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For every (r/, c) e N"- x N we define

(3.12) h(r/, c) f e- 2’i<’’r>Cocp(p(y, c))z(y, c) dy.

h is then a function in 9([ x R), vanishing on {(r/, c)lr/e N"- 1, c 11 }. Parse-
val’s relation applied to (3.10) gives

(3.13) Fozu(c)6(u)(5(u).- 1- e- ziu,(c) fn,-1 eiC")"- lh(tl’ c) dr c e R.

Let us put

hp(c) f (iC(q))P
p! h(r/, c) dr/

for every c e [ and for every nonnegative integer p. Using the inverse relation to
(3.12) we see that hp(c) can be expressed as a finite linear combination of partial
derivatives of q)(p(y, c))’c(y, c), c treated as a constant, at y 0. By (3.11) we see
that the support of hp is contained in the union of the supports of c ---, Oo((c)),
where o runs through the set of all partial derivatives of cp. Hence, if J J

e,(Ia) and q e (V )< J), we can conclude that the functions Op defined by

(3.14) tp(t) hp(W(t))W’(t)
on J1, as 0 outside J1, belong to (J). We have, moreover, by (3.10) and (3.12) the
relation

Oo(t)-- ho((t))q?’(t Cocp((?(t)))z(O, (t))’(t)

for e J. These results show that the sequence (Op) fulfills all the requirements in
the theorem except for the asymptotic relation (3.5) and we shall now prove that
relation.

We turn back to (3.13) which can be written, for every nonnegative integer q,

(3.15)
q-1

Fox.(c)f(u)X5(u),- 1- e- 2i,.c) 6(u)- 2php(c) + R(u, c),
p=O

[u] >_ 1, c e , where

(3.16) R(u,c)=e-2’’.(c)f (eCtn)"-l-i__o(iC(r/)u-1)’)p!
h(rl c) dr/.

Equation (3.12) shows that, for every nonnegative integer s,

c3h/c3c e 9( )K )

and ?h/?c vanishes on {(r/, c)/tl e "- 1, c I }, and applying this to (3.16)
we easily find that there exists, for every positive integer r, a constant C, not depend-
ing on u and c, such that

R2(u, c)
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if 0 __< s __< r, c , [u[ _>_ 1, and such that R2r vanishes on {(u, c)[ul _>- 1, c q 11}.
We obtain from this, (3.6) and (3.15) that

(3.17)
gq,(u)6(u)3(u),,-1 (f F,x.6(u)3,,- )

q-1

(f, e-2riu’*(’)hp)t(u)-2P _+_ Sq(u), [U[ > 1,
p=0

where, for every positive m, Sq(u)[u[ is bounded in {ul[u > 1}, if q is chosen large
enough. By (3.14) we have for every p,

and by (3.2) and (3.3) the right-hand side equals

(f e-2’’u")Gov(. )) (f P, Opl.u)

(@(f ), Z,)= (bo, Z,)= o(u), [u[ _> 1.

Hence we see from (3.17) that (3.5) holds, where Sq has the desired properties,
and this concludes the proof of the theorem.

Remark. Theorem 3.5 can be regarded as a generalization of asymptotic
estimates made by W. Littman [6]. Littman’s result is obtained by choosing the
distribution f as the Dirac measure.

4. Applications of the asymptotic formula. In this section we shall continue
the discussion of the classes of functions 0 and which we obtain, starting from
a fixedf ’(). The relations between the classes will be expressed by a family of
function spaces which is introduced by the following two definitions.

DEFINITION 4.1. Ko is the space of all functions in C() which have all their
derivatives of at most polynomial growth.

DEFINITION 4.2. K is a linear space of complex-valued functions on [ with the
following properties"

1. Let * denote ordinary convolution and let o be the Fourier transform of a
function in (). Then k e K Ko implies that k * q e K.

2. k e K Ko implies that k6- 2 U_. K.
3. There exists a positive integer such that k e Ko, ka e L(R) implies that

kK.
Remark. The operation k * o in Property 1 of Definition 4.2 makes sense due

to the fact that all functions in Ko are of at most polynomial growth. Obviously
k*eKo.

In order to indicate the applicability of our results we give here some examples
of spaces K.

(a) K LP(), where 1 =< p __< oo.
(b) Given real numbers and p, 1 __< p < c, K is the space of functions k

such that klal e L"(E).
(c) K is the space of functions on E for which the restrictions to ]-, O

and [0, oo[ belong to LI( oo, O) and L(O, ), respectively.
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(d) Given a real number e and a nonnegative integer q, K is the space of
measurable functions k, for which there exist complex coefficients (Cp)- 1, depend-
ing on k, such that

q-1

k(u) ,,16(u)l6(u) 2,, / O(16(u)l 29
p=O

as lul - ,LEMMA 4.3. Let be real and p an integer. Then, for every Fourier transform
q9 of a function in (R), k K I"1 Ko implies that

(4.1)

Furthermore, the space of all k such that ]616Pk K is itself a space of type K, that
is, it satisfies Definition 4.2.

Proof The only problem concerning the second statement is the verification
of Definition 4.2, Property 1, for the space in question, but this is a direct con-
sequence of the first statement. The latter will now be proved.

Let us choose the positive integer m so large that k6- 2m is a bounded function.
This is possible since k e Ko; hence it is of at most polynomial growth, q is a
positive integer to be determined later. A Maclaurin expansion gives

q-1

(1 z)-+/ cz + O(z9
v:0

if z R, [z[ =< 1/2, where (cd%- are coefficients independent of z and q. From this
we obtain for u , v [, putting z iv/iu,

(4.2)
q-1

v=O
+ Ra(u, v),

where, for some constant Cq,

(4.3) IRa(u, v)l Clvllul --+p)/2

if lul 2, Ivl lul. It is easily seen from (4.2) that

(4.4) IRq(u, v)l clvlq+t=+t/2-

if lul > 2, Iv[ > 1/21u[, and if the constant C is chosen large enough.
We now take u , lul _>- 2, and form

(4.5)
-16(u)l=&(uY [" ,(016(u Ol-=6(u O-k(u )d.

By (4.2) we obtain

(4.6)

A(u) c(6(u))- 2 q(v)(iv)k(u v) dv
v=0

+ 16(u)l=O(u) y qg(v)R(u, v)k(u v)dv A(u) + Az(U).
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A1 is well-defined, for every u e R, by the relation (4.6). The function v q)(v)(iv)
is obviously a Fourier transform of a function in !(). Hence by Properties 1 and
2 of Definition 4.2, A e K. By the remark, A e Ko and A e Ko. Hence if we define
A2 on [ by the relation A A1 + A2, we see that A2 e Ko. Hence it remains to
show, due to Property 3 of Definition 4.2, that A26t L(N) if q is properly chosen.

By (4.3) and (4.4) we have, for lu] _-> 2,

IA2(u)l <_ Cqlul(+P)/2{ fIvl- lul/2

+ f ,q)(v),,v,q-l+l+p’/2lk(u-v),dv}.
Using the inequalities

1 + u vl _-< 1 + ul + vl 21ul

1 +lu-vl__< 1 +lu] +]vl_-<41v]

we obtain

IAz(u)l < Cqlul-q+m2

for Ivl lul/2,

for

f
Ivl<-lul/2

Iq(v)llvla(1 -4-lu- Vl)-mlk(U v)l dv

lul > 2

lul 2,

-t- Clul I=+ Pl/222m f
Ivl_-<lul/2

o(v)l Ivl+m- + I+

(1 q-lu vl)-lk(u v)l dv

<= Cqlul-q+’2’f I6o(v)llvlq(1 q-lu- vl)-’lk(u -.v)l dv

P
-t- Cq22m+lt+p[/2 +’/2lul-’/2 JR Io(v)l Iv[q+l+pl+m- +,/2

(1 4-lu vl)-"lk(u v)l dr.

Both integrals can be interpreted as convolutions between functions in LI(R)
and L([R); hence they are bounded in u. Choosing q so large that q + m <_ 1/2,
we see that the relation in Property 3 of Definition 4.2 is satisfied for A2; hence
A2eK.

We are now in a position to formulate and prove the two main theorems,
Theorem 4.4 and Theorem 4.5, which establish explicit relations between the
functions ao and q, which are obtained from a given fe ’().

THEOREN 4.4. Let K satisfy Definition 4.2 and let xo D satisfy the assumptions
of Theorem 3.5. Let e (Jo), g/(to) 4 O. Then there exists a neighborhood Uo
c U of xo such that o e K implies that to63 1- e K for qo @(Uo).

Proof Let U V1 x J1 be a neighborhood of xo, so small that the properties
of Theorem 3.5 hold. Then let J c J1 be chosen such that to e J and 4= 0 on
J. Put Uo V1 x J. To prove the theorem, let us first observe that if q (Uo),
all terms in (3.5), except possibly the last one, belong to Ko, hence the last one,
too, belongs to that class. Choosing q large enough, we see from Property 3 of
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Definition 4.2 that Sq K. By Property 2 of Definition 4.2 it suffices to show that
q,p e K for every p >__ 0. But p @(J) by Theorem 3.5, and hence we can write
p Op/, where Op @(J). Definition 3.2 then gives

bop tp(f lt) Opt(f i) Opbq,,
and hence p is a convolution between K Ko and the Fourier transform

of Op. Hence #,p K by Property 1 of Definition 4.2.

THEOREM 4.5. Let K satisfy Definition 4.2 and let Xo D satisfy the assumptions

of Theorem 3.5. Let q 9(U) satisfy q(xo) 4: O, and assume that Xo is the only point
in supp (q) FI D with t-coordinate to. Then there exists a neighborhood J2 Jo of
to such that t,6)‘3"- 1-)‘ K implies that o K, for (J2).

Proof Let us assume that the neighborhood V x J of Xo satisfies the conditions
in Lemma 3.1. By the assumptions we can assume as well, by reducing J if neces-
sary, that the intersection of {xlt J} and supp (q)) FI D is contained in V x J,
that is, it is the set Do {x[x (c), c (J)}. We choose o (R) so that
Oo(to) 4= 0, supp (o) c J, and due to this choice we can find qo e @(V x J) such
that qo coincides with 1 in a neighborhood of Do f-) supp (o), where supp (o)
denotes the support of o, considered as a function on N". By linearity,

(4.7)

The function (P0o o0ocPo belongs to !(U), and its support does not inter-
sect D. Hence, by Theorem 2.7, aOo (POotPo e !(N), and thus the second term
in (4.7) is a function in Ko, which tends to 0 at infinity faster than any power of
the norm of the variable. By Lemma 2.5 we have oOo co * Oo. Hence, by
Lemma 4.3,

8,6)‘3"- 1-)‘ e K implies t,0o6)‘3"- 1-)‘ K.

From this discussion we see that
)‘ -),,6)‘5"-1-)‘ e K implies a,0o0,o6 /5 K.

Since the support of (PoCPo is contained in V J and (p(xo)d/o(Xo)tpo(Xo) :/: 0, we
conclude that it is no restriction to assume from the outset that the support of
is contained in an arbitrarily prescribed neighborhood of Xo.

Thus we are free to assume that supp ((p) V1 J1, where V1 and J1 satisfy
the conditions in Theorem 3.5. We introduce a neighborhood J J1 of to such
that (p(ct(q(t))) :/: 0 on J. Let (tptr)) be functions in @(J) to be determined later.
Applying (3.5) with (p exchanged to (ptptr) we obtain

q--1

(4.8) ao,,fi)‘3"-1- )‘ fio,.fi-ZP + S,,
R=O

where, (J), and it is easy to see that S,,(u) O(lul-), as lul , for every
m, if q is chosen large enough, and that this choice can be made independently of r.

The function pO) is assumed to satisfy q)(to) O; otherwise it can be chosen
arbitrarily. The remaining functions q") are determined recursively by the rela-
tions

(4.9) (p()co(cp (Z J) Op,s--p, S >= 1,
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and this is possible, since co(t)tp(((t))) 0, if e J. Here co is defined in Theorem
3.5. But it is easy to see that

o()co(o t’) 0o,,
and hence (4.9) can be written

(4.10) @,_ 0.
p=0

Multiplying the relation (4.8) with 5- 2,, and adding the relations for 0 __< r __< q 1,
we obtain

q-1 2q-2

Z atPtP(r,(’- 2r’n-1 -, DOo, ..[_ (- 2s d/v, -[-
r=0 s=q p=s-q+

where, for every m, Sq(u) O(lu[-m), if q is chosen large enough. It is obvious that,, are distributions of bounded order, uniform in p and r, and hence all terms
on the right-hand side, except possibly the first one, belong to K, ifq is large enough.
As for the left-hand side, we can observe that aoo<) q()ao for every r, and hence,
by Definition 4.2, the left-hand side belongs to K. Thus boo,o K. But by (4.9),
O0,o(to) : 0; hence e K for any , I(J2) if J2 J is a sufficiently small
neighborhood of to.

We shall now apply Theorems 4.4 and 4.5 to prove a theorem on radial dis-
tributions. The theorem generalizes results of M. Gatesoupe on radial functions
(cf. [2], [3], [4] and [5]). We first give two definitions.

DEFINITION 4.6. A radial distribution with compact support in N\{0} is a
distribution f , defined by Lemma 2.4, where fe ’(N) with supp (f) in a
compact subset of ]0, c[, and where O(x) Ixl, x \(0} .fo can be inter-
preted as a distribution in ’(N’) and by elementary Fourier analysis of distribu-
tions, its Fourier transform takes values ’([l), N’, where , is a complex-
valued even function on N. We call , the radial Fourier transform off

DEFINITION 4.7. We denote by K a class of functions satisfying Definition 4.2
and in addition to that the following two conditions"

4. k e K implies k6/ K.
5. k e K implies that the function u - k(-u), u e N, belongs to K
THEOREM 4.8. Let g be a radial distribution with compact support in ["\{0},

in the sense of Definition 4.6. f is the corresponding distribution in ’(). , is the
radial Fourier transform of g, f is the Fourier transform off. Let K satisfy Definition
4.7. Then

f K if and only if 16["- K1.

Proof. With (I)(x) [x[ on N"\ {0} we have the representation

g f (I) q(fo (I)),

where q is an arbitrary function in ("\{0}), taking the value 1 in an open set,
containing the support of g. Hence , ao with q) chosen in the mentioned way.
Let us first assume thatfe K. It is then enough to prove that every Xo
has a neighborhood Uo such that q)o@(Uo) implies that oo]61"-1 K1.
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For we can then cover the support of q9 with a finite set of such neighborhoods and
split ao into a sum of elements aov, where every q9 has support in such a neighbor-
hood.

We have to consider three separate cases. Let us first assume that Xo (o, to)
satisfies o - 0. Then Xo - D, and Theorem 2.7 shows that a0 (), if supp (p)
is contained in a sufficiently small neighborhood of Xo.

The second case occurs when o 0, to > 0. Then q(t) for every in
the corresponding Jo and 2 in Theorem 3.5 is 0. Moreover, q, f* . Hence, K1. By Theorem 4.4 there exists a neighborhood Uo of Xo such that p (Uo)
implies cio5"-1 K1 ;hence by Definition 4.7,

The third case when o 0, to < 0, is discussed in a similar way. This time
2 n 1, W(t) -t,/3,(-u) f* (u), and due to Property 5 of Definition 4.7
we obtain ofi"- K hence 11 K1.

To prove the converse, we assume ,11- Kx, Then a6"-1 K1 for a
function o (E"\{0}), which takes the value 1 on the support of g. Since D is a
subset of the t-axis, Theorem 4.5 shows that every to > 0 has a neighborhood J
in ]0, o[ such that ff @(J) implies that f* K1. The usual compactness
argument shows then that f

There are many possibilities to find further applications of our results. It
should first be observed that we have here restricted the discussion of the Fourier
transform of qg(fo ) to the values taken on a particular one-dimensional sub-
space of [". The same discussion can be carried out on any one-dimensional sub-
space, and this gives a complete picture of the behavior of the Fourier transform in
terms of the transforms q(f qJ), where qJ varies in the class of functions obtained,
when we for every direction in the E"-plane carry out the same discussion as the
one which we have given for the direction of the t-axis. By a close examination of
the uniformity properties of the remainder term in (3.5) when the direction varies,
it is very easy to get theorems which can roughly be described as giving direct
connections between the n-dimensional local Fourier transform off 09 and the
one-dimensional local Fourier transform of the functionsf q. Special results of
this kind have been presented in [1], where in particular the case has been studied
in which all the functions q are affinely equivalent. In this context we only point
to the possibility of obtaining results in much more general settings.
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SATURATION THEORY IN CONNECTION WITH MELLIN
TRANSFORM METHODS*

W. KOLBE AND R. J. NESSELf

Abstract. If X denotes one of the spaces Lp, _<_ p < oc,. or C, where L is the set of all f with

[lf(r)lPr-1 dr] lip < oc and C the set of all f bounded and continuous on (0, o) with

lima-.1 [supo If(at)- f(r)l] 0, then fX provided r’f(r)X for every .a(a,r2). For
f e X a general approximation process Ia(f; r) o f(r/p)ka(p)p- dp of Mellin convolution type
is considered, the kernel {ks(r)}, 8 > 0, satisfying suitable conditions such that it constitutes an

approximate identity for 8 0 +, i.e.,

lim Ilr[Ia(f r) f(r)]llx =0 foreach o(o1,o2) f e X
8-*0+

The main purpose of this paper is the study of saturation phenomena of the process Ia(f; r). Using
Butzer’s integral transform method, a complete saturation theorem is obtained under suitable condi-
tions upon the Mellin transform of ka(r). As a significant application of the general results, the boundary
behavior of the solution u(r, 8) of Dirichlet’s problem for the wedge W {(r, 8)[0 < < ,
0 < 8 < 80}, 0 < 80 < 2zr, is considered in detail. This problem is first raised in a strong sense
(essentially as an abstract Cauchy problem) which allows a rigorous treatment of its solution via the
classical Mellin transform method. In particular, boundary values f,f2 X_..... ao n/8o, are
attained in the sense that for each a (-ao, ao),

lim Ilr[u(r, 8) f(r)][[ x 0, lim [Ir[u(r, 8) f2(r)]][x O.
0+ 8-8o-

For, for example, symmetric boundary values fx f2 f, the general saturation theorem then gives
that the above quantities cannot tend to zero too rapidly; thus I[r[u(r, 8) f(r)]llx 0(8), 8 0+,
implies f 0.

Integral transform methods such as Mellin transform methods have proven
to be of great importance in the solution of initial and boundary value problems
for partial differential equations (cf. literature cited in 4). The aim of this paper
is to study such Mellin transform methods in connection with a class of problems
in the theory of approximation. To this end, 1 gives some preliminary results
on Mellin transforms. In . 2 a general approximation process Ia(f; r) of Mellin
convolution type is introduced for which the convergence in the X,,2-topology
is shown in Theorem 2.2. Section 3 is devoted to a detailed study of saturation
phenomena of the integral Ia(f;r). Finally, 4 is concerned with Dirichlet’s
problem for a wedge; this problem is first raised in the strong interpretation (4.3)
which allows a rigorous treatment of its solution including uniqueness, and it is
shown that the solution may serve as an illustrative example for the general
results obtained.

1. Preliminary results on Mellin transforms. Letfbe a real-valued function,
measurable on (0, ). Setting

If d-ll/PIf(r)] p for 1 <__p< ,
(1.1) flip

ess sup If(r)[ for p ,
0<r<
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Apart from routine techniques, extensions to complex-valued functions are obvious.
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LP(--LP(O, o)) denotes the set of all ffor which the norm flip is finite (cf. [15,
pp. 94, 118]). C is the set of all functions f which are bounded and continuous
on (0, ) such that (see also Lemma 2.1)

(1.2) lim sup If(ar) f(r)l] 0.
al O<r<m

Obviously, C becomes a Banach space under the usual sup norm; thus C c L.
In the following, X always denotes one of the spaces C or Lp, 1 <= p < . If f,
g X, we write f(r) g(r) (a.e.) if equality holds for all r (0, ) in case X C,
and almost everywhere in case X Lp, 1 =< p < . A functionfis said to belong
to L,, if r’f(r)Lp for every 0. of the open interval (0.1,0.2); C,,,,2 and X,,,,
are defined correspondingly. 2 It is an immediate consequence that X,,,,2,
L,,,.2 c L1,,,,2. Indeed (cf. [1]), if f Lpal,rz for some 1 < p =< v, and if for
a (0.1, 0.2), cl ,c2 are chosen such that al < cl < a < c2 < 0.2, then by H61der’s
inequality,

r’f(r) + rlf(r)[
dr

(1.3)
_-< [(0. cl)p’]- l/p, ilrCf(r)ll p / [(c2 0.)p’-]- l/p, ilrCf(r)ll p,

where p, p’ as usual denote conjugate numbers, i.e., p-1 + p,-1 1. A sequence
{f,} c X,,, is said to converge tof X,, in the X,,,,;topology if

(1.4) lim r[f,(r) f(r)]llx 0

for each 0. e (0.1, 0"2) it follows that (1.4) then holds uniformly for 0. in any compact
subinterval of (al, a2). Finally, p belongs to BV,,,, if (i) p BVo(0, ), i.e., # is
of bounded variation on every compact subinterval of (0, ) and normalized by
p(1) 0, In(r) [p(r+) + p(r-)]/2 for re(0, ), (ii) f r’ld#(r)[ < v for every
0. (0"1,0.2).

Let s 0. / ir be an arbitrary complex number, and let A be the strip given
by A {sial < Re(s) < a, - < Im(s) < }. Forf L,,2 the Mellin trans-
form is defined by

(1.5) f ^(s) rf(r) r f(r) dr

Obviously, one has the estimate If^(s)] =< Irf(r)ll, a Re (s). Correspondingly,
the Mellin-Stieltjes transform of p BV,,,, is given by

(1.6) In
v (s) r din(r).

There is a close connection between Mellin and bilateral Laplace transforms.
Indeed, the substitution r exp {-x} yields (cf. [8, p. 33], [17, p. 246])

(1.7) f ^(s) e-’f(e -x) dx, in
v (s) e-s d[- in(e-)].

Sometimes we do not actually use the strong hypothesis that, for example, r’f(r) X for every
a (a, a2). However, possible generalizations are then quite clear from the context.
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Hence many of the fundamental properties of Mellin transforms follow from the
corresponding one for bilateral Laplace transforms. Thus the Mellin and Mellin-
Stieltjes transforms are holomorphic functions of s in the strip A (cf. [17, p. 240]).
Furthermore, the uniqueness theorem holds (cf. [17, p. 243 ff]), i.e., if for
f Lx,,2 [P B V,,2] one has f ^(s) 0 [p v (s) 0] for all s A, then f(r) 0
(a.e.) [p(r) 0] on (0, ). Since X,,o c L,, (cf. (1.3)), the Mellin transform (1.5)
is well-defined a for every f e X,,.

The convolution off e X,,2 and g e L,, is defined by

(1.8) (f* g)(r) f p.

It follows (cf. [15, p. 60]) that f* g exists (a.e.) on (0, ) andf* g e L,,. In fact,
f. g6X,,2, and using the generalized Minkowski inequality (cf. [11, p. 148])
and substituting r pt, one has

(1.9) r(f * g)(r) x =< fo
for each a (a l, 02). Furthermore, f* g g * f, and the convolution theorem
states that

(1.10) If * g] ^(s) f ^(s)g ^(s), s A.

Let us conclude with a result concerning Mellin transforms of derivatives
(see also [7, p. 44], [14, p. 291], [20, p. 112]).

LEMMA 1.1. Let E r(d/dr) and n be a fixed positive integer. Suppose that all
Er’f, 0 <= k <= n 1, are absolutely continuous on every finite subinterval of(O, ),
i.e., E"- if ACtor(O, o), and that f, E"f X,,. Then

(1.11) [E"f] ^(s) (-s)"f ^(s), s A.

Proof. Let n 1. Proceeding as in the Fourier transform case (cf. [6,
Theorem 5.1.16]), let

fl if r[1/e,1],
(1.12)

0 otherwise.

Obviously, m e Lk oo,oo(0, c) and

s- 111
(1.13) m ^(s)

1,

Of course, the definition of the Mellin transform (and correspondingly of the bilateral Laplace
transform) may be given under considerably weaker hypotheses upon f. We refer to [17, p. 246 ff]
for the "improper integral"-version as well as to 15, pp. 94, 118] where the Mellin transform is defined
as the limit ofl/,r+i* If(r)dr in the mean of order p’ over -oe < z < o as a in case rf(r)
belongs to Lp, < p __< 2, for just one certain fixed a; see also [20, p. 106 if] for the definition in connec-
tion with generalized functions. However, in this paper it is sufficient to consider Mellin transforms of
functions f satisfying the restrictive properties stated above.
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Since f ACo(0, oe), it follows by an elementary substitution that

f(er) f(r) (Ef)
/e

ctp
(m f)().

P

Passing to Mellin transforms, since [f(er)] ^(s) e-Sf ^(s), it follows by (1.10),
(1.13) that for s - 0,

(e 1)f ^(s) s-’(e 1)[Ef] ^(s),

which proves (1.11) for n 1. In view of the relation

(1.14) (- 1)"-k
k=0

f(re)
r

/e P / P, P P,

which follows by mathematical induction, the proof for arbitrary positive integers
n follows along the same lines.

2. Singular integrals of Mellin convolution type. The approximation pro-
cesses to be discussed in this paper will be given as singular integrals of Mellin
convolution type, thus in the form

(2.1) Io(f; r) f ka(p)

dp

P

Here the parameter 0 ranges over some interval (0, 0o), and the kernel {k(r)}
is assumed to be an approximate identity’ for O --, 0 /, i.e., for some al, o2 with
--00 0"1 < 0"2 < O0"_

(i) ko e L ["] L,,2 for each O e (0, 0o),

(2.2)

dr
(ii) lim ko(r)--= 1,

80+ F

(iii) IlGllx M, the constant M being independent of ,9 (0, 0o),

(iv) lim + [1 + rlk(r)l_dr 0 for each (fixed) 6 e (0, 1) and
30+ +6

F

G (G1, G2).

Then Io(f; r) approximates every f X,, in the X,,2-topology as 0 0+.
To prove this convergence theorem, we need the following result concerning
continuity in X,,.

LMMA 2.1. Let f X,,. Then for each (al, az),

(2.3) lira[f(r)- f(r/p)]llx (1 + p)llrf(r)llx,

(2.4) lim lira[f(r) f(r/p)]llx O.
p--*l

4 Approximate identities for ,9 ,90- are defined similarly.
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Proof. Relation (2.3) follows by Minkowski’s inequality. To prove (2.4),
let X Lp, 1 =< p < , and a (al, o2) be fixed. Substituting r e -x, p e -t

(cf. (1.7)) and setting h(x) e-’Xf(e-X), it follows that

IIr’f(r) (r/p)’f(r/p)llvp f_’ Ih(x)- h(x- t)l p dx.

Since rf(r)eLp implies f_oolh(x)lPdx < c, the usual theorem concerning
continuity in the mean assures that the right-hand side tends to zero as 0.
Therefore,

lim [[rf(r) (r/p)f(r/p)ll p O.
p-

This implies (2.4) since by Minkowski’s inequality,

lira[f(r) f(r/p)]llp <= IIrf(r) (r/p)f(r/p)llp + l1 pl Ilr=f(r)tlv
In case X C, the proof follows more immediately (cf. (1.2)); note that rf(r) C
if and only ifh(x) e-’Xf(e -x) is bounded and uniformly continuous on (- , ).

THEOREM 2.2. Let {ka(r)} satisfy (2.2). Then for every f
(2.5) r’I(f r)llx < rko(r) I1 r"f(r) Ix, a e (a, a),

(2.6) lim IIr[Ia(f; r) f(r)]l x O, cr e (1, 2).

Proof. Relation (2.5) follows by (1.9). To prove (2.6), by Minkowski’s
inequality,

;oIlr’[Io(f r) f(r)]llx <= r" f f(r) ka(p)
x

(2.7)

+ 1-- k(P)
dp

lr’f(r) x J + J,
P

say. Obviously, limo+ J 0 by (2.2) (ii). Concerning J, by the generalized
Minkowski inequality and (2.3),

J r" f f(r) Iko(p)ld
x P

<= r f f(r) xlkO(p)l

+ rf(r)[ x + (1 + p)lk(p)[
dp

Jl + J,
+ P

say. In view of (2.4), to each e > 0 there exists 6 with 0 < 6 < 1 such that
Ir’[f(r/p)- f(r)] x < for all 11 p[ < 6. This implies J < M by (2.2)(iii).
Now take 6 fixed. Then lim.o+ J 0 by (2.2)(iv), and (2.6) is completely
established.

In the following we always assume that the kernel {k(r)} is an approximate
identity in the sense of (2.2). Though not each of the hypotheses in (2.2) is used
at each time explicitly, we make the assumption in our further approximation
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theoretical investigations in order to be sure that the process actually converges
to the given function f

3. Saturation in XI,2. Let fXl, and Io(f; r) be a singular integral
as given by (2.1). The main purpose of this paper is to study saturation for this
convolution integral in the Xl,,2-topology. Thus the problem to be considered
is the precise characterization of the class F[X,2; lo] of functions fXI,
for which the order of approximation by Io(f; r) in the X,,-topology is exactly
of best order O(0), i.e., for which

O(f lo) ]]r[Io(f r) f(r)]llx 0(0), 0 --+ 0+,

for each a (01,02), and the approximation is best possible in the sense that if
D(f; lo) o(O) for each a (01,02) then necessarilyf(r) 0 (a.e.). This concept
is essentially that of saturation as introduced by Favard [10]; F[X,,,_; lo] is
called the Favard (or saturation) class which, of course, is assumed to contain
at least one non-null function.

To study saturation phenomena of the approximation process lo(f; r), the
convolution structure of 10(f; r) suggests the application of the integral transform
method as outlined by Butzer [4]. Thus, following Butzer [3] in the Fourier
transform case and Berens-Butzer [1] in the unilateral Laplace transform case,
the kernel {ko(r)} is assumed to satisfy the following conditions:

(3.1) Given a kernel {ko(r)} = L,,,_, let there exist (s) 0, holomorphic
on the strip A, and y > 0 such that for every s A,

lim O-[k(s)- 1] ,(s).

(3.2) Given a kernel {ko(r)} = L:,,, let there exist vo B V, I,,_ for each
0 < 0 < 0o such that, with @ and y as in (3.1), the representation

O-[k(s) 1] O(s)v (s)

holds for all s e A and such that f;o rldva(r)[ 0(1) as 0 --, O+ for each

Conditions of the type (3.1), (3.2) are by now standard in the study of saturation
of convolution integrals; the reader is referred to Butzer-Nessel [6, 12.6] for
detailed bibliographical comments.

THEOREM 3.1. Let f e X,,2 and {ka(r)} satisfy (3.1)./f there exists g e Xo.l,O.
such that

(3.3) lim rIlo(f;r)-f(r)0-o + O
g(r) 0

x

for each a e(, er2), then O(s)f ^(s) g^(s) for all s e A.
Proof. In case X L1, (1.5) and (1.10) imply (with Re (s)

(3.4)
kaY(s) 1
0

f^(s)-g^(s) < r"
Ia(f;r)-

0
g(r)

so that the assertion follows by (3.1) and (3.3). In case of arbitrary X-spaces,
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the estimate (1.3) assures that (3.3) is also valid in Ll-norm, completing the proof.
COROLLARY 3.2. Iff X,,,, and {ka(r)} satisfies (3.1), then

Ilr[Ia(f r) f(r)]llx o(0), 0--,0+,

for each 0. (0., 0-2) implies f(r) 0 (a.e.) on (0, ). Moreover, the null function
is the only invariant element of the singular integral Ia(f r).

Proof. Theorem 3.1 implies /(s)f ^(s) 0 on A. Since (s) is holomorphic
and does not vanish identically on A, it follows that f ^(s)= 0 on A, so that
f(r) 0 (a.e.) by the uniqueness theorem. Obviously, the null function is an
invariant element of Ia(f; r), i.e., Ia(f; r) f(r) (a.e.) for every 0 (0, ,90). Con-
versely, iff X,,,,2 is invariant, then [k(s) 1If ^(s) 0on A by the convolution
theorem. By (3.1) it follows that q(s)f ^(s) 0 on A, and thus f(r) 0 (a.e.) as
above.

For the next result it is convenient to introduce the following classes of
functions:

{f C,,[(s)f ^(s) g ^(s), g 6 L,},
V[X,, (s)] f Lx,,2[k(s)f ^(s) p v (s), p SV,,2},

{f L,,2l(s)f ^(s) g^(s), g L,,}, 1 < p < o.

THEOREM 3.3. Let fe X,,,2 and {ka(r)} satisfy (3.1). Then the approximation

(3.5) IIr"[Ia(f r) f(r)]llx O(O), O 0+,

for each a e (0.1,02) implies f e V[X,,,, O(s)].
Proof. Setting ha(r)= O-[Ia(f;r)- f(r)], it follows by the convolution

theorem and (3.1) that in any case

(3.6) lim h(s) lim O-[k2(s) 1If ^(s) O(s)f ^(s)
a-*O+ a-O+

for every s A. Let [Cl, C2 be an arbitrary closed subinterval of (ax, 0.2), and set

O<r=< 1,
(3.7) n(r)=

{. r, 1 < r < .
We first treat the cases that X is either Lp, < p < , or C, the latter case being
subsumed in the following under the case p . Then the hypothesis (3.5) gives
that, for sufficiently small O, there exists a constant M such that

< IlrC’ha(r)ll + IlrC2ha(r)ll < M.IIn(r)ha(r)llp p p

Hence by the weak* compactness theorem for Lp, 1 < p , there exist a
null sequence {Oc,,c,j} and a function gc,,(r) with n(r)gc,,cff) Lp such that

fo(3.8) lim O(r)n(r)hac,,c=,j(r) O(r)n(r)gc ,c(r)
dr

j--+ r

for every Lp’. Certainly, n(r)gc,,c=(r)Lp implies r"gc,,c(r)eLp for every
a z [Cl, c2], and putting

s-c 0 < r < 1,
(3.9) (r)

rs-c2 1 <r< c,
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with cl < Re (s) < C2, (3.8) in particular gives by (3.6) that

(3.10) ^g,(s) lim hL,,(s d/(s)f ^(s)
j--*

for every s with ca < Re (s) < 2. The assertion would follow if one could show
that gc,,c2 is indeed independent of the particular choice of c l, c2. To this end,
let [c], c], [c, c] be two arbitrary closed subintervals of (a, a2), and let da ,d2
be such that

Then it follows by (3.10) and the uniqueness theorem that gc,,(r)= g,,d2(r)
gc,(r) a.e. Hence there exists a function g such that r’g(r)e Lp for each

a e (a, a2) and O(s)f ^(s) g ^(s) for every s A.
Let X L. Setting (cf. (3.7))

la(r) n(p)ha(p) d--p-P
P

the hypothesis (3.5) implies for sufficiently small that there exists a constant M
such that

ldlaa(r)l In(r)G(r)ll IIr’h(r)ll + IlrCha(r)ll M.

If Co denotes the subset of all (I)e C for which limr-o+ (I)(r) limr-oo (I)(r) 0,
the theorem of Helly-Bray (cf. [17, p. 31]) assures the existence of a null sequence
{Oc,,,j} and of Pc,,c: BVo(O, ) with n(r)ldpc,,c(r)l < such that

(3.11) lim (r)n(r)ho (r)r (r)n(r) d,,(r)

for every Co. Obviously, y r[d,,(r)[ < for every [c, c2], and using
of (3.9), then (3.6) and (3.11) deliver 6(s)f (s) vx,(s) for every s with

c < Re(s) < c2. Now it follows as above that (r) ,a(r) indeed belongs to
BG,, and that @(s)f (s) v (s) for all s A. Thus f V[L,; 6(s)], and the
proof is complete.

THEOREM 3.4. If {ko(r)} satisfies (3.2), then f6 V[X,; 6(s)] implies (3.5)
for every

Proof. Let X Lp, 1 < p < and g 6 Lp be such that 6(s)f (s) g (s)1,2

for all s e A. Then in view of (3.2),

(8-[I(f; r) f(r)])(s) 8-r[k(s) 1If (s)
(3.2)

(s)O(s)f (s) (s)v (s).

Defining the convolution g * dva of g L and va e BV, by12 12

;o(3.3)
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one has similarly to (1.8)-(1.10) that g dva LP,,2 and

(3.14) ]rO(g * dva)(r)llp <= IlrOg(r)ilp rO[dva(r)],

(3.15) [g * dvo] ^(s) g^(s)v (s), s e A.

Hence it follows by (3.12) and the uniqueness theorem that for every
f e V[LP,,,2 O(s)], 1 < p < o, there exists g e LPl,, such that the representation

;o(3.16) 0-’[Ia(f; r) f(r)] g(r/p) dva(p) a.e.

holds. By (3.14) this implies the approximation (3.5) in the case of the present
X-spaces.

If X C and g e L, is such that O(s)f ^(s) g ^(s), then one has again
(3.16) so that

ITalia(f; r) f(r)]llc <= O’ Irg(r) rldva(r)[.

Finally, let X L and p e BVI, be such that O(s)f ^(s) p v (s). Similarly
to (3.12) one has

I fi" I(f p) f(p) ;p] v k(s) 1 V (s)v (s(317).
0’

(s)
O’ f ^(s) =/

According to the convolution theorem for functions la, v BVI, there exists a
uniquely determined function/ * dvo BV,,,,2 such that

fo fo(3.18) rld[la * dva](r)l <-_ rldla(r)[ r’ldvo(r)[,

(3.19) [p * dva] v (s) lav (s)v (s), s e A

(compare with the bilateral Laplace analogue in [17, p. 257]). This implies by (3.17)
and the uniqueness theorem for Mellin-Stieltjes transforms that

fi" Io(f p) f(p) dp
(la * dvo)(r).

0 p

Therefore by (3.18) and (3.2) for 0 0+,

foO-[[r"[Ia(f r) f(r)]l[ r]d[l * dva](r)l O(1).

This completes the proof of Theorem 3.4.
Combining the results so far obtained we arrive at the following saturation

theorem for the approximation of functions f e X, by convolution integrals
of type (2.1) in the X,2-topology.

THEOREM 3.5. Let f e X,, and {ka(r)} satisfy (3.1), (3.2). Then the singular
integral Ia(f; r) is saturated in X,,, with order 0(0), 0+. Afunctionfbelongs
to the Favard class F[X, ;Ia] if and only iff belongs to V[X,, O(s)].
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Indeed, this is an immediate consequence of Corollary 3.2 and Theorems
3.3, 3.4, provided we can show that the Favard class contains at least one element
which does not vanish identically. To this end, it follows by (3.2) and the convolu-
tion theorem (cf. (3.15)) that for every f X,,,2,

O(s)[f* dv] ^(s) O(s)v (s)f ^(s) 0-[k(s) 1If ^(s)
(3.20)

(0-’[Is(f; r) f(r)]) ^(s)

for every s e A. This, first of all, gives f d% e V[X,,, O(s)] for every f
and 0 < ,9 < 0o. Now it is easy to see that there exists at least one fo
such that fo * d% is not the null function for all 0 < 0 < 0o. For, otherwise,
f ^(s)v(s)= 0 by (3.15) and thus I(f; r)= f(r) by (3.20) for every f e
a contradiction to Corollary 3.2 which states that the null function is the only
invariant element of I(f; r).

4. Diriehlet’s problem for a wedge. For an arbitrary, fixed 0o 0 < 9o < 2rc,
let W denote the wedge in the plane as given (in its polar coordinate form) by
W {(r, 0)10 < r < c, 0 < 0 < o}. Dirichlet’s problem for W then calls for a
solution u(r, ,9) of Laplace’s equation

(4.1) r + u(r, O) O, (r, O)e W,

which attains prescribed values fl(r), fz(r) at the boundaries 0 0, 0 0o"
(4.2) lim u(r, 0) fl(r), lim u(r, 0) f2(r).

g-0+

This problem, in its various interpretations, is a standard example for the use of
Mellin transform methods in the solution of partial differential equations; see,
for example, Colombo [7, p. 72], Lomen [13], Sneddon [14, p. 294], Zemanian
[20, p. 121], also Uflyand [16, p. 119 ff]. In this paper we are interested in the
following interpretation of a solution"

Given two functions f,f2 e Xra,.2 we call for a function u(r, O) on W
such that with E r(c/c3r), D

(i) c3Zu(r, O)/cr, c2u(r, O)/cO2 exist for all (r, 0)e W,
(ii) u(r, O) satisfies (4.1) for all (r, 0)e W,

(iii) u(r, 0) X.,,. for each 0 < 0 < 0o, and for each a e(aa, r2),
(4.3)

lira IIr[u(r, O) f(r)]llx 0, lim Ilr’[u(r, O) fz(r)]llx O,
g0+ g-go-

(iv) Eu e AClo(0, oe) such that EZu Xa,r2 for each 0 < 0 < 0o,
(v) DJ+ u e X.,,. for each 0 < 0 < 0o, j 0, 1, and for each cre (a,

lim IIrK x{(OJu)(r, ,9 + rl) (OJu)(r, 0)} (OJ+ au)(r, 0)][[x 0.

To solve this problem, let us assume that there exists a function u(r, O) satisfying
these conditions, and apply the Mellin transform to (4.1). Setting [u(r, 0)]^(s)

u ^(s, ,9), it follows from (iii), (iv), and Lemma 1.1 that

(4.4) [(E2u)(r, 9)] ^(s)= sZu^(s, oa), s A, 0 < 0 < ,9o.
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On the other hand, for j 0, 1,

(4.5) [(D s6A, 0<0<0o,

since by (v) (see also (1.3), (3.4)),

]rl-a[u^(s,O + rl) u^(s,O)] [(Du)(r,O)]^(s)] o(1), q 0,

in case j=0, and similarly for j= 1. Hence, for each j-0,1 and s tA,
(DJ+lu^)(s,O) exists for 9(0,0o); in particular, u^(s,O) and (Du^)(s,O) are
continuous functions of 0 on (0, Oo) for each s A. Since by (iii),

(4.6) lim u ^(s, ,9) f (’(s), lira u ^(s, O) fz(S)
8-0+ 8o-

for each s A, the Mellin transform of any solution of (4.3) is therefore necessarily
a solution of the (ordinary) differential equations

(4.7)
c32u ^(s’ O)
02 -3

I- S2H ^(S, O) O, S A,

satisfying the boundary conditions (4.6). By classical methods the solution of
(4.6)-(4.7) is given by

sin (0o O)s sin Os
+ f.(s).(4.8) u ^(s, 0) f (s)

sin 0oS sin 0oS

Hence, if (4.3) has a solution, then its Mellin transform is given by (4.8). In order
to reconstruct the full solution, let 0.o rC/0o and

sin 0.00(4.9) Zj,o(r) Oo r" + (- 1)J2 cos 0.00 + r-’ j 1,2.

Then Zj,o e L[ o,o fq C_
o,,o for j 1, 2 and (cf. [9, p. 309 (1.2)])

sin (0o O)s sin Os
z,I)(4.10) Zl,o(s)

sin OoS sin OoS
Hence, if 0.1,02 are such that -ao -< 0.1 < 0.2 -< 0.0, then by the convolution
and uniqueness theorems,

(4.11) u(r, O) (A * z,)(r) + (f *

for all (r, O) W since both sides represent continuous functions. Apart from (iii)
which is discussed below in detail, one checks directly that u(r, O) as given by
(4.11) is indeed a solution of (4.3). Thus the procedure shows that problem (4.3)
has a unique solution for (0.1,02) (--ao, 0"o)" Though the representation (4.11)
of the solution is well known, the present approach, particularly the definition
of a solution (really raised as an abstract Cauchy problem, cf. Butzer-Berens
[5, p. 3 ff]), allows a rigorous treatment inspired by the study of Bochner-
Chandrasekharan [2, p. 40 ff] on Fourier transforms (see also Butzer-Nessel
[6, Chap. 7] and the literature cited there).
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Concerning particular values of 0o, let us mention the case 0o z, so that

ao 1. Then W is the upper half-plane, and (4.11) reduces to the well-known
singular integral of Cauchy-Poisson"

(4.12) P(f;x; y) Y ]D f ) du

upon setting

x rcos0, y rsin0, f(t)= f,fx(t) for 0

(fz(-t) for t<0.

Let us further mention (cf. 1) that the above problem may also be raised in
connection with the bilateral Laplace transform. Then we ask for a function v(x, y)
which solves the Laplace equation

2v(x y)
(4.13)

c32v(x’ y)
+ 0

63X2 y2

in the strip B {(x,y)10 < x < zt,- < y < ) and satisfies the boundary
conditions

(4.14) lim v(x, y) gl(Y), lim v(x, y) g2(Y).
x-*O+

The solution then takes on the form (compare also Widder [18], [19])"

1 I sin x
dtv(x, y) - ._ g(Y t)cosht- cosx

(4.15)

I sin x
dt.+

d-
g2(Y t)cosh + cos x

Indeed, if z r exp {iO} and z’ x + iy, then the wedge W and the strip B are
related by the conformal mapping z exp {i(Oo/ZOz’}, i.e., by 9 (Oo/Zt)x and
r exp{-(Oo/n)y}, so that (4.11) is converted into (4.15) by setting gj(t)

f(exp {-(Oo/Zt)t)), j 1, 2 (cf. (1.7)). Therefore the above treatment for (4.3)
also covers the present version of the problem, and thus Dirichlet’s problem
for the strip B.

Let us now turn to condition (4.3)(iii). First we treat the symmetric problem
(cf. Sneddon [14, p. 295 if]), i.e., we assumefl(r) fz(r) f(r). Then the solution
u(r, O) as given by (4.11) is denoted by So(f; r) and takes on the form

(4.16) So(f; r) (f *

where the kernel {go(r)} is given by (ao rt/Oo)

2 sin ao,9 r" + r-(4.17) zo(r)-- Z l,o(r) q- Zz,o(r)-- 0o r2 2 cos 2aoO + r-2r"

{go(r)} satisfies (2.2) for a -ao, a2 ao. Indeed, since go(r) >_- 0, (4.10) implies

[[ro(r)[ rzo(r)_dr sin (0o O)a + sin Oa
r sin Ooa
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for every a e (-do, do) and 0 < O < Oo. In particular,

(4.18) Z(r) dr- 1

for all 0 < 0 < o, proving (ii) and (iii) of (2.2). Finally, given 0 < < 1, then
for each o- e (- oo, o),

2 r + rTM 4 r+-
[rx(r)[ < r -o)2

<
0o (r" r 0o (1 (1 T- )+2ao)2

for 0 < r < 1 fi and 1 + < r < o, respectively. Since lim_.o+ z(r) 0 for
r # 1, (2.2)(iv) follows by Lebesgue’s dominated convergence theorem.

Concerning conditions (3.1), (3.2) for a -do, a2 do, in view of (4.10),

(4.19) lim
Z(s)- 1

s tan (OoS/2) 2(s).
80+ 0

Thus (3.1) is satisfied with 7 and if(s) 2(s). Concerning (3.2), we have

Z(s) 1 cos (0 Oo)S cos Os -cos (OoS/2)
+ +

02(s) sO sin OoS sO sin OoS sO sin (OoS/2)"

In view of [9, p. 316 (27), p. 315 (18)] the three terms on the right are the Mellin
transform of

(4.20)(1/29) log [1 2r cos aoO + rZa], (1/2z0) log [1 + 2r cos aoO + r2],

(- 1/2re0)log [1 r2*]2,

respectively, for each s with -do < Re (s) < 0. However, their sum

r2- 2 cos 2aoO + r-2
ha(r) 2- log

(r,O r_,O)2

is an element of L in fact, ha(r) > 0 and ha(r) ha(1/r) Therefore since
0-0,0-

IIr"ha(r)lll h(a)= O(1) as O 0+ for each a e(-ao, do), condition (3.2) is
satisfied by the kernel {zo(r)} with vo(r) f] ho(p)p -1 dp.

Hence, if we pose the problem concerning in what manner the solution (4.11)
of Dirichlet’s problem (4.3) for the wedge W attains symmetric boundary values,
the results of 2 and 3 give us the following theorem.

THEOREM 4.1. For symmetric boundary values f e X_o,o, ao /Oo, the
solution (4.16) of Dirichlet’s problem for the wedge W attains its boundary value at
O 0 in the X_,o,,o-topology, i.e.,

(4.21) lim [[r*[S(f; r) -f(r)][[ x 0
90+

for everyf X_,o,, and a 6(-ao,ao). The approximation (4.21)is saturated in

X_,o,, with order 0(9), 0 0 +, the Favard class being characterized as the class
v[x_o,o (s)

This result reveals that the solution S(f; r) cannot tend too rapidly towards
the boundary value f. In fact, if for each a (-do, do),

IIr[S(f r) f(r)]llx o(0), 0 0+,
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then necessarily f(r) 0 (a.e.). Moreover, for X C, for example,

Ilr[S(f r) f(r)]llc

if and only if there exists g LE such that s tan (OoS/2)f ^(s) g ^(s)O-0,

Obviously, there are completely analogous results concerning the question
as to how So(f; r) attains symmetric boundary values at ,9 ,9o. Thus {Zo(r)}
as given by (4.17) is also an approximate identity for 0 --+ 0o- and (f.

(4.22) lim Ilr[Sa(f r) f(r)]llx 0
,-+o

for every f e X_.o,. and cre (-ao, ao); the approximation (4.22) is saturated in
X_.o,. with order O(0o 0) and Favard class characterized as V[X_.o,.o; 2(s)].

Next we consider the one-sided boundary value problem, i.e., we assume
f(r) f(r), f2(r)= 0 (cf. Zemanian [20, p. 121]). Then the solution u(r, O) as
given by (4.11) takes on the form (f* 7.,a)(r) and is denoted by A(f; r); thus

(4.23) A(f r)
sin aoO o f(r/p) dp

9o po 2 cos ao0 + p-,O p

Again it follows that the kernel {Zl,(r)} satisfies (2.2) for 0.1 -0.o, 0.2 0.0"
Indeed, 7.1,o(r) _>- 0 and

(4.24) 7.1,(r)
dr Oo 0
r ,90

Concerning conditions (3.1), (3.2), in view of (4.10),
A

(4.25) lim 7.1,(s)- 1
-,o + ,9

s cot OoS 21(s).

Thus (3.1)is satisfied with 1, ,(s) 21(s), and 0.1 -0.0,02 0.0" Moreover,
for -0.0/2 < Re (s) < 0.0/2,

A7.1,(s) 1 sin (0o O)s tan OoS
02 (s) Os cos OoS Os

is the Mellin transform of (cf. [9, p. 316 (27), (24)])

1 + ra/2
l(r) 2-1 log

r/2 + r o/2,o/2 2 sin (0.0(,9o 0)/2) + log
r/2 + r- + 2 sin (0.0(00 0)/2) r"/2

It follows that (3.2) is satisfied with al -0.o/2, a2 0.o/2 so that the following
theorem holds.

THEOREM 4.2. For one-sided boundary values fa(r) f(r) X_,o,,o, fz(r) 0,
the solution (4.23) ofDirichlet’s problemfor the wedge W attains its boundary value
f at ,9 0 in the X_,o,,o-topology, i.e.,

(4.26) lim IIr[Ao(f r)- f(r)]llx 0
,90+

for every f e X_,o, and 0. (-0.o, 0.o), 0.o r/Oo. The approximation (4.26) is
saturated in X_,o/2,,o/2 with order 0(0), the Favard class being characterized by
V[X_ ao/2,ao/2 2 I(S)].
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Again one has similar results if one considers problem (4.3) for the (one-sided)
boundary valuesfl(r) 0,fz(r) -= f(r). Then one is interested in the approximation
off by the singular integral

(4.27) B(f r) (f * Zz,oa)(r)
sin eroO f f(r/p) dp

0o p,O + 2cos aoO + p-,O p

as 0--+ 0o-. It follows that {Xz,o(r)} is a positive approximate identity for
0 --+ 0o- and

(4.28) lira Ir’Bo(f; r) f(r)] Ix 0
-+o

for everyf e X_o,, and a e(-ero, ao), the approximation (4.28) being saturated
in X_ro/2,ro/2 with order O(0o- 0) and Favard class characterized by
vx_o/2,o/2; ,z(s).

Regarding arbitrary boundary values fl, f2, we first observe that the results
of 2 and 3 are concerned with approximation processes of type (2.1) so that
they do not directly cover the case of the general solution (4.11). However, certain
results for the general case may be inferred from those given for symmetric
(or one-sided) boundary values. Indeed, concerning the approximation for
0 0+, one has for 0 e (0, 00/2) that

sin
(4.29) Z2,(r) < Oo(rO + r_O)- ZZ,Uo/z(r) sin ao0,

and thus by (1.9), (4.27) for any g e X_o, and a e (-ao, ao),

(4.30) rB(g; r)llx <= rg(r)llx Irz,oo/z(r) 11 sin ao0 O(0), 0 0+.

Similarly, concerning approximation for 0 --+ 0o-, one has for 0 (0o/2, 0o) that

sin
(4.31) :l,o(r) -<

0o(r,O + r-o)
) 1,o/2(r) sin ao(0o 0)

since rt aoO ao(0o 0). Thus for any g e X_,o, and r e (-ao, ao) (cf. (4.23)),

(4.32) rAo(g; r) x <= IIrg(r)l xllr)l,Oo/z(r)[ll sin ao(0o 0)= O(0o 0),

0 --+ 0o-. Therefore for the general solution u(r, O) (cf. (4.11)) of (4.3) for arbitrary
boundary values fl, f2 e X-,o,o,

r’[u(r, O) f(r)]llx --_< r’[S(f r) f(r)]llx + [r’B(f2 f, r) x
(4.33)

<= [r"[S(f;r) fl(r)] x + O(0), 0 --+ 0+

(cf. (4.16)), and similarly

I[r[u(r, O) fz(r)] Ix =< Ilr[S(f2; r) f2(r) x + r’Ao(fx f2; r) x
(4.34)

<= Ilr[So(f2; r) fe(r)] Ix + O(0o 0), 0 --+ 0o-

Moreover, the converses are also valid, i.e., one has

(4.35) IIr[So(f r) f(r)] x <= IIrEu(r, O)- L(r)]llx / O(0),

(4.36) r[So(f2; r) -f2(r)] x <= r[u(r, O)- f2(r)] x + 0(00- 0).
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First of all, in view of (4.21)-(4.22) the estimates (4.33)-(4.34) show that the
solution u(r, O) attains arbitrary boundary values fl, f2 e X-o,o in the sense of
condition (4.3) (iii) (with a -ao, a2 ao). Moreover, combining (4.33)-(4.36)
delivers the asymptotic relations

(4.37) [[r[u(r, O) fl(r)]llx r[So(f;r) fl(r)]l x / O(0), 0 --+ 0/,

(4.38) [r[u(r, O) fz(r)qllx [[r[So(f2;r) fz(r)]llx / 0(0o 0), ,9 o-,
for everyfl ,f2 e X_o,, and a e (-ao, ao). This in particular implies the following
result.

THtCORFM 4.3. Let fl,f e X_o,o, ao rt/Oo. Then for each a 6(-ao, ao)
andO<a<= 1,

(4.39) r[u(r, O) f(r)] x o(0)

if and only if [[r[So(fl;r) fl(r)][ x O(0),

(4.40) r[u(r, O) f(r)] Ix 0((0o O))

if and only if lira[So(f2; r)- fz(r)] Ix 0((o 0))

for 0+, 9 o-, respectively.
Thus a good deal of the approximation theory for the general solution u(r, )

is reducible to that for the singular integral So(f; r), corresponding to symmetric
boundary values. Hence let us once more examine the one-sided case, particularly
the saturation behavior of Ao(f; r). Theorem 4.2 only studies saturation of
Ao(f; r) in X_ro/2,ro/2 since condition (3.2) was only verified in these spaces.
However, condition (3.1) is satisfied by the kernel {)a,o(r)} for the whole interval
(-r0, %) (cf. (4.25)) so that Corollary 3.2, Theorem 4.1, and (4.39) indeed imply
the following corollary.

CoroIIAr 4.4. The approximation (4.26) is saturated in X_o, with order
0(0), the Favard class being characterized by V[X_o,o; 2(s)] (cf. (4.19)).

Obviously, a similar extension may be given concerning saturation of the
singular integral Bo(f r).

However, concerning solutions u(r, O) corresponding to arbitrary boundary
values fl,f2 X-o,o, we cannot at this stage supplement Theorem 4.3 by an
assertion concerning saturation. Indeed, 3 only treats saturation for singular
integrals of type (2.1); examples were given by So(f; r), Ao(f; r), Bo(f; r) which
only involve one function f to be approximated. But in the general case, u(r, O)
of(4.11) involves two functionsf ,f2, and one has to consider the approximations

lim r’[u(r, O) fl(r)] [Ix, lim r’[u(r, O) fz(r)] Ix
O0 +

simultaneously. This leads to the study of saturation for systems of coupled
approximations, the principles of which will be outlined in [12]. On the other
hand, one may consider, as a further example, antisymmetric boundary values
f(r) -fz(r) which may be discussed completely analogously to the symmetric
case so that details may be omitted. The general case is then completely reducible
to the symmetric and antisymmetric ones. Compare the corresponding treatment
in [5a] in connection with Fourier transforms.
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MULTIPLE ASYMPTOTIC EXPANSIONS AND SINGULAR PROBLEMS*

KENNETH D. SHERE?

Abstract. Applications of multiple asymptotic expansions to singular differential equations laave
been investigated by means of four examples. The techniques of multiple asymptotic expansions are
first applied to an equation with an essential singularity in the leading coefficient. The results are then
compared to the results obtained by the techniques ofH. Schmidt. Then two linear problems ofsingular
perturbation are investigated. For a boundary value problem it is shown that the technique of multiple
asymptotic expansions yields the same result as the two-variable expansion technique, and for an
initial value problem it is shown that this technique improves upon the two-variable technique. Finally
a nonlinear boundary value problem of singular perturbation is considered. It has been shown that,
whenever the calculations are not too onerous, the technique of multiple asymptotic expansions yields
new insights into the nature of the solution. All of the derivations are formal.

1. Introduction. The concept of asymptoticity is extended to double series
of the form =o,o am,x-" e-m’ in [1]. There, the author demonstrates
that the definition satisfies expected existence and algebraic properties and he
applies this concept to elastic scattering from a Yukawa well. The definition is
repeated below for convenience. In this note these series are applied formally to
four differential equations.

The first equation is used to illustrate how the theory can be applied to some
equations possessing an essential singularity at infinity and to demonstrate
heuristically a connection between Schmidt’s work [2] and multiple asymptotic
series. Schmidt constructed asymptotic expansions of the form

am(X exp (-2mx),
m=O

where the {am(X)} are of bounded variation. For the first example, it is shown that
am(X) o a,,,x-"" As indicated in 2, however, neither theory contains the
other.

The last three equations and related side conditions are problems of singular
perturbation. These examples are respectively a linear boundary value problem,
a linear initial value problem and a nonlinear boundary value problem. The
two-variable expansion technique involves the solution of a system of partial
differential equations. The multiple asymptotic expansion technique applied to the
same ordinary differential equation results in a new system of either ordinary
differential or algebraic equations. This system is much easier to solve than the
corresponding system of partial differential equations obtained from the two-
variable expansion technique.

It is shown in these three examples that the same results can be obtained by
either technique. In the example ofa nonlinear boundary value problem it is shown
how multiple asymptotic expansions can provide new insights both on the bound-
ary layer and the nature of asymptotics. In particular, it may be possible to

* Received by the editors November 24, 1970, and in revised form May 24, 1971.
]" U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 20910.
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eliminate spurious solutions by requiring the boundary conditions to be satisfied
exactly and allowing the solution to have a jump discontinuity of sufficiently
small order in its first derivative.

DEVINITION. Suppose that we are given the formal, not necessarily convergent,
double sum

(1) Z amnX-n e-Zmx
m=0 n=0

where {am,,’m,n 0,1, ...} is an arbitrary sequence of complex numbers,
xeR {Ixl > Xo > 0, largxl =< < re/4} and 2 > 0. Define

(2)

where

fro(x) Z amn[l exp (-fm,,X2)]x-" e-m’,

(3) finn l 0 for am, 0,

min [1,1/la,n,,ln!m!]/2 for %, - 0.

The function F(x) is asymptotic to (1) and is denoted by

V(x) Z 2 a,,x-" emxz,
m=0 n=O

(a) Fm {f(x)’f(x) ELo amnX-n e-’mx {X-n e-;m’}} for each fixed
m 0,1,2,-..

(b) F*m {f(x) Fm(x)’f(x)- fro(X) 0 {X-" e -zux} for each fixed # m,
m+ 1,...};

(c) F(x)e Fo;
(d) F(x) u--of Fm+l for any fu Fu.
The asymptotic symbols in (a) and (b) are taken in the Poincar6 sense [3].

The series for fro(X), (1), converges uniformly in any compact subregion of R and
absolutely in R (cf. [4]).

(4)

2. An equation with essential singularity. Consider the equation

e-"u"(x) + XhU’(X) + u(x)= O.

The reduced equation of (4), xhu’(x) + U(X) 0, has an analytic solution at in-
finity whenever h _>_ 1; in particular, for h- 1, u kexp(-x-(h-)/(h- 1)).
It can be seen from the formal theory that the behavior of the reduced equation has
a crucial effect on the form ofthe asymptotic solution. This is expected for a solution
of the form (1) since the second term of (4), xhu’(x), dominates the leading term for
large x in R.

Applying the techniques of Schmidt [2] to (4), we seek a solution of the form

(5) y(x) 2 gin(X) e-rex"
m=O
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The asymptotic meaning of (5) was originally discussed by Schmidt. Upon sub-
stitution of (5) into (4) we see that gm(X) must satisfy

(6) (rrtx 1)g -t- gin-, 0X gm 2(m 1)gn q- (m 1)2g

with g_, 0. Hence, when h 1,

(7)0 go(x)-- a/x,

1
(7), g,(x) e (-- 2a e-t

3--dt.

Upon substitution of (1) into (4), with 2 1, we obtain

(8)

From (8) we deduce that

ao,=0 for alln- 1,

amo am2 am3 0,

am, O,

al, (- 1)"-’(n 2)!ao,,

a25 aol.

The constant ao, is arbitrary. Setting ao, -a, we have

(9) u(x) -e{x-’ + [2!x -4 3!x -5 + 4!x -6 ]e + x

Comparing (9) with (5) and (7) we note, for example, that

(10) go(x) ao,,X
n=O

and

(11) g,(x) al,,X-".
n=O

We observe that in general,

(12) g,,,(x) am,X-",
n--O

m =0,1,2,...,

m= 1,2, ..-,

n=4,5,.-.,

N

g,(x) y a,.-" o(x-).
n=O

where the asymptotic signs of (10)-(12) are in the Poincar6 sense, that is,

-S e-2X + ...}.



266 KENNETH D. SHERE

In other words, by substituting the asymptotic expansions for the coefficients
of e found by Schmidt’s theory we obtain a multiple asymptotic series.

If the form of the asymptotic series is suspected a priori, then the technique
of multiple asymptotic sequences is easier to apply because it yields an infinite
system of algebraic equations which must be solved in lieu of the infinite system
of differential equations obtained by using Schmidt’s technique.

When h > 1, (7)0 becomes

exp x-(h- 1))
go(x) o

h-
o (-1)"

x ,,(h-1)

,=o (h 1)"n!"
If h were not an integer, a modified multiple asymptotic expansion of the form

Z2: 2: amnx nh
o o e- would be used to obtain a formal solution. If h < 1, an

entirely different form must be used. These more general expansions are discussed
in [9].

Neither Schmidt’s theory nor the theory of multiple asymptotic expansions
contains the other. The coefficients gin(x) in Schmidt’s theory must be of bounded
variation but need not have convenient asymptotic representations. Likewise,
multiple asymptotic expansions may be quite general and need not be represent-
able in the form Z(2amnx-n) e-Xmx (cf. [9]).

3. Two singular perturbation problems. The initial value problem

By" +y’ +y=0,
(3)

y(0) O, y’(0) 1/8

has been used by Friedrichs [5] and Lick [6] to discuss boundary layer phenomena
and two-variable expansions respectively. Erd61yi [7] used the boundary value
problem

(14)
8y"(t) + y’(t)= h(t),

y(0) , y(1) =/3
to compare the two-variable expansion technique with the composite method of
matching inner and outer expansions developed by Kaplun [8] and Lagerstrom.
In this section we assume asymptotic solutions of the form

(15) y(t, 8) Z Z Ym,n(t)Sn e-tm/ as 8 0
m=0 n=0

in a sector of the origin containing (0, to) for some 80 > 0. In (15), the variable
is considered a parameter. The sector defining e and the values of are restricted
by the requirement that t/8 and 8 have positive real part. Otherwise, (15) would not
be a multiple asymptotic series. By requiring the asymptotic form (15) to satisfy
the side conditions we improve the results Lick obtained for (13) and obtain the
same results as Erd61yi for (14).

Substituting (15) into (13) yields for each m 0, 1, 2, -..,

m(m 1)Ymo8 + Z [m(m 1)Ym,n+ -+- (1 22m )Ymn + Ymn + Y.,,.-118" O,
(16)

.=o
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where Ym,-1 0 for all m. Consequently,

(17) Ymn 0 for all m > 1

and

(18) (-1) ymn+Ymn= m 0, 1 and for all n.

Equation (18) can be solved recursively. The initial conditions are satisfied
by Yoo(0) -ylo(0) 1, yo,(0) -y1,(0) for n 1, 2,... and y,(0) + y’,(0)

Y 1,,+ 1(0) 0 for n 0, 1, 2, Summarizing, we have

(19)
y(t) e -’-’ + 2 e-’/3 + (6 4t)e-t +

e-’/++ 2e e-/+ (6 40/32 e-/

The exact solution of (13) is

(20) y(t) [exp (71 t) exp (Tzt)]/v/1 4/3,

where

(21)
1 1 V/1 -4/37,2 2e
+

Expansion of (20) in powers of/3 yields

y(t) e -’-’ + 2 e-’/3 + (6 4t)e-’/32 + 0(/33)
(22)

e -’/+’+e 2ee -/"+ (6 40/32 e’-’/ + 0(/3 3 e -’/)

as/3 --+ 0. Hence (19) is uniformly valid in e [0, 1].
We now consider (14). Upon substitution of (15) we obtain for each

m 0,1,2,...,

(23) -n+LYm, + (1 2m)y,,,/3 + m(m 1)y,,,/3" 1] h’(t)6o,,
n=0

where 6ij is the Kronecker delta. Solving (23) we have

Yo, h(")(t) +
y. ft.,

Ym, 0, m 2, 3,-.. and for all n,

where , and ft, are constants to be determined by the boundary conditions. To
satisfy the condition y(0) c exactly we see that

/o + o + h(0) ,
(24)

(-l)"h(")(O) + o,, + ft. 0.

The boundary condition y(1)= cannot be satisfied exactly for all /3 without
overspecifying the constants e,, ft,; however, these constants are specified exactly
by requiring only that y(1)= fl + O(e-’/). This relaxation of the boundary
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condition is consistent with the results of Erd61yi. Hence,

(25)
h(1) + o =/,

(- 1)"h("(t) + n 0.

From (24) and (25) we see that

y(t)
n=l

+ (e h(0) + h(1)- 3)e-’/ + (-1)"[h(")(1) h(")(0)]e" e-t/.
n=l

Hence, by solving a system of ordinary differential equations rather than a
system of partial differential equations, as was done in the two-variable expansion
technique, we have obtained the same result as Erd61yi [7].

4. A nonlinear boundary value problem of singular perturbation. In this section
we obtain an asymptotic solution to the boundary value problem

eu"(t) + uZ(t) 1,
(26)

u(1) u(-- 1) 0.

This example has been used by Carrier [10, p. 181] to illustrate some ofthe problems
in asymptotics. Carrier obtains an asymptotic solution which differs from the
exact solution at the boundary points by O(e-2/’//). He then demonstrates that
there are spurious asymptotic solutions which differ from his asymptotic solution
at the endpoints by O(e-/,A) in both value and slope. These spurious solutions
have peaks in the interval [- 1, 1] as illustrated in [10, Fig. 6]. It is shown below
that series techniques can lead to Carrier’s results and can provide additional
insights into the problem.

We make the Ansatz that

(27) u(t)
m=0 n=0

as e 0. The asymptotic form (27) can be defined by setting x 1/x/in Definition
1. A more detailed discussion of these "generalized" asymptotic sequences is
given in [9]. The form of the expansion can be obtained either by using hindsight
(cf. [10]) or by substituting formal sums into (26) and determining experimentally
the types of terms necessary to obtain a recurrence relation.

Temporarily, the more general equation

(28) eu"(t) + 2b(1 t2)u(t) + u(t)2 1

is considered. Upon substitution of (27) into (28),

0 m2"2blmn + 2b(1- t2)Umn-q- E bl#vblm-la,n-v
=0 #=0 v=O

(n 1)/2(29) e"/2 m[2 urn,, + 22 Um,,]e, +

+ [- 1.
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From (29), for m 0,

(30) 2b(1 t2)Uo, + Uo,Uo,,,-v + u’,,-2 6o,,
v-’0

where terms with negative subscripts are defined to be zero and 6o, is the Kronecker
6. The solution of (30) is straightforward;for example,

(30)0 Uoo -b(1 2) _+ v/b2(1 t2)2 + 1

and

(30)1 u01 +Uo(t)/w/b2(1- t2)2 + 1.

The sign of Uoo is determined by setting m 1 and n 0. The negative sign must
be chosen for 2(0 > 0. Furthermore,

(31) 2(0 + f N/[b2(1 t2)2 q- 1] dt + k,

where k is an arbitrary constant, to be determined. Since 2(0 increases as a function
of b2 for constant t, the boundary layer ultimately diminishes as b2 increases.
This result for 2(t) illustrates the effect of the middle term of (28), for b 4: 0, on
the boundary layer--a result not obtained by the two-variable technique. The
computations are cumbersome; we set b 0 and restrict attention to (26). Hence

(30’) Uoo(t) -1, Uo,(t) O forn= 1,2,-..

and

(31’) 2(0 x/t + k.

Some suitable choices of 2(0 are"

21(t)------ x/(1 t) for -1 _<_ _<_ 1,

22(0=xf(1 +t) for-l_<_t_<_l,

21(t) for 0 _< =< 1,
3(t)

(.22(t) for -1_<_ t__<O.

Observe that 23(0 has a continuous first derivative except at 0, where 2;(t)
has a jump discontinuity. Inspecting (29), we note that 2’(0 occurs in two terms.
In the first term we have [2’(0] 2, which exists and is continuous on [-1, 1] if
[2’(0)] 2 2, and in the fourth term we have 2’(t)u’,,,(t). This term disappears if Um,,(t)
is a constant. Of course, we could have assumed a form with u,,, constant from
the beginning. Conveniently, any of the above possible choices of 2(0 leads to
the same conclusion that urn, is constant.

From (29), it is concluded that

(32) U ln k, for n 0, 1,2,-..,
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where {k,} is a set of constants to be determined. The determination of
u,.o (m 2, 3,..-) is

m-1

(33) 2(m- 1)Urn0 UoU-,,O.

The general solution of (33) is

(34) Umo (-- 1/12)m(m 4- 1)k + x.
Likewise,

m-1

2(m2- 1)u.,x-- Z Z bl#vblm-.#,n-v"
#= v=O

Choosing 2(t)= 23(0 we can satisfy the boundary conditions (26) by setting
k. 0 for n > 0 and determining ko. Summarizing, we have

(35) u(t) -1 + ko e-3/ (m + 1)(-ko/12)me-’’3/= -1 + y3(t),
m=0

where

Yi(t) =-- ko e-a’/[1 + (ko/12) e-a’/]-for i= 1, 2, 3, and ko 12(v/ + x//)2.
Using the two-variable technique, Carrier [10] obtains the result

(36) u(t) 1 + Y x(t) + y2(t),

which satisfies the boundary conditions only to O[exp (-2x//w/-)].
Both (35) and (36) are good approximations to the actual solution of (26),

which can be computed as a Weierstrass elliptic function. Carrier’s result (36) has
a continuous second derivative. However, as Carrier indicates, there are spurious
solutions which solve (26) to the same asymptotic accuracy as (36). For example,

u(t) -1 + y(t) + y2(t) + ko e’/’-x)/’/7[1 + (ko/12)e’/x-x)/’/7] -2

for any Xo e(-1, 1) (cf. [10, Fig. 6]). Whereas (35) is not differentiable at one
point (t 0), it has the advantages of satisfying the boundary conditions exactly
and having no spurious solutions (known to the author). Furthermore, y’3(t) has
a jump discontinuity of magnitude O[exp (-x///e)] at 0.
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ON MULTIPLE ASYMPTOTIC EXPANSIONS*

KENNETH D. SHEREf

Abstract. In previous papers asymptotic meaning has been attached to the formal double sums

y’m=0 n=o amnx-ne-mx (. > 0) as x oo in a sector of the right half-plane. Formal applications
of these sums to elastic scattering and to singular perturbation problems have also been given. In this
paper the concept of asymptotic sequences and series are extended to define more general double
sums. Multiplication and differentiation properties of these sequences and series are investigated.
Application of these more general asymptotic expansions to systems of first order, linear ordinary
differential equations is presented.

1. Introduction. A consistent theory of asymptotics was first developed
in 1886 by Poincar6 [9]. He defines a function f(x) to have asymptotic expansion

a,/x" as x --. oe in a region R of the complex plane, written

an(1.1) f x -(1.2) f(x) akx-k + R,,(x),
k-O

where

(1.3) R,,(x) o(x-").

The {a,} are constants with respect to x. Watson [16] remarks that Borel in 1896
made Poincar6’s theory more precise by defining the sum in (1.1) as

(1.4)

where

S(x) e dt,

antn((t) =-- n n!

It is required that b(t) converge.
A primary difficulty with Borel’s theory is the required knowledge of the

singularities of b(t). In another effort to add precision to Poincar6’s theory,
Watson [16] in 1912 introduced the notion of "characteristics" which are some-
what analogous to the radius of convergence of a convergent series. In particular,
he imposes the constraints:

(1.5) [a.I _-< Ap"F(kn + 1) for all n;

(1.6) IR,x" + 1 -< Ba"F(jn + 1) for all n.

The characteristics A, B, p, a, k and j are independent of x and n. Watson then

Received by the editors November 24, 1970, and in revised form August 10, 1971.

f U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 20910.

272



ON MULTIPLE ASYMPTOTIC EXPANSIONS 273

investigates the circumstances for which an asymptotic expansion with assigned
characteristics uniquely determines an analytic function in R. When k j 1,
the functions are "Borel summable."

Fourteen years after Watson’s work, Carleman [1] introduced the concept
of asymptotic sequences {q(x)}. Requiring q+ (x) o[b(x)] as x oe, Carle-
man defined asymptotic expansions as

(1.7) f(x) a,,dp,,(x)
n=O

if

(1.8) f(x) akdPk(X) O[.(X)].
k=O

Carleman’s definition was generalized by Schmidt (1936) [12] who allowed a, to
be any function of x belonging to a prescribed class of functions Ao with the
properties:

(i) the constants are in Ao,
(ii) Ao is closed under linear combinations of its elements,
(iii) a,(x) is bounded in R,
(iv) either a,,(x) 0 or a,,(x) o(1).

Schmidt’s theory is especially useful in the study of oscillatory functions.
The most general asymptotic expansion is due to Erd61yi [4], [5], and Erd61yi

and Wyman [6]. Erd61yi defines

(1.9) f(x) f.(x)
n=O

if

with respect to {qS,(x)}

(1.10) f(x)- f(x)= o[b,(x)].
k=0

These generalized expansions are used in [5] and [6] to evaluate certain integrals
not otherwise amenable to asymptotic treatment. This definition can also be
used in singular perturbation theory (cf. [8]). These generalized expansions lose
the usual uniqueness property and, as Riekstin, [10] demonstrates, some expan-
sions seem somewhat meaningless. In particular, Riekstin,g mentions that

(1.11)
sin x - k e -[(k + 1)/2klx

k=02" (In x)k

with respect to {(ln x)-
Riekstin, also provides a further extension of Carleman’s theory by allowing

the "constants" a,(x, z) to depend on a parameter z in addition to the variable x.
The a,,(x, z) are taken as members of a prescribed class Ao with properties (iii)
and (iv). The uniqueness of these expansions depends on the class Ao. Riekstin,
then uses "neutrices" (cf. [3]) to evaluate some integrals involving modified Bessel
functions.
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As the definitions become more general, the techniques have become less
accessible to the nonspecialist. For example, no criterion is provided for determin-
ing f,,(x) in (1.9) and most nonspecialists are unfamiliar with neutrices. Both
Erd61yi’s and Riekstin,g’ generalizations use "asymptotically negligible quantities"
to improve upon the numerical accuracy of asymptotic expansions.

In [13] the author has presented a more systematic scheme for using asymp-
totically negligible quantities by attaching asymptotic meaning to the double series

Z=0 [Zn=0 amnX-n] exp (--2mx)as x in a sector R {Ixl > Xo > 0, larg x]
< n/4;2 > 0}. He also applied these series to elastic scattering from a Yukawa
potential. Series techniques have the distinct advantage of being easy to use in
formal derivations. These double series expansions are called "multiple asymptotic
expansions."

In 2, basic definitions extend this concept to sums of the form

’=0 [ZLO amnfmn(X)]’ where {mn(X): n 0, 1, 2,... m 0, 1, 2,..-} is a
multiple asymptotic sequence. These definitions involve some complicated con-
structions in order to determine a function with prescribed asymptotic properties.
The first construction is used to obtain a function which is asymptotic to zero
with respect to a given asymptotic sequence; this construction is a modification
of a construction of van der Corput [2]. The second construction modifies Ritt’s
procedure [11] for determining a function with prescribed asymptotic series.

Multiple asymptotic expansions can be constructed with slightly less
generality in terms of Schmidt’s work by requiring the class Ao to consist of all
functions a,,(x) which have an asymptotic expansion (in Carleman’s or Poincar6’s
sense) with respect to {0,}, where b(x) 0 with respect to {O,}. It is shown in a
companion paper [14] that singular perturbation problems have a natural in-
terpretation in terms of multiple, asymptotic expansions. It is also shown in [14]
that series techniques provide either the same or improved formal results when
compared to the two-variable technique.

In 3, multiple asymptotic sequences are classified according to their multipli-
cation and differentiation properties. Also, several results relating to these
properties are obtained. It is shown, for example, that formal multiplication and
differentiation is valid under the same hypotheses required for simple asymptotic
sequences {Q,(x) n 0, 1, 2, ...}.

A classification with respect to the dependence on the subscripts is presented
in 4.

These theoretical results are applied in 5 to a linear, first order system of
ordinary differential equations with a regular singularity,

Y’(x) A(x)Y(x).

It is shown that whenever

A(x) Z Z Amnx-nl[tin(X), Aoo 0
m=0 n=0

and

I//’(X) Z Z Pmnx-ntm(x)
n=0

formal series techniques may be used to obtain a valid asymptotic solution.
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2. Basic definitions. Let S be the set of s-tuples over the nonnegative integers.
Define < and <_ on S to be the lexicographic order, that is, whenever
N (nl,--’, n) and M (ml, ..., m) and p is the smallest integer such that
mp np, then M < N if m < n; if no such p exists, M N. Also define 2ei to
be the s-tuple with 2 in the ith place and zero elsewhere.

DEFINITION 2.1. The set of functions {bN(x N S} defined on an unbounded
region R ofthe complex plane is called a multiple asymptotic sequence (or asymptotic
sequence) if bN o(bM) as Ixl in R whenever M < N. It is assumed that the
E. Landau symbol o applies uniformly in N S.

We note that any subsequence of an asymptotic sequence is an asymptotic
sequence.

For ease of presentation, we take s 2 and we assume that whenever
4M(X0) 0 for some Xo R, qb(Xo)= 0 for all N > M. It is further assumed,
without loss in generality, that qSo,o(X =_ 1 (cf. Schmidt [12]). In [13] the multiple
asymptotic sequence defined by b,,,(x) x-" exp (- 2rex) (n, m O, 1, 2, ...),
2 > 0 and R {x’lxl > Xo > 0, larg xl < < n/4} is discussed in detail.

Suppose that we are given the formal, not necessarily convergent, sum

(2.1) Z a",,dp",,(x),
m=0 n=O

where {amn is an arbitrary sequence ofcomplex constants and {bm,(X)} is a multiple
asymptotic sequence. Modifying a construction of van der Corput [2] (cf. [4, p. 22])
we shall determine a nontrivial function O(x) 0 with respect to {bmO:
m 0, 1,2,...} in the sense of Schmidt, that is, O 0(4),.o) for each m. The
function O(x) is then used in a modification of a construction of Ritt [11] to deter-
mine a function

(2.2) f,.(x) a,.,ck",,(x).
n-O

The functions {f"(x)} are subsequently used to define (2.1) as an asymptotic series.
Construct the sequence {Umo} of induced neighborhoods (in R) of infinity

such that

and such that

R Uoo Ul,o U2,o

I#Sm+ 1,o(X)l 1/21b",o(X)l

whenever x U,.+ 1,o. The closure and complement of U,.,o are Urn, 0 and U*m,o
respectively. Let

O(x) Ckm,o(X), x e Um,o f3 U*m+ ,o.

(2.3)

Modifying the techniques of Ritt [11] (cf. [13]), we define

f,.(X) =- a,. 1 exp
Iq,(x)lJ
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where

0 for amn O,

(21am,,Im !n !)- for amn =/= O.

Using the inequality IA[1 exp (- B)]I < 2 whenever Re B > 0 and [B[. IAI < 1,
we can show that the series for fro(X) converges absolutely for large enough x. By
the uniformity of o(. ), for some Xo R,

[(m+ 1,0(X)I < 1/2[bm,o(X)l
for all x R such that Ixl > Ixol. If if(x)= 0, the series terminates and f(x) is
absolutely convergent. If (x) : 0, then

fm(X)l <= 2 Ic,,,,(x)l/m !n !l,(x)l
(2.4) ,=o

<= 2el/2lCkmo(X)l/l(x)lm

Hence (2.3) is absolutely convergent for all x e R, Ixl > Ixol. We note that in any
compact subregion of R f] {Ixl > Xo} for which O(x) is nonzero, (2.3) is uniformly
convergent. It is useful for property (4) below to observe that f(x) 2=ofm(X)
is an absolutely convergent series.

We now establish (2.2).

(2.5)

N:0 lam,I

n=N+l
I%.l[1-exp I01 J

The right-hand side of (2.5) 0 as Ixl - in R.
DEFINITION 2.2. A function F(x) defined in R is said to be asymptotic to

(2.1) as [xl in R, denoted

(2.6) F(x) 2 2 amndDmn(X),
m=0 n=O

if"
(a) Fro(x) {f(x):f(x) =o amnmn(x)} for each fixed m 0, 1,2, ...;
(b) F*m =- {f Fro:f(x) fro(X) 0 {b,, n 0, 1,---} for each fixed m,
m+ 1,...};

(c) F(x)e Vo;
(d) r(x) u=ofu* Fm+ for any f 6 r.
The asymptotic symbols in (a) and (b) are taken in the sense of Schmidt,

f(x) ,U=o am,,Ckm,(X) o(dPm,u + 1). (a) and (b) are definitions, so only conditions
(c) and (d) must be demonstrated in future results.

In a straightforward manner we can demonstrate the properties:
(1) termwise addition of multiple asymptotic series is valid;
(2) whenever a function f(x) has an asymptotic series representation with

respect to {dDmn} this representation is unique;
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(3) whenever (2.1) is convergent and F(x)= 2=o ,--o amnmn’ then F(x)

(4) an arbitrary series (2.1) is the asymptotic expansion of some function.
In order to apply the theory of multiple asymptotic expansions to differential

equations, it is necessary to investigate the multiplication and differentiation
properties of asymptotic sequences. This is done in the following section.

3. Multiplication and differentiation properties.
DEFINITION 3.1. An asymptotic sequence {bN" N S} is called a multiplicative

asymptotic sequence if whenever N, M e S,

(3.1) 4NbM Z CM,,t4K,
K

where

K kl k2

DEFINITION 3.2. An asymptotic sequence (s:N S) is said to be an ex-
ponential asymptotic sequence if

bbM b/M for all N, M S.

The properties of multiplicative asymptotic sequences were first investigated
by Schmidt [12] who had restricted his attention to simple asymptotic sequences.
The following two results are extensions of theorems proved by Schmidt.

LEMMA 3.1. Let N S) be a multiplicative asymptotic sequence satisfying
(3.1); then

CM,N,K 0 for K < M + N.

Proof. Assume without loss of generality that bo 1. Obviously

which implies

Co,u,t=0 forK<N.

Assume that cr,u,: 0 for K < N + L for all L < M. Then

Hence,
o(4u + .) for all L < M.

CM,N,:=O for allK <M+N.

THEOREM 3.2. /f F(x) EM aMC/)M and G(x) , b4)u and {cr" K e S} is a
multiplicative asymptotic sequence satisfying (3.1), then

H(x) =- F(x)G(x) Z
K

where

h: aMbNCMNI.
M N
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This theorem can be proved using techniques of the corresponding theorem
(Theorem 2.2) in [13] and Lemma 3.1, which shows that h is a finite sum.

DEFINITION 3.3. An asymptotic sequence {4N: N S} is called a differentiable
asymptotic sequence if

b} dN,t:br for each N e S.
K

The sequence {b,--e-"X2:n 0,1,2, ...} is an exponential asymptotic
sequence as x --, in (xo, ) which is not a differentiable asymptotic sequence.
The sequence {dP,,m =-x-"e -rex} is an exponential, differentiable asymptotic
sequence. It is shown below that every exponential, differentiable asymptotic
sequence of the form {X-"Ore(X)} behaves essentially like {x-"e -"x} if O(x)is
analytic in R. That is, /’(x)/g/(x) --, = 0 as Ix[ c in R. The following theorem
yields a result for differentiable asymptotic sequences which corresponds to the
result of Lemma 3.1 for multiplicative asymptotic sequences.

THEOREM 3.3. Let R be a region which contains a curve F originating in R
and extending towards infinity and such that the distance p(x) of x F is bounded
away from zero as Ixl --, along F. Let {cku N e S} be a differentiable asymptotic
sequence offunctions analytic in R; then for each N, dpu has a bounded logarithmic
derivative in a subregion R* R as Ixl --, o that is, dp} O(dpu) as Ixl --, , x R*.

Proof. The proof is by induction. Since {bu} is differentiable,

() Z de d
K

which implies that

lim qS;,(x) de,,o for x e R.

Since 4)e, is analytic in R, for any Xo e F,

1 f e,
dx(3.2) Ck’e’(Xo) - __x-xol=p (X X0)2

Because dpe,(X)--, 0 as Ix[--* oe, x e R, for any e > 0 there is a { > 0 such that
whenever Ixl > and x e R, Ie,(X)l < . Hence, for

one obtains from (3.2),

Iqb;,(xo)l Ix Xo12 Idxl -.p
Since p is fixed and p > 0, and e is arbitrarily small,

lim IL,(x)l 0 for x e r.

Therefore del,o O.
Now assume that the theorem is true for all N < M. Let K be a fixed non-

zero s-tuple and K < M. The sequence

1, qbM/, dpM +el/(K,’" "} 1, 0e,, 02ex,"" "}
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is an asymptotic sequence of functions in a subregion R* c R. Since qSK has no
limit point of zeros in R, we may draw very small circles about these zeros and
construct F* in R* by changing F where necessary to avoid the circles. By the
preceding paragraph,

lim ’el(X) 0 for x R*.

Since O’el 4/4r (4/4r)(4)/4r) 0 as Ix[ in R*, 4 o(4r)
and 4/4r O(1), then o(r) for every K < M. Hence,

4h o(4)

or ff has a bounded logarithmic derivative.
COROLLARY 3.4. Let the hypotheses of Theorem 3.3 be satisfied. If {4,(x)

O,(X)Om(X)} is a differentiable asymptotic sequence, then for each n, d,e,ke is
nonzero for some k. Furthermore, k n.

Proof. If d,e,ke 0 for all k, then O’,(x) 0 with respect to {O,(x)’n O, 1,
2,...}. Hence O,(x) is asymptotic to a constant with respect to {0,}. This is a
contradiction. Furthermore, k n since 0’,/0, has a finite limit.

LEMMA 3.5. If, in addition to the hypotheses of Theorem 3.3, (xo,) R
for some Xo > O, and {(x)} is real-valued on (xo, ), then u(x) has at most a

finite number of zeros on (Xo, ).
Proof. This lemma is proved by contradiction. Let M be the smallest element

of S such that du, 0. Such an M exists by Theorem 3.3. If u(xj)= 0 for
j 0, 1, 2, ..., then points p, qj (j 0, 1, 2,-..) can be found such that p, qj
e (xj, xj+ 1) and }/(pj) O, }/4(qj) O. It can, therefore, be concluded that

lim /M 0

when it exists. This contradicts that ds,M O.
THEOREM 3.6. Given the hypotheses of Lemma 3.5 and that M is the smallest

element of S such that ds, 0, then

lira /M ds, < O for x R.

Proof. For large x (Xo, ), N(X) is of constant sign for each N. Without
loss of generality we specify that each s(x) > 0 for large enough x. Hence N(X)
decreases to zero as x in (x0, ) and (x)/(x)< 0 in some interval
(, ).

It is desirable to have a fairly general differentiation theorem of the type
Schmidt found. If {u} is a differentiable asymptotic sequence, f(x) is regular in
R and f(x) Z fuu, then f’(x) Zfu Z guru, where gu Z=of du.
Unfortunately, the author has been unable to prove such a theorem. This is due to
the nondifferentiability of f(x) in the definition of asymptotic series. However,
for an important special case we obtain the following theorem.

TnzogM 3.7. If {,(x) O"(x)(x)} is an exponential, differentiable asymp-
totic sequence in R satisfying (3.2) and the hypotheses of Theorem 3.3, then

f(x) Z auu implies f’(x) bu,
N N
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where

Proof. Define

N

bN E aM dM,N"
M=O

f*" Yo= amn 1 exp OnOm,

where b,,, is defined in (2.3). It is seen in a straightforward manner that fro* e Fro*.
We observe that f f’{O"’n 0, 1,-..} and

O’(X) E de:,nezon {on}

Hence,

where

f’, f’,, bo,O" {0"},
n=0

+ kaot,dezbo
-t+

We next observe that

f-f f]’ {0"O’n=0,1,2,...}

forn < v.

Hence,

(3.3)

where

f’- g f’ + (fa’- ga),

ga =Yo= bo, 1 -exp
o, 0".

The right-hand side of (3.3) gives the desired result for m 1. The proof is
completed by an inductive argument.

As indicated in the beginning of this section, we now demonstrate that
{x-nrn(x)} behaves essentially like {x-"e-rex}.

THEOREM 3.8. If {C/)m, =-- X-"Ore(X)} is a differentiable asymptotic sequence as

Ixl in R, a region satisfying the hypotheses of Theorem 3.3, and

I[I’(X,) E 2 PmnX-nom(x)
m-’O n=O

then

g/’(x)/g/(x) P lo : 0 as Ixl- in R.

since f]’ e F]’. By Schmidt’s result [12, p. 646],

f’- f’’ f’’ O"/’n=O, 1,2,...}.
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Proof. Since 4,,, has a bounded logarithmic derivative, Po,, 0 for all n.
It is now shown by contradiction that P l,o va 0.

Let (q, r) be the smallest ordered pair for which Pq,r 0 and suppose that
(q, r) > (1, 0). Then

(3.4) O’/Oq,- dqrx + d,,+ 1X
-’-1 q-

with respect to the asymptotic power series {x": n 0, 1, 2,...}. Integration of
(3.4) for the case q > 1 yields

1 1
rp,,xqO -q+l c + +1 +

However, qt 0 {x-"} implies that - does not have an asymptotic expansion
with respect to {x-"}. This contradicts the assumption that q > 1.

Now set q 1 and assume r > 0. Integration of (3.3) yields

(3.5)

where

O(x) x’’’’ exp fdt,

f(t)-- Pl,2 t-2 -t- P13t-3 d-

and P l,i 0 for < p. From (3.4),

n=0

where 6, is determined from the expansion of exp f(x)dx. Hence 6o va 0. This
contradicts that x-’,O(x) 0with respect to {x-"}. Hence r 0 and (q, r) (1, 0).
The proof is complete.

Before proceeding with applications of multiple asymptotic expansions to
systems of differential equations we consider an additional classification.

4. Separable asymptotic sequences. Sometimes the behavior of {bN} with
respect to its subscript is complicated as in the example

{p(,,,,,,)-= x-"exP("’):n,m 0, 1,2,...}

as Ixl--* , x6(1, oo). The author is unaware of physical applications which
exhibit coupled behavior among the indices. We, therefore, introduce the following
definition.

DEFINITION 4.1. An asymptotic sequence {4)N N e S} is said to be separable if

(1)0., (x)...

where O(,i](x)=_ b,,e,. The {O(,(x) n, O, 1,...}, i= 1,..., s, are called the
factors of the asymptotic sequence {bN}.

The factors of a multiple asymptotic sequence are simple asymptotic
sequences. Obviously, when all of the factors of {bu} are multiplicative (differ-
entiable), then {bu} is multiplicative (differentiable).
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The asymptotic sequence

{c,,m =- x -"/2 e-’x’/2 n, m 0, 1,2, ...}
is an example of a differentiable, separable asymptotic sequence whose factors
are not differentiable asymptotic sequences.

A similar statement can be made about multiplicative, separable asymptotic
sequences under the following more generalized definition.

DEFINITION 4.2. A sequence {bN’N S} is called a generalized asymptotic
sequence if for each N S, N 0, there exists an MN < N so that

This definition makes the asymptotic sequences defined according to
Schmidt’s theory independent of the order in which the scalar functions are
listed provided that bo 1.

Consider the following example.
Example. Define

i=1

Observe that {d,, is a nonmultiplicative asymptotic sequence for each i. Lagrange’s
theorem says that the diophantine equation

has at least one integral solution whenever n is a nonnegative integer [7]. Hence
{bu} is a multiplicative generalized asymptotic sequence. This example demon-
strates that a multiplicative, separable asymptotic sequence need not have multi-
plicative factors.

This example also shows that a generalized separable sequence need not be
an exponential asymptotic sequence. It can be shown, however, that every exponen-
tial asymptotic sequence is a separable asymptotic sequence (define

In the interest of clarity and simplicity the generalized definition will not be
used.

5. Systems of ordinary differential equations. In this section we apply the
results of 3 to systems of equations of the form

(5.1) Y’(x) A(x)Y(x),

where Y is a vector and A(x) is a square matrix which has an asymptotic expansion
with respect to {(/)u}. We assume that bu is an exponential, differentiable asymp-
totic sequence. Without loss of generality we take dPmn(X) x-nm(x). Indeed, if
mn(X) On(X)m(x), the transformation z- O(x) takes (5.1) to the desired form.

Let

(5.2) A(x) Z Z Am,X-"@’(x)
m=0n=0

It is shown that whenever (5.1) has a regular singularity, that is, Aoo 0 and

Aol : 0, it is reducible to the usual power series case. In particular, it is shown
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that there is an analytic matrix function p(x) in R admitting the asymptotic expan-
sion

(5.3) p(X) 2 2 PmnX-nre(X)
m=O n=O

such that the transformation

(5.4)

takes (5.1) into

(5.5)

where

Y(x) p(x)W(x)

W’(x) n(x)W(x),

(5.6) B(x) p- l(x)[- p’(x)I + A(x)p(x)-]

is an asymptotic function admitting the asymptotic expansion

(5.7) B(x) Bo,x-" {x-"Om(x)" n, rn O, 1,...}.
n=O

By substituting (5.4) into (5.1), performing the necessary algebra and matching
coefficients, it is seen that

Z PjiBm- j,n-i 2 Am-j,n-iPji -t- (n 1)p 1,m
j=0 i=o j=o i=o

(5.8)
(m + 1 j)djip,,+l -,,-1.

j=l i=0

When m 0, the last term on the right of (5.8) does not appear, and when n 0,
the middle term on the right does not appear. The coefficient dji corresponds to

Pji in Theorem 3.8.
For m 0, (5.8) is

(5.9) Ao,Po,.- [o, (n )I]po,.- o,.-, + Ho,._ ,
where Ho, is a known function of Po,i, Bo,i and Ao, for < n 1. Analyze
(5.9) as in the regular singularity case for asymptotic power series [15, p. 21 ff.] to
obtain some positive integer h such that Bo,, 0 for all n >_ h.

Whenever m 0, (5.8) takes the form

(5.10) B,,,, + mdl,oPm, Jm,,-1,

where J,,,,_ is a known function of Bj, i, Pj,i and Aj, for (j, i) __< (m, n 1). Since
(5.10) has a unique solution for Pro, for any choice of Bin,,, choose Bin, 0 and
p,,, J,,,,_ /md

Thus, (5.1) has been transformed to an equation with a well-known solution.

6. Concluding remarks. This paper is ofan introductory nature. Much remains
to be done both with the theory and application of multiple asymptotic series.
For example, nondifferentiable, exponential asymptotic sequences of regular
functions have not been considered. Also, we have not considered asymptotic
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sequences containing a parameter. It is implied in 5 that more accurate results
may be obtained by using multiple asymptotic expansions; an error analysis is
needed to determine the effects analytically. Although some heuristic considera-
tions are given in [14], no general theory has been developed yet. It is hinted in
[14] that multiple asymptotic sequences may be used to solve linear ordinary
differential equations of order at least two which have an essential singularity in
the leading coefficient. Application to nonlinear equations is still an open question,
although the remarks of Wasow [15, p. 215] are not encouraging. General results
on this problem would also be useful. It may, for example, allow analytical treat-
ment of chemically reacting fluid flow.

Acknowledgment. Part of this work appeared in the author’s dissertation
under the direction of Professor Ray G. Langebartel of the University of Illinois.
Thanks are also extended to the editor for bringing to the author’s attention
references [6] and [10] and for providing the author with a translation of [10].
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UNIFORM ASYMPTOTIC EXPANSIONS OF INTEGRALS
OF THE LIPSHITZ-HANKEL TYPE*

R. MUKI"

Abstract. In this note we consider integrals of the type

sin O) rt cos O) dtexp

for which we establish asymptotic expansions as , that are uniformly valid for 0 =< 0 < n/2.

Solutions to problems in mathematical physics pertaining to a half-space
frequently involve integrals of the type

(1) f(t)Jv(pt exp (- zt) dr.

Here (p, z) are the usual radial and axial cylindrical coordinates while Jv is the
Bessel function of the first kind of nonnegative order v, whereas./" is a real-valued
function defined on I0,

By introduction of spherical polar coordinates (r, 0) through

(2) p=rsin0, z=rcos0, 0=<r < oo, 0=<0__<n/2,

the integral (1) is carried into

(3) G(r, 0) f(t)J(rt sin 0) exp (- rt cos 0) dr.

It is the purpose of the present note to obtain an asymptotic expansion of G(r, 0)
as r ---, oe that is uniformly valid for 0 __< 0 N n/2.

When the function f has the form

(4) f(t)= Ju(at)/t, O < < oo, la / v/ 1 > ) > -1,

where a is a positive constant, G(r, O) reduces to a Lipschitz-Hankel integral,
the analytical properties of which have been thoroughly investigated. 2 In applica-
tions, however, one often encounters cases in which f does not fall into the special
class of functions characterized by (4). As one such example we may cite the
elastostatic problem for a layered half-space considered in [5].

Our ultimate objective is to prove the following theorem.
THEOREM. Let f be a real-valued function with the properties"
(a) f is N-times continuously differentiable on [0, oo), where N is a positive

integer
(b) the n-th derivativef"), n O, 1, 2, ..., N, off satisfies the inequality

(5) [ft")(t)[

* Received by the editors March 30, 1971, and in revised form July 15, 1971.

" Mechanics and Structures Department, University of California, Los Angeles, California 90024.

See, for instance, [3, Chap. 10].
See [4, Chap. 13] and [2].
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for some positive numbers M and .
Further, the integral

f((t) exp (iyt)x/t
exists for a < y < o, where a is a positive number, and there are positive numbers
M, and a, such that

(6) f((t) exp (iyt)
dt

< M,, 1 <= o <

Then, for each nonnegative v, the integral (3) obeys the estimate
N-1

(7) G(r, O) 2 ln(O’ v)f(n)(O)r-n-1
__

o(r-N) as r , 0 =< 0 __< rt/2,
n=O

in which

(8) ft,(0 v)=
F(v + n_ _+..1)[sin 0}n!F(v+ 1) 2

F
v+n+ 1 v-n.

2 2
v + 1 sin20

The hypergeometric series in (8) converges uniformly and absolutely for 0 <= 0 <__ re
In particular,

Gv(r, re/2) f(t)J(rt) dt

(9) 2X/2vg Nil F(v+ n+ 1)f(")(0) -u)
,=o n!F((v- n + 1)/2)F((v + n + 2)/2) r"+1

+ o(r

asr.

Observe that the hypergeometric series in (8) degenerates into a polynomial
in sin 0 when v n is an even negative integer. Note also that by virtue of the
assumptions (a) and (b) the integral in (3) is convergent for all r > a and 0 < 0 =< re/2.

We prove the theorem first for a degenerate function f which, in addition to
hypotheses (a) and (b), satisfies the condition

(10) f(")(O) O, n=0,1,2,...,N- 1.

To this end, define a sequence of functions {Jm(x; 7)} (0 __< X < o, 0 =< 7 < ,
m 0, 1,2,..., N) by means of

(11)
a(x; 7) J(x) exp (- 7x),

Jr(x;7)= J l(t;7) dt, m= 1,2,...,N.

In view of known asymptotic properties of Bessel functions, 3 if

(12)
J(x; 7) Re{\//2 1

rx(7-i)
exp -Tx-i

See [4, p. 197].

x/
4

7t + m(x 7)

0<x< oe, 0<7 < oe,

Here and throughout the remain’der of the proof it is understood that m 0, 1, 2, , N.
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then there exist positive numbers x, and M such that

]oCv(x; 7)1 < Mx 3/2 exp(-yx), x,(13)

Further, since

(14)

we have

0_-<7<.

IJ(x)l<_l, 0<v<c,_ 0<x<,_

exp (-Tx) 0 < x < o 0 < 7 < o.(15) Jr (x, 7)1 < --Finally, we gather from (11), (12), (13) and (14) that there is a positive number M2

such that

(16) IJ(x;3’)l < M2, 0 =< x < oo, 0 =< 7 < oo.

Formal application of N-fold integration by parts to the right-hand member

(18)

(3) and the power series representation of J furnish

Go(r, O) - f(m(t) exp (- rt) dr, 0 < r < ,
G(r, 0) 0, 0<r< o, 0<v<o.

At this point observe that hypotheses (a) and (b) imply the existence of a
positive constant M3 such that

M3, 0_<t_<l,
(19) IfCm(t)l <

M3t/2-, 1 <= < .
Since > O, we conclude from (15), (17), (18) and (19) that, for < r < ,

+
IG(r, 0)1 < rN+

(20)
(1 -- N/)2(N + 1)/2M3

]G(r, 0)l < rN+ 0 < 0 =< rt/4.

Our next task is to obtain an estimate of Gv(r, O) as r for r(4 < 0 =< rt/2.
To this end we note from (16) and (19) that, for any v, > 0,

(21) f)(t)J(rt sin 0; cot 0)dt < , 0 < r < o, n/4 <= 0 <= n/2,

This result is quoted without proof in [1, p. 362]. A proof of (14) may be supplied with the aid of
the Bessel integral [4, p. 19], an integral representation of a product of two Bessel functions [4, p. 150],
and by an appeal to the continuous dependence of J(x) on v.

of (3) leads, with the aid of (10) and (11), to

Gv(r, 0)
(- 1) f()(t)J)(rt sin 0" cot 0) dt

(17) (r sin 0)
a, <r< o, 0<0<re/2.

Because of (12), (13), (15), (16) and conditions (a), (b), the integral in (17) as well
as all those which appeared in the process of integration by parts exist. In addition,
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provided 6 is the smaller of e/(3M2M3) and 1. Further, with the aid of (12), (13)
and (19), we establish the estimate

61 f(u)(t)J(rt sin dt0;cot 0)
(22)

x/x,/c5 < r, rc/4 <__ 0 <= re
Finally, we claim that there exist two positive numbers r, and Mo such that

(23) f(N)(t)J(rt sin 0"cot 0)dt < Mo
x//, r, < r, re/4 __< 0 __< re/2.

To confirm (23), we note that

fl f(N)(t)J(rt sin 0; cot 0) dt O) 0),II(r, + I2(r,
(24)

a, <r< oo, r/4=<0=<r/2,

where

Ix(r, O) f(N)(t)[J(x; 7) (x 7)] dr,

(253 I2(r, O) f(m(t)C(x 7) dr,

x=rtsinO, 7 =cot0.

To establish an estimate for 11 we observe first that

f(u)(t) exp ty cot 0) exp (iyt)
dt

< M,,
(263

a,<y<,
which is obtained with the aid of (6) and Abel’s test of uniform convergence.
Then, from (123, (25), (26) follows the inequality

re/4 =< 0 =<
6

(27) IIl(r, 0)] < 2M,/x/,
On the other hand, (25), (19) and (18) imply

(28) lI2(r, 0)l < 2M1M3r-3/2/o,

w/a, <r< c, r/4=<0=<rc/2.

x, <r < oo, r/4< 0=<r/2.

Thus, one infers from (24), (25), (27) and (28), the desired inequality (23).
We now gather from (17), (21), (22) and (23) that, given e > 0 there exists a

positive number ro such that

(29) IGv(r, 0)[ < 2u/ze./rN, ro < r; /4 <= 0 <= 7/2.

Combining (29) and (20) one sees that the theorem is true if the first N deriva-
tives of f vanish at the origin, as specified by (10).

See [6, p. 481].
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We are now in a position to prove the theorem as stated originally. Thus,
let f be a function that meets conditions (a), (b) and is otherwise arbitrary. Further,
define functions f and f through

N-1

f(t) J(t) At-, 0 < <
/=0

(30) 7 f(o) Ao(J)(O)/N!),

f(t) f(t) f(t),

where the constant coefficients A are determined recursively from

(31)8
Ao N!f(O)/J)(O),

N, [f(i)!0)Al-- J(ff)(O)

A N f(1)(O)/J()(O),

(N + s) A- /=2,3,...,N- 1.

It is clear from (30) and the asymptotic behavior of JN(t) as oo that f satisfies
the conditions (a) and (b). Moreover, the first N- 1 derivatives of f vanish at
the origin, as is apparent from (30) and (31). Thus, one draws from the result
just established that

(32)
f(t)J(rt sin O) exp (- rt cos O) dt o(r-)

Next, we recall that for 0, 1, 2, ..., N 1,

as r --. ,
0 _< 0 <= rt/2.

ott-NJ(t)J(rt

sin 0) exp (-rt cos 0) dt

sin0 (--1)kF(l + v + 2k + 1)

(33)9 2F(v + 1)k=O/ -ki(.V+2kl,’l+2k(-i

.F
v+l+2k+ 1 v-l-2k

2 2
;v + 1;sin20),

2=<r < o, 0<0=<re/2,

the series in (33) being uniformly and absolutely convergent on its region of
definition.

We now infer from (30), (31), (33), (8) and

(-1)k(U + 2k)!
(34) J(ff +2)(0) 2N+2k!(N + k)!’

k 0, 1,2,"’,

j) dSjN/dxs.
Ix] denotes the largest integer not exceeding x.

See [4, p. 399]. A proof of the uniform and absolute convergence of the series on the region

R {(r,O)lrcosO > 1, r(1 cos0) > 1}
is given on pp. 399-401 in [4].
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that

(5)

f(t)J(rt
sin 0) exp (- rt cos 0) dt

u o (l+ 2k)’J+:z’)(0)
2,(0 v)

0 k= (N + 2k)!r + g--f tl +

f(")(O)O,(O, v)r-"- + nB,O,(O, v)r-"-,
n=O n=N

2Nr< , 00/2,

provided
t./2 j+ 2(0

(36) B, A,_2, n N N +
s=[(n +-i"- N)/zl (N + 2s)[

The rearrangement of the first series in (35) is permissible since this series is
absolutely convergent. Thus, (30), (32), (35) imply (7). Further, (7), (8) and

r(c)r(c a b)
(a + b c < 0) F(1/2)(37) F(a, b;c; 1)

F(c a)F(c b)

yield the estimate (9). This completes the proof.
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ON THE APPLICABILITY OF LYAPUNOV’S THEOREM
IN HILBERT SPACE*

A. PAZY’

Abstract. Let X be a Banach space, T(t) a strongly continuous semigroup of bounded operators
on X,/9 _>_ and

II/I, T(t)xl[ dt

We determine, by means of a necessary and sufficient condition, those semigroups T(t) for which
defines a norm on X which is equivalent to the original norm I" on X.

1. Introduction. In [1], R. Datko extends a well-known theorem of A. M.
Lyapunov concerning Hurwitzian matrices (n n matrices with eigenvalues in
the half-plane Re z < 0) to strongly continuous semigroups of operators on a
complex Hilbert space. Lyapunov’s result can be stated as follows" Let A be a
complex n n matrix and A* its adjoint. Then A has all its characteristic roots
lying in the half-plane Re z < 0 if and only if the solution B of the matrix equation
A*B + BA -I (the identity matrix) is a unique positive definite Hermitian
matrix. The extension of this result is the following theorem.

THEOREM. A necessary and sufficient condition that the semigroup T(t) of
class Co on a complex Hilbert space H satisfy the condition IT(t) =< M e -ut,
where M >= 1 and l > O, is the existence of an Hermitian endomorphism B on H
with B >= O, such that the relation 2 Re (BAx, x) -I[xl{ 2 holds for every x D(A)
(the domain of the infinitesimal generator A of the semigroup T(t)).

Note that the condition [IT(t)[[ =< Me-u implies that the spectrum of A
lies in the half-plane Re z =< -/.

The usefulness of Lyapunov’s theorem in ordinary differential equations is
that it allows for an explicit representation of a Lyapunov function as a positive
definite quadratic form. Using this representation one may then, for example,
study the effects of perturbations on asymptotically stable, linear constant coeffi-
cient systems of ordinary differential equations. Consider say the perturbed
system

du
(1) d-- Au + f(t, u), f(t, O) O.

Let A have its eigenvalues in the left half-plane Re z < 0. By Lyapunov’s theorem
we then have a positive definite Hermitian matrix B such that

d
(2) dS(Bu, u) -Ilull 2 / 2 Re (Bu, f(t, u)).

Hence, one may obtain conditions on the nonlinear perturbation f(t, u) to insure
that d(Bu, u)/dt is negative definite (negative semidefinite) thus insuring asymptotic
stability (stability) of the zero equilibrium. It is essential, however, that for (Bu, u)

* Received by the editors June 17, 1971.
f Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel.
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to be a Lyapunov function, we have an estimate of the form (Bu, u) >= bllui[ 2 for
some b > 0. In other words the Hermitian form B has to define an equivalent
norm on H. If H has finite dimension, this is always the case. However, if H has
infinite dimension, it is not. The purpose of the present note is to characterize
those semigroups T(t) for which the Hermitian form B defines an equivalent norm
on H and Lyapunov’s theorem is applicable in the usual way to infinite-dimensional
systems (see Zubov [2]). For example, consider the case when A is an unbounded
closed linear operator on H and the solutions to (1) are viewed in some "mild"
sense (see Browder [3], Kato [4]). It turns out that for semigroups of "hyperbolic"
type, B defines an equivalent norm on H while it does not define an equivalent
norm for semigroups of "parabolic" type. The precise conditions are given in
Theorems 1 and 2 below.

2. Equivalent norms "generated" by a semigroup. Let H be a Hilbert sace
and let T(t) be a strongly continuous semigroup of bounded operators on H.
From the theorem quoted in the Introduction it follows that if T(t) <_ M e -",
then there exists an Hermitian endomorphism B satisfying 2 Re (BAx, x) x 2

for every x D(A). It is not difficult to show (see [1]) that

(Bx, x) r(t)x dt

for every x e X. Therefore, B defines an equivalent norm on H if there exists a
constant b > 0 such that

T(t)x]] dt >= b][x 2 for xe X.every

We shall consider the following, slightly more general, problem. Let X be’a
Banach space, T(t) a strongly continuous semigroup of bounded operators on

X, p _>_ 1, and

(3) Ilxll r(t)xll dt

Our problem is to determine for what semigroups T(t) is I1" I1 a norm on X
which is equivalent to the original norm on X. The answer to this problem is
given in the following two theorems.

THEOREM 1. Let p >= 1 be fixed. I]Xllp is finite for every x X if and only if
there exist constants M >= 1 and # > 0 such that T(t) <__ M e -ut.

TIEOREM 2, If IIxlI is finite for every x X, it defines a norm I1"1 on X,
equivalent to the original norm 1. II,/land only if there exist o > 0 and c > 0 such
that

(4) T(to)Xll >= cllxll for every x e X.

Remark. From Theorem 1 it follows, in particular, that if for some p => 1,
Ilxll p is finite for every x e X, then this is true for every p => 1.

Proof of Theorem 1. It is clear that if Z(t)ll <= M e -"t, then Ilxllp is finite for
every x e X and every p _> 1.

Let p => 1 be given and let [Ixllpbe finite for every x e X. Using the boundedness
of any semigroup by M e’t, for some real co and M => 1, and the finiteness of Ilxll p



ON THE APPLICABILITY OF LYAPUNOV’S THEOREM 293

one obtains easily that limt T(t)x 0 for every x e X (see, e.g., Lemma 3 of[1]).
Hence, I1T(t)xll is bounded for every x e X, and from the uniform boundedness
theorem we have

(5) T(t)ll -< M, M >= 1.

Let S’X LP(R+;X) be defined by Sx T(t)x. S is a linear operator defined
on all of X, and it is readily seen to be closed. By the closed graph theorem S is
bounded, and we obtain

(6) f: T(t)x p dt =< M X l"

Now, let 0 < p < M-1 and define

t(p) sup {t" T(s)xl >= pllx for every s e 0, t]}.

Since 11T(t)x]] - 0 as , L,(P) is finite for every x : 0. Using (6) we have

t(p)pv ixll __< T(t)x p dt <_ T(t)x dt <= M;I x p,
vO

and therefore, tx(p) <= (MI/p)p. Thus, for > (M/p)p we have

(7) T(t)x[ <= T(t L,(P)) T(t(p))xl[ -< Mpllxll p’

with p’ < 1. Therefore, if > (M/p)p, we have IT(t)] =< p’ < 1. This together
with the semigroup property imply T(t)l] _<- M e -u’.

Proof of Theorem 2. From Theorem 1 it follows that Z(t)] <= M e -ut and
< M Ix It is therefore sufficient to prove that (4) is equivalent tothat Ilxllv

> m Ix for some m > 0 and all x e X. Suppose (4) does not hold. Then for
every > 0 and every e > 0 there exists an element x e X such that Ilxll- 1
and T(t)x[ < . But

fo foT(t)xll p dt T(t)xll p dt / T(t / ) p dr <= rMI p / M;II T()x P.

Given e > O, we first choose such that rM is small, and then we choose x such
that x 1 and IIT(z)x is small. Therefore, given any e > O, there exists an
element xeX such that Ix[ 1 and X[p<e and no estimate of the form
xl p >= mllxl is possible. The condition (4) is therefore necessary.

Let T(to)Xl >= c xll for every x e X and let 0 <_ =< to. Then

c Ix <- T(to)Xl T(to t)T(t)xl <- MII T(t)x

for every x e X, and therefore,

Z
> mllxll, and the condition (4) is sufficient.that is, IlXllp

COROLLARY 1. Let T(t) be a strongly continuous semigroup ofbounded operators
on a Banach space X, satisfying T(t)ll <= M e -u’, m >_ 1, p > O. If for > O,
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R(T(t)) (the range of T(t))is dense in X, then p defines an equivalent norm on X
if and only if T(t) can be extended to a group of bounded operators on X (that is,
A is a generator of a group of bounded operators on X).

Proof. From Theorem 2 it follows that [[. [p is equivalent to [[. if and only
if there exist o > 0 and c > 0 such that T(to)Xll >= cllxll for every x e X. As in
the proof of Theorem 2 this implies T(t)x >__ c’[[x[[ for every 0 =< =< o. Since
R(T(t)) is dense, T(t) is invertible for every 0 =< _<

0. Using the semigroup
property we find that T(t) is invertible for every > 0. Defining T(-t) (T(t))-1
we obtain a Co group of bounded operators. On the other hand if T(t) is a Co
group, T(t) is invertible for every >__ 0 and we have T(t)x >= ([ T(-t) )-l[Ix
for every x e X.

From the proof of Corollary 1 it follows that if A generates a group of
operators such that T(t)x <__ M e -"t x[, then lip is always equivalent to [. 11.
In particular, if A is a bounded operator and T(t) <= M e -"t, p is always
equivalent to I1" II. Thus, for bounded operators A the situation is identical to
the situation in the finite-dimensional case.

We conclude with two simple examples which illustrate the use of the previous
results.

Example 1. Let H be a Hilbert space, and let A be a self-adjoint (unbounded)
operator. By Stone’s theorem iA generates a group U(t) of unitary operators on H.
Let e > 0 and consider the operator iA eI. This operator generates a group
T(t) of bounded operators given by T(t) e-tU(t). By our previous results [12
is an equivalent norm on H. Thus for the "hyperbolic" case Lyapunov’s method is
applicable.

Example 2. Let X be a Banach space and let A be the infinitesimal generator
of a holomorphic sernigroup T(t) satisfying [T(t) =< M e-"’. If A is unbounded,
then I1" lip does not define an equivalent norm on X. The reason for this is the
following" suppose ]. ]p is an equivalent norm; then by Theorem 2 there exist

o>0 and c>0 such that T(to)X >= c xl[; therefore if xD(A), we have
T(to)Ax[[ >= c[[Axl[, but since T(t) is holomorphic, A T(to)is a lounded operator,

and therefore,

I[Axll <= _1 IIA T(to)ll Ix for every x D(A).
c

Since D(A) is dense this holds for every x e X, and A is bounded. Therefore, II" IIp
does not define an equivalent norm in the "parabolic" case.

Aeknowlelgment. I wish to thank Professors B. Weiss and M. Slemrod for
several stimulating conversations.
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REMARKS ON SINGULAR PERTURBATION OF CERTAIN
NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS*

SEYMOUR V. PARTER’]"

Abstract. Under some relatively simple assumptions on f(x, u, v), this report discusses the
existence and asymptotic behavior of solutions of eu"+ f(x, u,u’)u’= O, if(O)- au(O)= A, u’(1)
+ bu(1) B.

(1.1)

(1.2)

(1.3)

1. Introduction. Consider the nonlinear two-point boundary value problem

eu" + f(x, u(x), u’(x))u’ O,

u’(O) au(O) A >= O, a>0,

u’(1) 4- bu(1) B > 0, b>0.

Let e > 0 and assume"

H1" f(x, u, u’) is continuous in the region

R {(x,u, u’)10 <= x <= 1,0 <__ u <= B/b,O <_ u’ _< A + aB/b};
H2" f(x, u, u’) _>_ fl > 0 for all (x, u, u’) e R.
Recently D. S. Cohen [2] used the "shooting method" to study this problem

under somewhat more restrictive hypotheses. Our approach is based on a priori
estimates and the Schauder fixed-point theorem. The physical motivations for
this problem as well as other interesting background facts are discussed in [2].

2. Results. For e > 0 let HI’ and H2’ be the hypotheses H1 and H2 with R
replaced by R’, where

(2.1) R’ {(x,u,u’)10 =< x =< 1,-A/a <_ u <= B/b, 0 <__ u’ <= A + aB/b}.
Let W be the set of all functions v(x) Ca[0, 1] which satisfy

(2.2) v’(O) av(O) A, v’(1) + by(l) B,

(2.3) (x, v(x), v’(x)) R; for all x [0, 1_].

Let e > 0 be fixed, let v(x) W and let u(x) C2[0, 1 b6 the unique solution of the
linear boundary value problem

(2.4) eu" + f(x, v(x), v’(x))u’ O, 0 <= x <= 1,

(2.5) u’(O) au(O) A, u’(1) + bu(1) B.

LEMMA 1. Assume that H I’ and H2’ hold. Then u(x) W.
Proof Since u(x) const., the maximum principle [3] tells us that lu’(x)l > 0

for 0 =< x __< 1. Suppose

u’(x) < O, O x

_
1.

* Received by the editors June 1, 1971, and in revised form July 26, 1971.- Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706. This work
was supported by the U.S. Office of Naval Research under Contract N00014-67-A-0128-0004.
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Then

(2.6)

On the other hand,

u(1)
b

which contradicts (2.6). Thus

(2.7)

Hence

SEYMOUR V. PARTER

u(O) > u().

and

u’() u’(0) A
> 0, u(0) < 0

u’(x) > O, O < x <= 1.

-A/a <= -A/a + u’(O)/a u(0) < u(1)= Bib u’(1)/b <= Bib

(2.8)

Finally, since

-A/a <= u(x) <= Bib.

u"
l
f(x v(x) V’(x))u’(x) < 0

u’(x) assumed its maximum at x 0. Thus,

0 <= u’(x) <= u’(O) A + au(O) <= A + aB/b,

which completes the proof.
Let T denote the mapping described above, i.e.,

(2.9) T" W- W

and

(2.10) T(v) u.

LEMMA 2. T is continuous in the C1[0, 1] topology.
Proof. Let vx(x), v2(x) W and let

(2.11) T(v) u, T(v2) u2, w T(vx) T(v2).

Then w(x) satisfies the equation

e,w" + f(x, v,, vl)w’ If(x, v2, v’2) f(x, v,, v’)]u’2(x), 0 _<= x <= 1,
(2.12)

w’(O) aw(O) O, w’(1) + bw(1) O.

The lemma now follows from standard estimates. That is, as v2 vl and v2 v,
w and w’ 0.

We now remind the reader of the well-known Schauder fixed-point theorem
(see [1, p. 97]).

THEOREM (Schauder). If T is a continuous mapping of a closed convex set W
in a Banach space X into a compact set Wo c W, then T has a fixed point in Wo.

THEOREM 1. For every e > 0 there exists (at least one) a solution u(x, ) of
(1.1), (1.2), (1.3) and that solution u(x, e) W.
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Proof. For fixed > 0 let

+ .-B- max {If( uK
O]

Let X be the Banach space CLIO, 11 and let W be the W defined above. Let Wo be
the set of all w(x) W for which

Iw"l _-< K.

Then, using the Ascoli-Arzela lemma (see [1]) we see that Wo is a compact subset
of the closed convex set 14/ X. Thus we may apply the Schauder fixed-point
theorem, and the theorem follows.

LEMMA 3. There are a sequence e. 0 + and a constant such that

(2.13) max lu(x, e,) l 0 as e, 0+.
0_<x_<l

Proof. The solutions u(x, ) are uniformly bounded and equicontinuous.
Hence there are a sequence 0 + and a function U(x) such that

(2.14) max [u(x, ) U(x)[ - 0 as , 0+.
O_<x_<l

However, we claim U(x) const. Consider the function

dp(x, en) ea’l"[u(x,
Then b(x, e.) satisfies the equations

" + If- 2/3]4) _1 If/3 /32]b 0,
(2.15)

qS(1, e,) 0, 14(0, e,)l =< 2B/b.

Applying H2’ we see that

Iq(x, e,)l =< 2B/b

which implies

lu(x, e,) u(1, e.)l =< (2Bib) e -exl".

Thus, for all x (0, 1),

(2.16) u(x, e,) lim u(1, e,) as e, 0+.

But because of the uniform convergence in (2.14) we see that

U(x) =_ U(1),

and the lemma is proved.
LEMMA 4. Under the hypothesis above,

lim u(x, ,) t Bib.
Proof. Let x e (0, 1). Then

u(x, e,)- u(1, e,)_ u’(1 e) + u ( e,)(x 1)
x-1
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Since u"(, e.)(x 1) > 0, we have

u(x, e,) u(1, e,) >= u’(1, e.) >_ O.
x-1

Then, using Lemma 3, we have

0 _>_ lim sup u’(1, e,) >= lim inf u’(1, e,) _>_ 0

and

But then
u’(, e.) --, o.

(2.17)

and

(2.18)

B u’(1, .)
Bibu(1, e,)

b

THEOREM 2. Let {u(x, e)} be solutions of (1.1), (1.2), (1.3) which lie in W. Then

u(1,e) B/b as e O +

max lu(x, e) B/bl --. 0 as e --. 0 +.
0<x<l

Proof. Suppose (2.17) is false. Then there is a sequence e, 0 + such that

(2.19) u(1, ,,) --, Co Bib.

However, we may extract a subsequence e,, which converges as in Lemma 3.
Then applying Lemma 4,

u(1, ,,,) --* Bib
which contradicts (2.19). Thus (2.17) is established. Then the argument of Lemma 3
using the comparison function b(x, e) leads to the conclusion that

u(x, ) Bib for all x (0, 1].

But, an equicontinuous and bounded family which converges on a dense set
converges uniformly.

Remark. We cannot expect that u’(x, ) will converge to 0 uniformly on the
entire interval [0, 1]. Indeed,

u’(O, ) A + aM(O,) A + aB/b.

However, we easily obtain the following result.
THEOREM 3. Let > O. Then

max{lu’(x,e)l, -<x_-< 1}0 asO.

Proof. Observe that

u" < 0, u’>0.

Hence, if 6 =< x __< 1, then

lu’(x, e)l =< u’(6, e).
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Thus it suffices to prove that

(2.20) u’(6, e) --+ 0.

But we now proceed as in the proof of Lemma 4. Let y e (0, 6). Then

u(y, )- u(6, e) _-> u’(fi, e) >= 0,
y-6

and we see that (2.20) holds.
Finally, let us return to our original problem. Suppose we do not have HI’

but only H1. Let

f(x,u,u’) {f(x,u,u’), (x,u,u’)eR,

f(x,O,u’), (x,u,u’)eR’ but u__<0.

Let us replace f(x, u, u’) by f(x, u, u’). Then the solutions a(x, e) obtained in
Theorem 1 are solutions of the original problem if (0, e)_>_ 0. However since
t(O, e) Bib > 0 we have: under the hypotheses H1 and H2 there is an so > 0
such that there exists a solution of (1.1), (1.2), (1.3) for all e e (0, so).
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PERIODIC SOLUTIONS OF A CLASS OF WEAKLY NONLINEAR
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS*

A. K. AZIZ’ AND S. L. BRODSKY:

Abstract. In a recent paper A. C. Lazer gave a technique for the determination of periodic solutions
of weakly nonlinear ordinary differential equations of the form dx/dt ef(t, x, e), where x and f are
real k-vectors and is a real parameter. In the present paper a method similar to that of Lazer is developed
for the determination of periodic solutions of the weakly nonlinear hyperbolic system of the form

Uxy ef(x, y, u, u,, uy, ). Both problems of obtaining periodic solutions in a strip and in the large are
considered.

1. Introduction. In this paper we consider the hyperbolic system

(1.1) uxy ef(x, y, u, ux, uy, e),

where u col (ul, "", u,), f col (fl, ..., f,), and discuss a method for deter-
mining the solutions of this system which are periodic. We shall examine both the
problems of obtaining periodic solutions in the strip and in the large.

The questions of existence and uniqueness of periodic solutions of (1.1)
have been considered by various authors and in particular by L. Cesari [5], [6]
and J. Hale [8], who extended methods they had used in the study of similar
problems in ordinary differential equations. In [1] and [2] the problems of ex-
istence and uniqueness of periodic solutions of

(1.2) Ux + a(x, y)u, + b(x, y)uy -+- C(X,, y)u f(x, y, u, u u,)

have been considered. The approach in [1, [2] is different from that used by other
authors but depends on the presence of the damping factors a and b and thus is
not applicable to the present problem.

The method we shall exploit here is an extension of a technique developed
by A. Lazer 10] for the determination of periodic solutions of ordinary differential
equations of the form

dx/dt ef(x, y, t,

dy/dt Ay + eg(x, y, t, e),

where x and f are real k-vectors, y and g are real (n k)-vectors,

f(x, y, + T, e) =_ f(x, y, t, e),

g(x, y, + T, e) _-- g(x, y, t,

* Received by the editors July 15, 1971.

" Division of Mathematics, University of Maryland Baltimore County, Baltimore, Maryland
21228, and Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College
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e is a real parameter, and A is an (n k) x (n k) real matrix, none of whose
eigenvalues are integral multiples of 2rci/T. We should mention that the Lazer
process has its roots in the fundamental work of L. Cesari [7] and J. Hale [9],
which was modified to allow one to compute approximate periodic solutions.

In this paper a crucial role is played by an equivalent integral operator
formulation in a suitable function space of the differential problem considered.
Once this formulation is accomplished the main results are obtained in a manner
similar to that in [10]. The present method appears to be simple, computationally
feasible and provides a unified approach to both problems of obtaining periodic
solutions in a strip and in the large. In the literature these problems have been
treated separately, requiring different techniques (see, e.g., [4], [5], [6]).

In 2 we deal with the periodic solutions of (1.1) in a strip and give a detailed
description of the method employed in proving our results. In 3 we extend our
results to periodic solutions of (1.1) in the large. In this case, since the arguments
used are similar to those described in 2, we merely outline the proofs. The results
we obtain can be applied to the related equation

u, u f(t,x,u,u,,Ux, e)

which has been investigated by O. Vejvoda 13], J. Hale [8] and P. Rabinowitz [11].

2. Periodic solutions in a strip. In this section we consider the problem of
determining solutions of

(2.1) Uxy f(x, y, u, u, uy, ),

in the strip S {(x, y);- oe < x < or, 0 =< y =< Yo}, satisfying the conditions

u(x, O, e) O(x, e), u(x + T, y, e) u(x, y, e), u,(x, O, O) el) o,

for (x,y) e S and 0 __< e __< Co, where u col(u,..., u,), f col(f,...,f,),
col(01,..., 0.), 4o (4,’", 4) is a constant vector and e is a small

parameter. The function 0 is taken to be continuous on (-, oe)x [0, eo],
continuously differentiable with respect to x, and periodic in x with period T.
We consider here the case 0(x, e) -= 0. For more general 0 see Remark 1. We then
assume that the following hypotheses hold.

Hi" f(x, y, u, p, q, e) is a real n-vector-valued function defined on (-oe,
x [0, yo] x E" x E" x E" x [0, eo), yo>0, eo>0, which is continuous and
periodic in x with period T.

H2" f(x, y, u, p, q, e,) satisfies a Lipschitz condition in u and is such that
.[’/c3p (c3j}/@.i), [’/c3q (63fi/63qj)are continuous.

H3 b0 E" is such that f(s, O, O, O, dpo, O) ds O.
H4" the matrix D (l/T) j’ (?f(s, O, O, O, 490, O)/c3q) ds is nonsingular.

In addition to the solution u which satisfies the equation and the conditions above,
the method described below will generate the ur(x, O, ) which gives rise to that
solution.

The notation used by Lazer [10] is adopted here. Thus, [z[ will denote the
usual Euclidean norm for z E". For a real n x n matrix A (zij), IA[ will denote
( e/)1/2. For an n-vector-valued function z defined on some set for which
is bounded, z[ will denote the supremum of [z[ taken over its domain of definition.
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Finally we let

M(u, p, q, e) - f(x, y, u, p, q, e) ds.

Now we state the main theorem of this section.
THEOREM 2.1. Suppose"

(i) hypotheses Hx-H4 hold with O(x, e) 0;

(ii) po(x, y, e) =_ O, qo(x, y, e) dpo =_ qbo(y, e),

p.+ x(x, y, e) e f(x, 0 u.(x, rl e), p,(x, rl e), q,(x, rl e), e) drl

q.+ x(x, y, e) e [f(, y, u,(, y, e), p.(, y, e), q.(, y, e),

-M(u., p,, q., e)] d + dp,(y, e),

el), + x(Y, e) dp.(y, e) D- M(u., p,, q,+ x, e),

u.(x, y, e) q,(x, ri, e) drl.

Then there exists a y’ > O, e’ > 0 such that the sequences (p.), (q.), (u.) and
(d?.) converge uniformly on (-oe, oo) x [0, y’] x [0, e’] to functions p, q, u and
with the following properties"

u,y ef(x, y, u, p, q,

u(x + T, y, e) u(x, y, e), u(x, O, e) O, ux(x, y, e) p(x, y, e),

u,(x, y, e) q(x, y, e), u,(O, y, e) dp(y, e), u,(x, O, O) o dp(O, O).

Furthermore, there is an r > 0 such that if e <= e’ is small enough to insure that
Ip(x, y, e)] __< r/Z, ]q(x, y, e) 05ol <= r and ]b(y, e) bo] _-< r/2 for (x, y)e(-
x [0, y’], then u, p, q and 49 are unique.

Proof. For 0 < y’ __< Yo, 0 < e’ __< Co, let C(y’, e’) be the set of ordered triples
(p, q, b), where"

(i) p p(x, y,e) is a continuous, n-vector-valued function defined on
(-oe, oe) x [0, y’] x [0, e’] which satisfies p(x + T, y, e)= p(x, y,
=0;

(ii) q q(x, y,e) is a continuous, n-vector-valued function defined on
(- oe, oe) x [0, y’] x [0, e’] which satisfies q(x + T, y, e) q(x, y, e) and q(x, O, O)

4o;
(iii) 05 b(y, e) is a continuous, n-vector-valued function defined on [0, y’]

x [0, e’] with th(0, 0) q5o.
For r > 0, S(r, y’, e’) will denote the subset of elements (p, q, 4)) of C(y’, ’) such

that [pl[ =< r/2, q- bol =< r, 114)- 4)oll _-< r/2. If one introduces the metric d
on C(y’, e’) defined by

d[(px, qa, dp), (P2, q2, 2)] Ilpx pzl + 1/2 Iqa q2 nt- t 4)211
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for (pg, qg, qbg)e C(y’, e’), i= 1, 2, then the space (C(y’, e’), d) is a complete metric
space with (S(r, y’, e’), d) a closed, and thus complete subspace.

We now define a mapping F on C(y’, e’) which takes an element (p, q,
e C(y’, ’) into the element F(p, q, qS) (p*, q*, 4*), defined by

(2.2)

(2.3)

(2.4)

where

p*(x, y, e) f(x, rl, u(x, rl, e), p(x, rI, e), q(x, q, e), ) drl

q*(x, y, e) e [f(, y, u(, y, e), p(, y, e), q(, y, e), e)

M(u, p, q, )] a + 4(y, ),

4)*(Y, e,) c/)(y, e) D- M(u, p, q*,

u(x, y, e) q(x, rl, e) drl.

It follows easily, using the properties of the elements of C(y’, e’) and the fact that
a primitive of a periodic function with mean zero is periodic, that F maps C(y’, e’)
into itself.

We wish to show that, for r > 0, y’ > 0, e’ > 0 sufficiently small,

(2.5a) F[S(r, y’, ’)]
___

S(r, y’, e’),

and if in addition (Px, qx, bx), (P2, q2, b2) e S(r, y’, e’),

(2.5b) d[F(px, qx, qhx), F(p2, q2, 052)] =< d[(px, qx, dPx), (P2, q2, b2)].

This in turn implies by the contraction mapping principle the existence of a
unique element (p, q, dp) S(r, y’, e’) which is a fixed point of the mapping F. It
then follows from (2.2), (2.3), (2.4) that

u(x, y, e) q(x, q, e) dr

is a solution of the problem being considered. Conversely, if there is a solution
of the problem with (p, q, q5) S(r, y’, e’), then it must be a fixed point of the map, F.
In addition, since for r > 0, y’ > 0, e’ > 0, the triple (Po, qo, qbo), as defined in the
statement of the theorem, is in S(r, y’, e’), and since we can write (p,+ x, q,+ x, 4,+ x)

F(p,, q,, ,), our theorem will follow from (2.5a) and (2.5b).
With the choice of space S(r, y’, e’) and operator F which we have made, the

proof of (2.5a) and (2.5b) proceeds in a manner analogous to that of Lazer. We
first conclude from our assumptions on f that there are scalar functions cog(r, y’, e’),

1, 2, 3, which are continuous and nondecreasing in r, y’, e’ with cog(0, 0, 0) 0,
such that

c3f (x,O,O,O, dPo, O)(q2-qx)-[f(x Y ux Px qx, e’) -f(x y u2 P2 q2

(2.6)
-ffq-q

<= Lllux bl2ll 2t- cox(r, Y’, e’)lPx Pzl 4- co2(r, y’, e’)lq q2l,
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(2.7)
If(x, Y, ua, p, qa,

+cox(r, Y’, e’)lPl Pzl + co3(r, Y’, e’)lql q2l,

where the inequalities hold for all (u, p, q), (//2, P2, q2) S(r, y’, e’), 0 < y __< y’
--< Yo, 0 _<_ e =< e’ N eo. The existence of co2(r, y’, :’) and co3(r, y’, e’) follows from
the periodicity of f and cf/c3qj, their continuity, the Schwarz inequality and the
identity

f(x, y, u, p, q, e) f(x, y, u, p, q2, e,) 2q(X, o, o, o, dpo, O)(ql q2)

fi’[c3Jq(X,y u p ql +s(q2-ql) e) q(X 0,0,0 dpo,O)JdS(ql-q2)
The existence of co(r, y’, e’) follows similarly, where this time we use the periodicity
and continuity of c3fi/cpj. The constant L denotes the Lipschitz constant on f
(see hypothesis H2).

Let
H(r, y’, e,’) max If(x, y, u, p, q,

for (x, y, e)e (-oe, oc) x [0, y’] x [0, e’] and lul y’(r + Ibol), Ipl r/2, Iq bol
r f(x, y, u, p, dpo ) dxl for (y, e) e [0, y’] x (0, e’) and=< r, and set I(r, y’, e’) max [o

lul =< y’(r + t4ol), From hypothesis H3 we have that I(r, y’, e’) tends to zero as
e’ 0, y’---, 0 and r 0. Furthermore, by the periodicity and continuity of
3f/c3q, we can conclude the existence of constants b and b2 such that for all
z E", ID- Xzl < bxlz[, and ID- (?f(x, O, O, O, 4)0, O)/c3q)zl < b2lzl. We now choose
r > 0, e’ > 0, y’ > 0 so small that

max (2T, y’)e’H(r, y’, e’) < min (r/2, r/(662)),

(2.8) blco2(r y’, e’) < 1/6,

where

max {2(y’L + co3(r, y’, e’)), co(r, y’, e’)} =< 2/3,

4 e,’y’=-jeT+ +2e’Tb2 +b
Now we fix r, y’, e,’ for the remainder of the proof.

Let (p, q, 49)e S(r, y’, e’). Then from (2.2) and (2.8) and the periodicity of p*
we have

(2.9) IIP*{I _-< ey’H(r, y’, e’) <= r/2.

By (2.3),

q*(x, y, e) bo ((y, e) 950) + e [f(, y, u, (, y, e), p(, y, e), q(, y, e), e)

-M(u, p, q, e)] d,
so using the periodicity of q* and (2.8), we obtain

(2.10) ]lq* 4oll _-< 114 4oll / 2e’TH(r, y’, e’) <= r/2 + r/2 r
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and

(2.11) I[q* qSl[ =< 2g’TH(r, y’, d) <= r/2.

Finally from (2.4) we have

O*(y, e) qo (O(Y, e) o) -- (s, 0, 0, 0, o, 0)(qS(y, e) 0o) ds

D-1
| (s 0 0 0, 4o, O)(q*(s y, e) O(y, e)) dsT 0oq

+---T-- (s, o, o, o, o, O)(q*(s, y, e) dpo

-{f(s, y, u, p, q*, e) f(s, y, u, p, qbo, e)}J ds

T f(s, y, u, p, (Do, e) ds.

The first two terms on the right of the above equation cancel, leaving by virtue
of (2.6), (2.8), (2.10) and (2.11),

bl114"- 0 -<- b2 q*- 41 + bo92(r,Y’,e’)lq*- 490 +-fI(r,Y’,e’)

(2.12) <= 2b2e’TH(r, y’, ’) + bxro)2(r, y’, ’) + -l(r, y’, e’)

r r r r
< + +=6 g 6 2

Thus we have shown IIP*II <= r/2, IIq* o/I =< r, I/* o1/ --< r/2. The above
inequalities imply that F[S(r, y’, e’)] _c S(r, y’, e’).

To prove (2.5b), let (pl,ql,bl), (p2,q2,z)eS(r,y’,g’). Then from the
definition of u, from the periodicity of u, p’, 1, 2, and (2.2), (2.7), we obtain

(2.13)
Ilul u2[I <= y’llql q2ll,

pT p[ e’y’[(y’L + o)3(r Y’, g’))l ql q2 + Ogl(r, Y’, ’)IlPl P211].

From (2.3) and (2.7) and the fact that q’ and q are periodic it follows that

(2.14)

and that

[q ql lie, 2 "nt- 2e.’T[(y’L + c03(r, y’, e’))llq q2ll

+Col(r, y’, e’)llpx p2[I]

(2.15)
II(q q)- (1 2)11 2dT[(y’L + co3(r, y’, e’))llql

-+-091(r, Y’, e’)llp, P21I].
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Finally, from (2.4) we have

’(y, ) 4(y, ) ((y, ) (y,

D- f] (s, o, o, o, 4o, o)(4(y, ,i- 4(y, )) s

D-1T af
q(s, O, O, O, o, O) [q(s, y, e) q(s, y, )

--(dp,(y, ,) c(y, ))] ds

[ q(S O O O O)(q(s y )--q’(s y ))

--(f(s, y, u,p, q, e) f(s, y, u2, P2, q2, )) ds.

Noting that the first two terms on the right cancel, we see that

qS]’- b =< ba (q-q)-(4),- q52) +b,co2(r,y’,e’) q-q
(2.16)

+ bL u u2 + boJ(r, y’, ) [p p

where we have made use of (2.6). By (2.14) and (2.15) and the above inequality,
we have

b 4 =< [2e’b2 Too(r, y’, ’) + 2e’Tbco(r, y’, ;’)oJ2(r y’, e’)

+ boJ(r, y’, e’)] p pa
(2.17)

+ [bxy’L + 2e’T(y’L + oo(r, y’, e’))(b 2 -+- bcoz(r y’, e,’))]l q q2

Thus, combining (2.13), (2.14) and (2.16), we get

<= [blY’L + (y’L q-- o93(r y’, ’))

(e’y’ + e’T + 2e’Tb2 + 2e’Tbco2(r, y’, e’))][ q q2

+[e’T + e’y’ + 2e’Tb2
+ 2e’b Tco2(r, y’, ’) + b] Pl P2 IoJ(r, y’, e’)

+[1/2 + bcoz(r, Y’, e’)]ll4x 2

Observing that bco(r, y’, e’) >= 0 and recalling from (2.8) that bcoz(r, y’, e,’) _< -,
we have

d[F(pl, ql, 1), F(P2, q, dP2)] < a(y’L + C03(r y’, ’))llq, q2[I

+co(r, y’, ’) p, p + ,
where

=-}a’T + e’y’ + 2e,’Tb2 + b.
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From (2.8) we then conclude

d[F(pl, qx, qbi), F(p2, q2, (/)2) E1/2 ql q2 + P1 Pzll -+- lbl bzll].

Hence, (2.5b) holds, and the proof of Theorem 2.1 is complete.
Remark 1. We note that if (x, e)#-0, the change of variable v(x, y, e)

u(x, y, e) (x, r,) leads to the problem

v,y f(x, y, v + /, v, + x, vy, e) ell(x, y, v, v,,, vy, e),

v(x, O, e) O, v(x, O, O) 4)0,

v(x + T, y, e) v(x, y, e).

The conditions H, H. imposed on f can be shown to carry over to H, and so
if H also satisfies H, H,, the solution for nonzero can be obtained by using
Theorem 1 and the transformation above.

It should also be observed that by a slight modification of the proof we can
replace (2.5b) by

(2.5b’) d[F(Pl, ql, bx), F(p2, q2, bz)] < kd[(pl, ql, bl), (P2, q2, bz)]

for (Pl, ql, bl), (P2, q2, 2) ff S(r, y’, e’), where k is any number with 0 < k < 1.
Of course, for different k we shall have to choose r, y’, e’ differently. In general,
however, since the initial approximation (Po, qo, bo) e S(r, y’, ’) and (p,+ 1, q,+ 1,

b,+ 1) F(p,, q,, b,) we can use the estimate (2.5b’) to obtain the error bound

k"
dE(p,, q,,, dp,) (p, q, b)] < d[(Pl, qx, (/)1) (PO, qo, bo)]=l-k

where (p,, q,, b,) is the nth iterate and (p, q, b) is the fixed point which gives rise
to the solution. From the above inequality we have

k"
=l-k

2k"
[qn- q[I < {1/2 ql- bo nt- Ilpxll q-11(/)1- 01}=l-k

which in turn gives us the estimate

Ilu,- u 2Y’l...._2..k{1/2 q qSoll + [Ipxl + [(/)1 (/)0 }"

Remark 2. The b which appears in Theorem 2.1 is merely maxi,jlDl and
hence can be determined. We can then get the same result as in Theorem 2.1 if
instead of continuous differentiability with respect to p we assume that f satisfies
a Lipschitz condition with respect to p and that blL < , where L is the Lipschitz
constant (the choice of here corresponds to the choice k in (2.5b’)).

Remark 3. The condition ur(x, 0, 0)= bo means that we are considering
problems (1.1) with solutions of the form u(x, y, ) h(y, ) + g(x, y, ). Here
h(y, ) is an n-vector-valued function continuous on (-oe, oc) x [0, e’] and con-
tinuously differentiable with respect to y, with h(0, e) 0, by(0, 0) bo. g(x, y, e) is
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an n-vector-valued function, continuous on (-oo, oo) x (-oo, ) x [0, e’] and
continuously differentiable on (- oo, oo) x (- oo, oo) with g(x + T, y, e) g(x, y, O,
g(x, O, e) 0 and gy(x, y, ) O.

u(x, y, e) O(x, e) + h(y,O + g(x, y, e),

where is given and h and g are as above and are determined so as to yield a
solution of the type desired.

If f(x, y, u, ) is continuous on (-oo, oo) x [0, Yo] x E" x [0, e.o], con-
tinuously differentiable with respect to u, and satisfies f(x + T, y, u, e) f(x, y, u, O,
we can use a similar technique to find periodic solutions to

uxy .f(x, y, u, ),

u(x, O, ) O(x, ), O(x + T, ) O(x, ),

u(x + T, y, 0 =- u(x, y, O.
As before we consider the problem with O(x, e) 0.

THEOREM 2.2. Suppose

and

is nonsingular. Then, if

f(x, O, O, O)ds 0

D =_ u(X, O, O, O) ds

and

where

Uo(X, y, ,) O, Cbo(y, ) =- 0

u + a(x, y, e.) e. If(s, t, u.(s, t, g), g) M(u., :)] ds dt

On +I(X, y, g) Cn(Y, g’) D- 1m(u +1,

M(u, e) - f(s, y, u, (s, y, e), e)ds,

there are y’ > O, e’ > 0 such that the sequences (u.), (dp.) converge uniformly on
(-m, m) x [0, y’] x [0, g’] to functions u, such that

ux, e.f(x, y, u, e),

u(x + T, y, e) u(x, y, e), u(x, O, e) =- O,

u(O, y, ) 4(y, ), ok(o, o) o.
Furthermore, there is an r > 0 such that if e < e’ is small enough so as to insure
that ]u(x, y, e.)l _-< r/2, [0(Y, e)] =< r/4, then u and dp are unique.
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As the proof of this theorem is so similar to that of Theorem 2.1, it is omitted.

3. Periodic solutions in the large. We now take up the problem of finding
solutions of (1.1) which are periodic in the large. We seek, in particular, solutions
of the problem

(3.1) uy ef(x, y, u, Ux, uy, c),

for -c < x, y < c, satisfying the conditions

u(x, y, o)= O(x) + 0(y), u(x + T, y, ) u(x, y, ,) u(x, y + T, e)

for oe < x, y < oe and 0 _<_ _<_ co, where u col (u 1, u,), j= col (fl, f,),
01 (0, .-., 0]), 02 co1(02, "", 0), and e is a small parameter. 01(x)

O(X + T), 0z(y O2(Y + T) are to be continuously differentiable. We shall
consider the case 01(x) 02(y) 0, the nonzero case being handled by a trans-
formation similar to that employed in 2. We assume that the following hypotheses
hold.

L" f(x, y, u, p, q, e) is a real n-vector-valued function defined on E E E"
E" E" [0, eo], eo > 0, which is continuous, continuously differentiable

with respect to u, p, q and periodic in x and y with period T.
T

L2 f(s, O, O, O, O, O) ds O,
0

f(O, t, O, O, O, O) dt O,

f(s, t, O, O, O, O) ds dt O.

L3 The matrices

D =_ - (O, t, O, O, O, O) dt,

D2 -- (S, O, O, O, O, O) ds

and

lfof]f(s, tO, OO, O)dsdt

are nonsingular.
Introducing the notation

M(u, p, q, ) - f(x, t, u, p, q, e) dt,

M2(u, p, q, ) - f(s, y, u, p, q, e) ds,

M3(u p, q, e) f(s, t, u, p, q, e) ds dt,
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we then have the following theorem.
THEOREM 3.1. Suppose"

(i) hypotheses El-L3 hold with O(x) O2(y ;
(ii) po(x, y, ) 0 Cko(X, ), qo(x, y, ) 0 o(Y, ), qo(e) O,

Uo(X, y, ) O,

Pn+ I(X, y, g,) g. If(x, t, u., p., q., e) M(u,, p., q., e)] dt + dp.(x, e),

q.+ (x, y, e) e If(s, y, u., p., q., ) Mz(U., p., q., )_ ds + O.(Y, e.),

.+ (x, e) .(x, e) D- M,(u., p.+ 1’ q.,

.+ ,(y, e} O.(y, e) D M(u., p., q.+,,

a.+ x(e.) a.(e) D; 1m3(un+ 1, Pn, q., ),

Un+ 1(X, Y, g) Pn+ 1(X, Y, g) -- P.+ x(, Y, g) d ds

Then there is an r,’ > 0 such that the sequences (p,,), (q,,), (u,,),
converge uniformly on their respective domains to functions p, q, u, 4), q*, a such that

Uxy ef(x, y, u, p, q, ),

u(x + T, y, ) =_ u(x, y, ) =_ u(x, y + T, ),

Ux(X, y, e,) p(x, y,

Ux(X, O, ) (x, ),

u(O, O, ) a(e).

uy(x, y, e.) =_ q(x, y, e),

u,(O, x, ) O(x, ),

Furthermore, there is an r > 0 such that if e <= e’ is small enough to insure that
Ip(x, y, e)l =< r/4, Iq(x, y, e)l =< r/4, I(x, e)l =< r/6, I0(Y, e)l =< r/6, la(e)l =< r/6 .[or- < x, y < o, then u, p, q, dp, , and a are unique.

Proof. For 0 =< ,’_< eo, r > 0, define S(r, e’) to be the set of elements
(p, q, , , a) where"

(i) p p(x, y, e) is an n-vector-valued function defined and continuous on
(.-oo,) x (-oo, oo) x [0,’] with p(x + T, y, ) =_ p(x, y, e) p(x, y + T, ),
p(x, y, O) 0 and [P[I _-< r/4;

(ii) q q(x, y, e) is an n-vector-valued function defined and continuous on
(- o, oo) x (- oo, oo) x [0, e’] with q(x + T, y, ) =_ q(x, y, e) q(x, y + T, ),
q(x, y, O) O, and [ql _-< r/6;
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(iii) b b(x, e) is an n-vector-valued function defined and continuous on
(- , ) x [0, e’] with p(x + T, e) b(x, e), b(x, 0) 0, and 4)II =< r/6;

(iv) O(y, e) is an n-vector-valued function defined and continuous on
(- , ) x [0, e’] with O(y + T, e) O(y, e), ,(y, 0) 0, and _-< r/6;

(v) a a(e) is an n-vector-valued function defined and continuous on
[0, e’] with a(0) 0, and a =< r/6.

For (Pl, ql, c1, O, al), (Pz, qz, dz, Pz, az) S(r, e’) we define

d[(p, q, dp, ’1, a), (P2, q2, b2, 2, a2)] 1/2I]Pl P2 -+- 1/2llqx q211 + ll4x 21

Then (S(r, e’), d) is a complete metric space.
Now we define for (p, q, , , a) S(r, ’) the mapping G(p, q, c, b, a)

(p*, q*, q*, ,*, a*) by

p*(x, y, e) If(x, t, u(x, t, e), p(x, t, ), q(x, t, e), e) Ma(u, p, q, e)] dt

+ 4)(x, ),

q*(x, y, e) e If(s, y, u(s, y, e), p(s, y, e), q(s, y, e), e) M2(u, p, q, e)] ds

+ (y, ),

*(x, ) (x, ) D-( MI(u, p*, q, ),

,*(y, e) if(y, e) O Mz(u, p, q*, e),

a*(e) a(e) O- 1M3(u* p, q, ),

where

u*(x, y, ) p*(s, y, ) - p*(, y, ) cl ds

+ q*(O, t, e) - q*(O, , e) dq dt+ a(e).

Now for 0 < k < 1, one can show in a manner similar to that of Theorem 2.1
that for suitable r > 0 and e’, G is well-defined, G[S(r, e’)] S(r, ’), and for

(Pl, qx, 1, 1, al), (P2, q2, 2, if2, a2)6 S(r, ’),

d[6(p,, q, ,, a,), 6(p, q, ,,
kd[(p, q, ,, a), (p, q:, ,, a)],

and the theorem will follow by the contraction mapping principle.
Furthermore, since (Po, qo, o, o, ao) S(r, ’) for any r > 0, e’ > 0, we

obtain again

2k"
lip, pll IIq, qll <

=l-kd[(Pl, ql, , 01, a), (Po, qo, dPo, Oo, ao)],
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k< d[(p, q, dp, /, a) (Po, qo, o, ’o, ao)]=l-k

kn-
lu. ul < (8Tk + 1) d[(p, q, , O, a) (Po, qo, o, Oo, ao)]=l-k

or more precisely,

u u < (8Tk + 1)[llp
=l-k

We conclude this paper with examples.
(We take O(x) O(y) 0 throughout.)
Example 1. Consider the system (3.1) with

f(x, y, u, p, q, ) O(x, y)u + O(y)p + O3(x)q + eg(x, y, u, p, q, e),

where Ol(X, y), O(y), O3(x) are continuous and periodic in both x and y with the
same period T and g’ satisfies the assumptions in L on f. Suppose, further,

are nonzero. It is easily shown that under these assumptions the hypotheses of
Theorem 3.1 are satisfied, and we conclude the existence of a unique %periodic
solution to (3.1) with f given as above from Theorem 3.1.

Example 2.

f(x, y, u, p, q, e) u cos u + O(Y)P + Oe(x)q + eg(x, y, u, p, q,

where Ol(Y), Oe(x) are 2z-periodic and are continuous and g is 2-periodic and
satisfies the hypothesis assumed onfin Theorem 3.1. Further,

O,(y) dy, @2(x) dx

are nonzero. It is again directly verifiable that the hypotheses of Theorem 3.1
are satisfied, and we conclude that there is a unique 2-periodic solution to (3.1)
with f as above.
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INTEGRAL EQUATIONS ON CERTAIN COMPACT
HOMOGENEOUS SPACES*

I. I. HIRSCHMAN, JR.?

Abstract. Let T, R./Z,, where R. is n-dimensional Euclidean space and Z, is the n-dimensional
lattice group, be the n-dimensional torus. We denote elements ofT. by 0, q, etc. Let do be Haar measure
on T, so normalized that T, has measure 1. Let V(0) L(T,), and let L(0) LI(T,) be such that
L (k) _>_ 0, k Z., where

L"(k) fT L(O) e -ik’O dO, k.O klO + + k,O,.

Following earlier work of Kac who used probabilistic methods, Rosenblatt and Widom used classical
methods to study the asymptotic distribution of the eigenvalues of the nonnegative integral operator

Sf (0) f V(O)L(O g)V(q)f(q) f L2(Tn).

Let G be a compact Hausdorff group with elements x, y etc., and let K be a closed subgroup of G. In the
present paper we show that results like those of Kac, Rosenblatt and Widom hold with T, replaced by
the compact homogeneous space G/K provided the following condition is satisfied. There exists a
closed subgroup N ofG contained in the normalizer ofK such that ifLI[G, K, N] consists ofall functions
f(x) in LI[G] such that f(klxk2) f(x) in LI[G] for all kl, k2 K and such that f(nxn- 1) f(x) in
LI[G] for all n e N, then LI[G, K, N] is a commutative subalgebra of

1. Introduction. In two extremely interesting studies of the connections
between certain stochastic processes and the integral operators associated with
them, Kac obtained (among many other results) an asymptotic formula for the
eigenvalues of the operators

Tf. (x) fR V(x)[x yl-V(y)f(y)dy, 0<<n.

See [4] and [5]. Here R, is n-dimensional Euclidean space and V(x) is a bounded
nonnegative function on R, with bounded support. For e n 2 Kac’s results
are closely related to classical estimates due to Weyl for the eigenvalues of operators
like the Laplace operator;see [2, Chap. VII. The fact that Kac’s results also held
for other values of e suggested that such formulas might be valid in a rather general
context. Subsequently Rosenblatt [6] and Widom [8] carried out studies of more
general operators like T, using classical methods. The central result of Widom’s
elegant theory is as follows. Let T, R,/Z, be the n-dimensional torus, let and
q be elements in T,, and let dq be Haar measure on T,, normalized so that the
measure of T, is 1. For V L[T,] set

Mvf. (0) V(O)f(O).

Clearly Mv is a bounded linear transformation on L2[T.. Let L^(k) be any non-
negative function on Z such that L(k)- 0 as k . We do not assume that
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L^(k) is the Fourier transform of a function in LI[Tn]. The formula

RL^f.(O) f^(k)L(k) eik’, f L2[T,],

wherek (k ..., k,,), 0 (01, "’", 0,,), k. 0 k101 + + k,,O,,, defines RL as
a nonnegative completely continuous operator on L2[T]. If

(1.1) S M.RL"Mv,
then S is a nonnegative completely continuous operator on L2[T,]. Widom showed
that if L (k) behaves somewhat regularly as k o0, then (essentially)

(1.2) N+[e,S] I{(0, k)’IV(0)I2L(K)
where N/ [e, S] is the number of eigenvalues of S greater than e, and I{" }IT. z. is
the measure ofthe set {. in the product measure space T,, x Z,,. If it should happen
that

L^(k) f L(O)e-ik’dO

for L(0) L1 IT,I, then

(1.3) Sf (0) f_ V(O)L(O p)V(p)f(p) dq.
.IT

Let G be a compact Hausdorff group with elements x, y, etc. The identity of G
is e, and we denote by dx, dy, etc. Haar measure on G, normalized so that the
measure of G itself is 1. Let K be a closed subgroup of G. Our objective in this paper
is to show that, in principle, a result like Widom’s holds for the homogeneous
space G/K provided the following condition is satisfied:there exists a closed
subgroup N of G contained in the normalizer ofK in G, such that if L I[G, K, N] is
the set of functions f(x) in LI[G] which satisfy f(kxk’)= f(x) in LI[G] for all
k, k’e K and f(n-lxn) f(x) in LI[G] for all n e N, then LI[G, K, N] is a com-
mutative subalgebra of LI[G]. IfN1 and N2 are closed subgroups of the normalizer
of K in G such that LI[G, K, N1] and LI[G, K, N2] are commutative, and if these
algebras are distinct, then each gives rise to an analogue of Widom’s formula.
The qualification "in principle" is due to the fact that, to carry out our program
in full, it is necessary to know a great deal about the irreducible unitary representa-
tions of G, information which is, more often than not, unavailable. Actually we shall
study operators acting on K-right invariant functions on G, rather than operators
acting on functions on G/K. However, it is all the same thing. Let L2[G/K (L[G/
K]) consist of all functions f(x) in L2[G] (L[G]) with the property that f(xk)
f(x) in LEG] (L[G]) for all k K. Let S be the integral operator on the Hilbert
space LE[G/K] defined by

Sf (x) f. V(x)L(y- lx)V(y)f(y) dy,

where:
(a) V(x) L[G/K]
(b) L(x) LI[G, K, N] and the map f - f* L of the Hilbert space L:[G/K]

into itself is nonnegative.

f L2[G/K],
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We shall show that if certain regularity conditions on the Fourier transform of L
are satisfied, then a suitable analogue of Widom’s formula (1.2) is valid. Moreover
this result remains valid if S is defined by a formula analogous to (1.1) rather than,
as above, by a formula analogous to (1.3).

2. Harmonic analysis. The assumption that LI[G, K, N] is commutative
enters into the demonstration of the analogue of Widom’s formula only very
indirectly. This section is devoted to extracting the results we need from this
assumption. Before embarking on this, it is convenient first to record some ele-
mentary facts concerning LI[G, K, N].

Let K and N be arbitrary closed subgroups of G. It is easy to see that the set
of all functions in LI[G] for which

(2.1) f(kxk’) f(x) in L[G] for all k, k’e K

is a subalgebra of LI[G]. Similarly the set of all functions f Lt[G] such that

(2.1’) f(n-lxn) f(x) in LI[G] for all ne N

is a subalgebra of L[G].
With K and N still arbitrary closed subgroups of G, let LI[G, K, N] be the set

of all functions in L[G] with the invariance properties.(2.1) and (2.1’). Clearly
LI[G, K, N] is a subalgebra of

LEMMA 2.1. If K is the smallest closed subgroup of G which contains K and is
normalized by N, then

La[G, K, N] LI[G, Kx, N].

Proof. Let p n- kn where n N, k e K. Then

Similarly,

f(px) f(n- knx) f(n- knxn- in)

f(knxn-1) f(nxn-1) f(x).

f(xp) f(x).

It follows that if Ko is the subgroup of G generated by all elements of the form
n- lkn where n e N, k K, then

f(qxq’) f(x) in LG] for all q,q’e Ko.
Let q Ko,

then n- qn-
q n-[lklnl "’nv lkvn,

e Ko since

n-lqn (nln)- lkl(nln) (nn)- lk(nn).
It is evident that K0 is the smallest subgroup of G containing K and normalized
by N. A routine argument shows that K1 Ko is the smallest closed subgroup
containing K and normalized by N, and that iff e L[G, K, N], then

f(sxs’) f(x) in L[G-I for all s,s’ e

It follows that we can, and henceforth do, assume that N normalizes K.
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LEMMA 2.2. Let K and N be closed subgroups of G (such that N normalizes K).
Iffor some p G,

or

f(px) f(x)

f(xp) f(x)

in Ll[G] for all f eLl[G,K,N],

in LI[G] for all f e LI[G, K, N],

and

(2.3’) fa g(al, i,j, x)g(2, r, s, x) dx 0 if e -7(: 2,

g(z, i,j, x) ( U(a, x)(j)](i)),

For each x G, [g(a, i, j, x)] is a d(a) x d(a) unitary matrix. The g(a, i, j, x), i, j 1,
.., d(a), are the representative functions of the representation . The representa-

tive functions depend on the particular orthonormctl basis used in H(e), although
this is not indicated in our notation. However, the d(e) x d(a) linear space of
functions on G spanned by the representative functions g(a, i, j, x), i, j 1, ..., d(a),
is independent of the choice of basis. We recall the orthogonality relations

i,j, x)g(, r, s, x) dx 6(i, r)a(j, s) d()- 1.

For f LI[G] and e e A we set

(2.4) If ^(e)] If "(a, i,j)] f/(x)[g(e, i,j, x)] dx.

This d(a) x d(e) matrix is called the eth Fourier coefficient of f(x). We note that if

(2.2) LI[G, K, N] LI[G, K, N1].

SCHOLIUM 2.3. Let LI[G,K,N] be commutative. If K’ K, N’ N, then
L [G, K’, N’] is commutative.

This is because LI[G, K’, N’] is a subalgebra of LI[G, K, N]. (In accordance
with our convention we will, in applying this result, always choose K’ so that it is
normalized by N’.)

For each A, an index set, let x--. U(e, x) be a continuous irreducible
unitary representation of G on the Hilbert space H(a) with the inner product
(" I" ). Let d(a) be the (necessarily finite) dimension of H(a). We assume that if
zl,a2 cA and z - a2, the corresponding representations are not unitarily
equivalent, and we assume that every continuous irreducible unitary representa-
tion of G is unitarily equivalent to one of the representations of A.

For a fixed let (1), (d()) be an orthonormal basis in H(c) and let

then p K.
The proof will be given later in this section. Lemma 2.2 shows that if N

normalizes K, then the notation LinG, K, N] is "honest" so far as K is concerned.
It is not always honest in N. Indeed, we shall have occasion to use the following
evident fact. If N contains N1 and is contained in the subgroup generated by N1
and K and C, where C is the center of G, then
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fl ,fz e LI[G] and if

then

f(x) f * f2" (x) f fx(xy-)f2(Y)dy,

(2.5) If ()] [A ()] [A ()].
For f e LX[G] the (formal) Fourier series for f(x) is

(2.6)

d()

2 d(a) 2 f ^(a, i,j)g(a, i,j, x)
aeA i,j

d(z) tr{[f "()] [g(a, x)]t}.

f is uniquely determined by {[f ^(a)]},A, the set of its Fourier coefficients, and
if f e Lz[G], the series (2.6) converges unconditionally to f in Lz[G].

Fix a e A and let, as before, (1), ..., (d(a)) be an orthonormal basis for
H(a). Let

J a(i)(i a(i)(i).
i=1

Then x U(e, x) =- J U(e, x)J is easily seen to be a continuous irreducible unitary
representation of G on H(e). It follows that there exists an element in A such that
U(e, x) and U(, x) are unitarily equivalent. Note that d(e) d() and that

(U(a, x)(j)l(i)) g(a, i,j, x).

The mapping k --, U(e, k), the restriction of U(a, x) to K, is a unitary (though
not necessarily irreducible) representation of K on H(a). Clearly H(a) can be
written as the direct sum of two subspaces, invariant under U(a, k), k e K,

H(a) Hr(a) + H’(a),

where U(e, k), k e K, leaves each vector in Hr(e) fixed and acts nontrivially on every
vector in H’(e) (except the null vector). Let dr(e) dim Hr(e). We may assume
without loss of generality that the basis (1),..., (d(e)) has been so chosen that

(2.7) (1),..., (dr(a)) e Hr(a).

Let
Ar { e A’dK(a) # 0}.

Note that e e A if and only if e AK and that dr(z) dr(d).
We denote by L[G/K](LI[IG]) the set of all functions f in L[G] such

that f(x)= f(xk) in LI[G] for all k e K (f(x)= f(kx) in LI[G] for all k e K).
We define LX[K\G/K] to be LI[IG] (3 LX[G/K].

The following result is well known and easily established.
LEMMA 2.4. Let (2.7) hold. If f e L[G/K], then

f ^(, i,j) 0, e A\At,
(2.8)

f (, i,j)= O, j > d(a),
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Conversely if f LX[G] and (2.8) is satisfied, then f 6 LI[G/K]. Iff LX[IG],
then

(2.9)
f ^(’ i, j) O, A\Ar,

f^(a,i,j)=0, i> dr(z), zeAr.

Conversely iff LI[G] and if (2.9)is satisfied, then f LI[/G]. Iff LI[IG/K],

f "(, i,j) O, A\Ar,
(2.10)

f^(, i,j) O, j > dr(e) or i> dr(), 6 Ar.
Conversely iff LI[G] and if(2.10) is satisfied, thenf LI[K\G/K].

We recall that as always N is a closed subgroup of G which normalizes K.
LEMMA 2.5. If 7 At, n N, then

U(7, n)Hr(7) c nr(7).

Proof. Let 6 Hr(Y). For U(y, n) to belong to Hr(y) it is necessary and
sufficient that

U(y, k)U(y, n) U(y, n) for all k K.

We have U(y,k)U(y,n)= U(y, kn). Since N normalizes K, kn nk’ for some
k’ K. Thus

U(y, k)U(y, n) U(y, nk’) U(y, n)U(y, k’)

u(,, n),

and our proof is complete.
It follows that Us(V, n), the restriction of U(y, to N, is a unitary representa-

tion of N on Hc(y). Consequently Hr(y) can be written as a finite direct sum of
mutually orthogonal subspaces

Hr(y) )Hr(Y, c)

on each of which UN(Y, acts irreducibly. (The number of summands in the above
decomposition plays no significant role and we do not give it a name.) If we set

Us(y, n) Us(y, c, n), e Hr(y, c),

then n--. Us(V, c,n) is an irreducible unitary representation of N on Hr(y, c).
We put

dr(y, c) dim Hr(y, c).

Let I(y) (1, 2,..., dr(V)} and let

() 1(, c)

be a decomposition of 1(7) into disjoint sets of consecutive integers, such that the
first set contains dr(v, 1) integers, the second dr(v, 2) integers, etc.

Given a dr(v) dr(v) matrix we partition it into blocks as follows--the
(c, c’)th block corresponds to the indices e I(y, c), j e I(y, c’). It is easy to see that
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by choosing (1), (dr(7)) correctly the matrix

[g(7 i, j,-"rf)l’l}.Ji,j=

can be made to have the following form. The entries in the (c, c’)th block are 0
unless c c’, and the (c, c)th and (c’, c’)th blocks arc identical whenever UN(?, C, n)
and UN(?, c’, n) are unitarily equivalent. From this point on we assume that for
every ? e AK, the basis of HK(?) has been chosen in this way.

THEOREM 2.6. f e L[G] belongs to Lt[G, K, N] if and only if for each 7 A,
f ^(y, i,j) 0 whenever either or j exceeds dr(y), and the matrix

(2.11) If (7, :a,,()
JJJi,j

has the following form; the (c, c’)-th block is 0 unless Us(y, c, and Us(7, c’, are
unitarily equivalent in which case it is a diagonal matrix with identical entries.

Proof. For 1 <_ _<_ dr(y) let c(i) and (i) be such that is the <(i)th number in
1(7, c(i)). Define 6(i, j) as 1 if Us(y, c(i),. and Us(7, c(j),. are unitarily equivalent
and if(i) (j); otherwise 6(i,j)is 0. It is not hard to verify that if 1 __< i,j <__ dr(7)
and if r e 1(7, c(i)), s 1(7, c(j)), then

g(y, i, n)g(y,j, n) dn 6(i, j)6(r, s) dr(y, e(i))-S,

(If r q 1(7, c(i)) or s 1(7, c(j)), then the integral is 0 since g(7, i, r, n) or g(7, J, s, n) is
identically 0.) Using this formula together with

g(7, i,j, nxn- ) y’, g(7, i, r, n)g(7, r, s, x)g(y,j, s, n),

we find that

(2.12) fu g(7, i,j, nxn- x)dn 6(i,j)dr(y, c(i))- rsl(y,c(i))
sI(y,c(j))

Let f L[G, K, N]. We assert that if

a()

Z,(x) Z g(Y, i, i, x),
i=1

and if

g(7, r, s, x)6(r, s).

dK(y)

f,(x) )(., * f (x) f ^(7, i,jlg(7, i,j, x),
i,j=

then f(x)s L[G, K, N]. It is immediately evident from Lemma 2.5 that f(kxk’)
f(x) for all k,k’e K. Since f(nxn-) f(x) by assumption, and 7.(nxn-)
)(x) because )(x) is a character, it follows from (2.1’) that f(nxn- ) f(x).
Combining this result with (2.12) we see if f e L[G, K, N, then f must be

as described.
To prove the converse it is enough to show that the functions

(p(c, c’, x) g(7, i,j, x)g(i,j)
iI(,c)
jI(,c’)
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belong to L[G, K, N]. That qg(c, c’, kxk’) q(c, c’, x) for all k, k’ e K follows from
Lemma 2.5. It remains to show that qg(c, c’, nxn-) qg(c, c’,x) for n e N. We
have

qg(c, c’, nxn- l) E 2 g(, i, r, n)g(7, r, s, x)g(,, j, s, n)(i, j)
iel(v,c) r,s
jeI(v,c’)

g(7, r, s, x) (i,j)g(, i, r, n)g(7,J, s, n).
r,s iel(7,c)

jI(v,c’)

It is easy to see that

ieI(,c)
jeI(7,c’)

6(i,j)g(7, i, r, n)g(7,j, s, n) 6(r, s)

if r I(7, c) and s I(7, c’); otherwise this sum is zero. It follows that

tp(c, c’, nxn- ) g(7, r, s, x)a(r, s)
rI(7,c)
sI(7,c’)

o(c, c’, x),

as desired.
We. can now prove Lemma 2.2. Suppose that f(px) f(x) in LI[G] for all

f LI[G, K, N]. By Theorem 2.6,

z,(x) Y g(, i, i, x)
i=1

belongs to LI[G, K, N], and therefore,

(2.13) )(px) l.(x).

Forf LtK\G] we see using Lemma 2.5 that

* f. (x) f,; 7.’(xy- 1)f(y) dy(2.14) f,(x) l.,

Together (2.13) and (2.14) imply that f(px)= f(x). Since this holds for all ; it
follows that f(px) f(x). However, if p $ K, we can easily construct a continuous
function g in LI[K\G such that g(px) g(x).

THEOREM 2.7. A necessary and sufficient condition that LI[G, K, N] be com-
mutative is that, for eachfixed 7 e AI, the representations Uu(7, c, )}c be mutually
inequivalent.

Proof. This is an immediate consequence of Theorem 2.7.
We henceforth assume that L[G, K, N] is commutative.
For e A/ let

(2.15) )(, a, x) g(o, i, i, x).
ieI(ot,a)
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It is evident from the discussion we have just given that each Z(z, a, x) LI[G, K, N]
and that if f L [G, K, N], then

f(x) f ^(a, a) d()Z(a, a, x),
aA

where f ^(, a) is the common value off ^(, i, i) for I(, a). The Z(, a, x)’s look
somewhat like characters. As we shall see they behave much like characters, and
this is what we need.

LEMMA 2.8. Given (, a) there exists (fl, b) such that

Z(a, a, x) Z(fl, b, x).

Proof. Let a e AK. Recalling the definition of U(a, x) acting on H(a) we see
that the set of those vectors e H(a) for which U(a, k) for all k e K is HK(a).
Let UN(a, n) be the restriction of U(a, x) to N. Then UN(a, n) acts irreducibly on
Hr(a, a). Thus Z(a, a, x) e L[G, K, N]. In addition (, a, n), n e N, is the character
of the irreducible representation U(a, a,. of N. Since A is a complete set of
irreducible representations, there exists/3 e Ar such that U(a, x) is unitarily equiva-
lent to U(fl, x). There are therefore complex constants A(b) such that

7.(a, a, x) A(b)x(fl, b, x).
b

Let us restrict x to N. The functions Z(a, a, n), {Z(fl, b, n)} are the characters of
irreducible representations of N, and the {Z(fl, b, n)} are mutually inequivalent.
Thus A(b) is 1 for some one b and is 0 for all the rest, as we wished to show.

Let (a, a) be defined to be (fl, b) so that

X(a, a, x) X(a, a, x).

Let us set, for , fl, 7 e A,

(2.16) O(o, a, fl, b, 7, c) f X(o, a, x)g.(fl, b, x)7.(7, c, x) dx.

THEOREM 2.9. We have

(2.17) 7.(o, a, x)x(fl, b, x) d(7) dr(7, c)- 1D(o, a, fl, b, 7, c)7.(7, c, x),

where the sum on the right is finite. Moreover

(2.18) D(a, a, fl, b, 7, c) >= 0.

Proof. It follows from the elementary theory of tensor products ofrepresenta-
tions that

d(a)

Z(a, a, x)Z(fl, b, x) A(7, i,j)g(7, i,j, x)
i,j=l

where only those 7’s appear for which U(7," is contained in the tensor product
U(a,.)(R) U(fl,.). In particular the sum we have just written down is finite.
Moreover, since Z(a, a, x)g(fl, b, x) L[G, K, N].,

7.(, a, x)7.(fl, b, x) A(7, c)x(7, c, x).
,c
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Multiplying both sides by ;t(Y, c, x) and integrating over G we obtain (2.17).
It remains to prove (2.18). We recall that a continuous function f(x) on G is

"positive definite" if

f(xix2)zi >= 0
i,j=

for all x l, ".., xr in G and complex z l, ..., zr. As a special case of a very general
theory, a detailed exposition of which can be found in [3, vol. II, 34.10], it follows
that f, assumed to be continuous on G, is positive definite if and only if for each

A the matrix [f^(, i, iW.(.) is positive semidefinite This implies that the
J/.ll,J

(, a, x)’s are positive definite. Since the product of positive definite functions is
again positive definite, (, a, x)g(fl, b, x) is positive definite, but this is possible
only if (2.18) holds.

For future use we record the following fact, which apart from the roles of the
indices was demonstrated in the course of the above proof.

COROLLARY 2.10. D(, a, fl,/, 7, c)= 0 unless U(fl, b) is contained in U(,.
(R) ).

COROLLARY 2.11. We have

(2.19) d(o, a)d(fl, b) d()D(o, ?i, , b, y, c).
,C

Proof. Set x e in (2.17).
The following result, although not needed in what follows, is of some interest.
THEOREM 2.12. We have

dr(y, c) fN 7.(Y c, xn- yn) dn (, c, x)z(y, c, y)

for all x, y G.
Proof. This follows from (2.12).
We can, at last, state the principal result of the present paper. Let S be defined

as at the end of 1. Since L L[G, K, N], where (as always) La[G, K, N] is com-
mutative,

L(x) d(a)L"(a, a)z(a, a, x).
aeAK

The assumpt.ion thatf -* f, L is a nonnegative operator on LE[G/K] is equivalent
to the assumption L^(, a) _>_ 0. Let A_r be the collection of all the pairs (z, a)
where At. We make A_r into a discrete measure space by assigning the mass
d()dl(, a) to the point (, a). We shall (essentially) show that if L "(, a) behaves
"regularly enough," then

N+[e., S] I{(x, (0, a))’[V(x)12L^(o, a) >

as e 0 +, where N+ [e, S] is the number of eigenvalues of S greater than e, and
I{" }la _, is the measure of the set {. } in the product measure space G _AK.

We conclude this section by briefly sketching a generalization of the ideas just
developed. This material will not, however, be used in the sequel. Let G and K
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be as before but let N be replaced by a compact group f of continuous automor-
phisms of G. The condition that N normalizes K becomes here the condition that
coK K for all co e f. Fix co in f. Since the mapping x --, U(e, cox) is, evidently,
an irreducible unitary representation of G on H(e), there is an index co(a) e A such
that U(e, cox) and U(co(e), x) are unitarily equivalent. Consequently there exists a
unique matrix [W(e, i,j, co)] in SU(d(e)) such that

[g(e, i, j, cox)] [W(e, i, j, co)]- [g(co(e), i, j, x)] [W(e, i, j, co)]

for all x G. Let us now assume that co(a) e for all co e f. This will be the case if,
for example, fl is connected. We now have

[g(e, i, j, cox)] W(e, i, j, co)] [g(e, i, j, x)] W(e, i, j, co)].

It is easy to verify that

[W(e, i,j, coxco2)] [W(e, i,j, co)] [W(e, i,j, 602)];

that is, co [W(e, i,j, co)] is a unitary representation of f on H(e). The assumption
coK K implies that for e Ar, W(e, i, j, co) leaves Hr(e) invariant. W(e, i, j, co)
acting on Hr(e) can therefore be decomposed into a finite direct sum

[W(e, i,j, co)] @[W(e, a, i,j, co)]

of irreducible representations. Exactly as before we find that if LI[G, K, f] is the
set of those functions f e LI[G] for which

f(kxk’) f(x) in L[G] for all k,k’e K,

and

f(cox) f(x) in L[G] for all co e f,

then LI[G, K, f] is commutative if and only if for each fixed e e Ar the representa-
tions {[W(e, a, i, j, co)]}a are mutually inequivalent, etc.

It seems unlikely that such results as Theorem 2.7 and Theorem 2.9 are new,
but I have not been able to find references for them.

3. Some examples. The only really simple examples of commutative algebras
L[G, K, N] are those of the form

(3.1) L[G, {e}, G],

where G is any compact group. Clearly Hr(e) H(e) for all e e A so that A Ar
and, since N G, Us(a, acts irreducibly on Hr(e). Thus there is only one Us(a,
a,. and the condition that, for e fixed, the Us(a, a,. be mutually inequivalent is
satisfied trivially. LIG, {e}, G] consists of the "central functions" in LI[G].

A more sophisticated class of examples consists of those algebras

(3.2) LX[G,K, {e}], where dr(a) 0 or 1 for all ee A.

Here N {e} and Us(a,. ), e e At, acts irreducibly on Hr(e), because Hr(e)is
1-dimensional. Thus, as above, there is only one Us(a, a, ), and the condition that,
for e e Ar fixed, the Us(a, a, be mutually inequivalent, is again satisfied trivially.
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In particular LI[G, K, {e}] is commutative whenever G/K is a compact symmetric
space. Thus

LI[SO(n), SO(n 1), {e}]
is commutative for n 3, 4, ....

It is not at all a simple matter to find examples different from those given in
(3.1) and (3.2). A few such examples are given in Theorem 3.3 below.

LEMMA 3.1. Let 0 be a bicontinuous mapping of G onto itself such that 0 is an
anti-isomorphism (that is, 0(xy)= (0y)(0x)), and such that for each x G there
exist kx, k2 K and n N, depending on x, with the property that

(3.3) Ox kin- xnkz.
Then L G, K, N; is commutative.

Proof. This is a slight variant of a familiar result. We assert that 0 preserves
Haar measure. For C a Borel set in G denote the Haar measure of C by ICI. We set

ICIo 10(C)I. Then ]xC]o ]0(xC)l 10(C)0xl- ]0(c)l- IClo. Thus I’1o is a left
invariant measure on G such that GIo 1. By the uniqueness of Haar measure,
[0el- ICI, If re LI[G,K,N] is continuous, then (3.3) implies that f(0x)= f(x)
for all x e G. A simple approximation argument now shows that f(Ox)- f(x)
in LI[G] for all f L[G, K, N].

Let f, g e L[G, K, N]; then

g. (x) f* g(Ox) f f([Ox]y- X)g(y) dyf

f f([0x] [0z- ])g(0z) dz (y Oz)

ft. f(O[z- 1x])g(O2) dZ

f f(z-ax)g(z) dz g* f. (x).

Let us take G SU(2), the set ofall 2 x 2 unitary matrices with determinant 1.
Every matrix in SU(2) is of the form

where w and z are complex numbers such that ]wl z + Izl 2 1, and conversely
every such matrix is in SU(2). Let T(1) be the subgroup of SU(2) consisting of the
matrices

0 e

THEOREM 3.2. LI[SU(2), {e}, r(1)] is commutative.

Proof. We assert that the assumptions of Lemma 3.1 hold where 0 is the map
which sends each matrix in SU(2) into its transpose. It is enough to verify that we
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can choose 0 so that

0 ei

is equal to

-iO e2iOLO e

e- 2iz1

Let Z(n) be the subgroup of T(1) whose elements are

0 10 e- 2ik/n

and let Z’(4) be the subgroup whose elements are

k=0,1,...,n- 1,

By {T(1),Z’(4)} we mean the smallest subgroup of SU(2) containing T(1) and
Z’(4).

THEOREM 3.3. The subalgebras LI[SU(2), K, N] listed in Table 1 are commu-
tative.

Proof. Entry 1 comes from Theorem 3.2. Entries 2, 3, 4 and 5 are obtained from
entry and Scholium 2.3. Scholium 2.3 and entry 1 imply that LI[SU(2), T(1),
T(1)] is commutative, but by (2.2) this is the same as LZ[su(2), T(1), el, which is
entry 6. Entry 7 is obtained from entry 6 and Scholium 2.3. In this list entry 3 is a
special case of(3.1) and entries 6 and 7 are special cases of (3.2).

The algebra LI[SU(2), Z(2), T(1)] is obviously commutative, but since Z(2)
is a normal subgroup of SU(2) this is more advantageously considered as the
assertion that LI[SU(2)/Z(2), {e}, T(1)] is commutative.

TABLE

{e}

Z(n), n >= 3

Z(n), n >= 2

T(1)

{T(1), Z’(4)}

T(1)

T(1), Z’(4)}

SU(2)

T(1)

T(1), Z’(4)}

{e}

{e}
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The irreducible unitary representations of SU(2) are easy to write down.
See 1], 3, vol. II] or [7]. We may take A {0, 1,...}. 0 corresponds to the
trivial representation. For > 0 the representation x--* U(, x) is obtained as
follows. Let H() be the complex linear space spanned by the homogeneous poly-
nomials of degree in two indeterminates z and z2. Let

For x e SU(2),

we set

(3.4)

A(k)z]z- ’.
k=0

X21 X22

U(o{,x)-- Z A(k)[x11z1 + X21Z2]k[X12Z1 "-it" X22Z2]-k"
k=0

If we make H(00 a Hilbert space by setting

k)
k ( k)k, z{z- J) b(j

then x U(e, x) is an irreducible unitary representation of SU(2).
Since there is only one representation of each dimension it is evident that

(3.5) = for alleA.

It is not difficult to show that

(3.6) U(,.) @ U(fl,. U(7,.),
=1-1

where "" denotes unitary equivalence. See [3, vol. II, p. 135] and [7, p. 175].
The explicit unitary equivalence is given by the Clebsch-Gordan coefficients
[7, Chap. III, ff 8].

We now look more closely at three of the algebras listed in Theorem 3.3.
(a) L[SU(2), {e},SU(2)]. This falls into the category (3.1). Here AK A

and there is only one a for each a. We therefore write D(, fl, 7) in place of
D(a, a, fl, b, 7, c). It follows from (3.5), (3.6) and (2.16) that

I-1+,
D(,fi,7)

0, otherwise.

(b) LI[SU(2), T(1), {e}]. Let

 e’O 0]x(O)
k 0 e-Since

U(z,x(O)) A(k)z]z2-’= A(k)ei(Zk-)z]z-’
k=0 k=0
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it follows that d(z)= 0 for a 1, 3, 5,..., and d(z)= for a 0,2,4,....
We set

m!
A(m) [(m/Z)!Zm/2] 2

if m 0, 2, 4, .... For other values of m let A(m) be 0. For a, fl, 7 A we have

2A(- + fl + 7)A(z- fl + 7)A( + fl- 7)
D(, fi, ,)

A(+fl+,)(+fi+,+ 1)

see 7, p. 186].
(c) LiSU(2), {e}, T(1)]. In this example A A and H()- H(z). Since

T(1) is Abelian the irreducible subspaces of H(z)= H() under the action of
UT()(,’) must be 1-dimensional. If H(,a) is the subspace spanned by (a)

ZlZ2a-a, then UT(X)(,. acts irreducibly on H(, a), a 0,--. , so that
d(z, a) 1 for all and a. Since

UT()(, a, x(O))(a) ei(2"-)(a),

UT()(z,a,.) and UT(a)(z, a2,. are unitarily equivalent only if a a2.

D(, a,/3, b, 7, c) can be expressed in terms of the Clebsch-Gordan coefficients;
see [7, (1), p. 185].

4. The basic estimates. For each e > 0 let H(e) be a finite subset of _A:, and
let P (e, , a) be the characteristic function of H(e). We set

(4.1) P(e, x) d(cz);(, a) P ^(e, , a) d(a)Z(a, a, x).
l-I()

Clearly P{e, x) LXK\G/K]. Using {2.3’) and (2.3") we see that if for some (, a)
6 II(), 1 =< _< d(), j 6 I(, a), then

y-lx)g(X, i, y) dy g(a, i, x).j, j,

Otherwise this integral is zero.
It follows that the mapping f f, P(e) is a projection on LZ[G/K] of rank

I-I(e) #, where

(4.2) H(e) # d()dr(c, a) P(e, e).
(z,a) II()

It is apparent from Theorem 2.9 that IP(, x)[ 2 is equal to

d(z) d(fl)
(a,a),(fl,b)H(e,)

(4.3) D(a, a, fl, b, , c) d(7) d((7, c)- Z(, C, X)
(,c)eA_

Q ^(e, 7, c) d(7)Z(7, c, x),

where

(4..4) Q "(,, , c) dK(]) c) -1 2
(a,a),(fl,b)l-I(e)

d(z) d()D(z, a, fi, b, 7, c).
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Alternatively,

(4.4’) (2 ^(, Y, c) dt((y, c)- fG IP(e, x)12Z(y, c, x) dx.

Let us agree that a measurable set f in G is "K right-invariant" if its charac-
teristic function Zn L[G/K] If f is K right-invariant, then the mapping f
--. Za(x)f(x) is a projection on L2[G/K]. We denote by f# the Haar measure of f.
We exclude from consideration the case f# 0.

THEOREM 4.1. Under the above assumptions if

Pn()/" (x) fG Z(x)P(e, y- lx)z(y)f(y) dy, f L2[G/KI,

then 0 <= Pn(e) _<- 1./f 2(e, 1) _>_ 2(e, 2) >__ are the eigenvalues of Pn(e), then

(i) 0__< 2(e,n)__< 1, n 1,2,.-.;

(ii) 2(, n) fl #II(e)#.

If in addition,

(4.5)

then

lim Q"(e, 7, c)/1-I(e) # 1 jbr all (7, c) _A/,
0+

(iii) (e, n)2 f # H(e) # [1 r l(e)],

when 0 <= rl(3 and where lim_0+ rl(3 0.
Proof. Since Pn(e) is of the form EFE where E and F are projections on

L2[G/KI, it follows that 0 __< Pn(e) _-< 1. That (i) holds is an immediate consequence
of this fact.

If we were working with L2[G] instead of L2[G/K], the results referred to
below would be quite standard. That they hold here is due to the fact that

Zn(x)P(a, y- x)xo(Y)

is invariant if x is replaced by xk and if y is replaced by yk2 for any k, k2 K.
Because Pa(e) is of finite rank we can (in view of the above remark) apply

Mercer’s theorem to obtain

2(e, n) f Xn(x)P(e, x- x)zu(x) dx

f) # P(e, e) f # H(e) #.

Thus (ii) is established. Similarly, using a standard result in the theory of integral
equations (see [2, pp. 137-138]), we obtain

-’ ,(:, n)2= f6 f6 Zn(x)]P(e’’y-lx)[2Zn(y)dxdy
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If X4n(x) Xa(x- x), then

z.(x)).(xz- ) ,ix z * (z).

Let
d(a) dr(a)

Xa(x) 2 d(a) 2 2 Z(a, i, j)g(a, i, j, x)
AK i=1 j=l

be the Fourier series for Za(x). Replacing x by x-1 and taking conjugates we find
that

d(a) dK(a)

Zn4(x) d() Za(, j, i)g(, i, j, x).
A j=l i=1

It follows from (2.5) that

zS* z(x) d()
AK

dK()

i,iz
Xn(a, J, x)xn(a, J, i2) g(0, ix, 2 x).

i_j=

Using (4.3) we obtain

d(a)

Z2(e,n)2 E d() E E E 1)(,2(, j, i)lzQ^(e, e, a).
AK iel(o,a)

Since

d()

Ed()E E E [xg(e,j,i)]2,
AK iI(ot,a) j=

we have

[I-I()#] -1 2 z(e, n)2 2 d() Z Z Z [Xg(o,j, i)12 1 1
AK iel(o,a)

n #{1 rx()},
where

Q (e, z,

her1(e) Z d()Z Z E Iz(,j,i)l 2

1_AK iI(a,a) j=

It follows from (4.4) that

Q "(e, , a) >__ 0, (0, a) A_K

Moreover, it follows from (4.4’) that

Q ^(e, , a) N fG IP(e, x)l 2 dx d(a) dK(a, a) FI(e)#.
H()
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Thus

and by assumption (4.5),

Q (,, , a)
0<_1 _<1,

ri()

lim 1.
o+ II(e,) #

The Lebesgue dominated convergence theorem implies that r l(e --, 0+ as
0+.

We derive a simple easily verified sufficient condition for (4.5) to hold. Let us
write fi H 1() if (fi, b) gl(e) for every b. For e > 0 and 7 A_/( we define Int
to be all (e, a)’s in 1-I(e) such that each irreducible component of U(e,. (R) U(7,"
is unitarily equivalent to some U(fl), fl H(c). Set

Bd [H(e)] 1-I[]\Int [FI(0].

If (e, a) m Int [H(e)], then by Corollary 2.10, D(m, a, fl, b, 7, c) 0 for (fl, b) l-I@)
and every c. We have

Q’’(,, ]), C) E1 "Jl- Z2’
where

dK(7, c)-’ d(a)
(ot,c)eIntv[II(e)]

E2 dK(’ C)-1 Z d()
(o,c) Bdv[II()]

By the remark above and Corollary 2.11,

( ,b) d-I(e)

d(fi)D(a, a, fl, b, 7, c),

d(fl)D(a, a, fi, b, , c).

Q ^(e, , c) >= d() dK(, c).
lntv[ll(O]

Since E2 0 we have

Referring to (4.2) we see that

Q @, 7, c)- n() # -5 d()d(,c)/n()#.
Bd,[H()]

We have thus proved the following.
THEOREM 4.2. The condition (4.5) is satisfied if, for each 7 AK,

lim d() d((a, a)/I-I(e) * 0.
-’0 + (a,a)eBd,[II(e)]

Let N+[(5, Pn(e)] be the number of the eigenvalues 2@, k) of Pn@) greater
than 6.
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THEOREM 4.3. If (4.5) holds and if rl(e is defined as in Theorem 4.1, then for
ra(e) <-_ -},

and

N+[1 r()x/2, Pn() K)#l-I()#[1 --4rl(e)/21

N+r(e)/2, Pn(e)] < f2#II(e)#l + 4rx(e)/2]
as -,0+.

Note a(e) < b() means that lim supo + a(O/b() 1, etc.

Proof. Let us define

Sl( {k:(, k) < r1()1/2},
S2(e {k:rl(e) 1/2 (,k) r1(e)x/2},
s@) {k:l r()/: < @, k)}.

We denote by S() e the number of elements in the set S(e).
Subtracting (iii) from (ii) in Theorem 4.1 we obtain

(, k)[1 (, k) &(, k)[1 (, k)] r()n ().
S2()

The terms in the sum on the left are nonnegative and exceed r(e) /2 ifrl(e) 1/2 .
Consequently,

r(e)1/2S2(e) r()nH()*,

$2() e 2rl(e)/2eH(e) e.
We have

2( k)2 _< r, 2(e,k)= r,()/2Cl#H(e) #

Sl()

2(,k)2 S2(e)* 2r1(01/2fl*H(0,
S2(G)

2 2@, ) s()

Inserting these estimates in (iii) of Theorem 4.1 we find that, since

S.(O S2(O S (e)

we have

s() n*n()*E rl() 3rl(e)/ n*n 4rl@)a.
This is the first assertion of our theorem.

We have

[- r,()/;s() * Z 2(,), 0 2(,)+
S.(e) S() S2(a)

Inserting these in (ii) of Theorem 4.1 we obtain

s() nn() r()?-/ n*n(e)f +
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if rl(e) _-< 1/2. We now have

S2(e) # + S3(e) # __< f#II(e)#[1 + 4rl(e) 1/2]
which is our second assertion.

Let fl and ’-2 be disjoint measurable K right-invariant sets and let

(4.6) Pl,aZ(g) 7.n,(x)P(e, y-ix))2(y) + 72(x)P(e, y-

(The operator on the left corresponds to the kernel on the right.) Let N[6,
denote the number of eigenvalues of Pa,,a2(e) which are greater than 6 in absolute
value.

THEOREM 4.4. /f (4.5) holds, then, for , (5 > O,

N[6, Pn,,2(e)] s(e)6- 2H(e) #,
where s(e) --, 0 + as --, 0 +.

Proof. Let {2(e, k)} denote the eigenvalues of Pa,.a2(e). By a computation like
the one used to obtain (iii) of Theorem 4.1 we find that

which in turn implies that

where

(52N8, Po,n(6)]/FI(a) # < s(e),

s(e) d() 2Re Z:(a,j, i)z:(a j i)
Q (’ ’ a)

Since the series

d,, 2Re ai, Z;:(,j, i)ZX:(,j, i)A ieI(,a) j=

converges absolutely and since its sum is

2 f6 Z(Y)Zn,(Y)dy O,

it follows from (4.5) and the Lebesue dominated convergence theorem that
s(e) 0 as e 0 +.

COROLLARY 4.5. If (4.5) holds, then there exists a .function t(e) depending upon
H(e), D, and D2 such that t(e) 0 + as e 0 + and such that

N(), ,,() o(n()) as 0 +.

Proof. This follows immediately from Theorem 4.4.

$. The main theorem. We need various elementary inequalities connecting
the eigenva]ues of suitably related operators. For A a completely continuous self-
adjoint operator on L2G/K] and e > 0 let N(e, A) be the number of eigenvalues
of A which arc > e, < e, respectively.
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Let the Aj,j 1,..., n, be completely continuous self-adjoint operators on
LZ[G/K] and let ej >= 0, j 1, ..., n. It follows from the minimax characteriza-
tion of the eigenvalues of such operators (see [2, pp. 132-134]) that

j=l j=l j=l

It also follows that if 0 =< A1 _-< A2, then

(5.2) N+[e, AlJ <_-- N+[e, A2].

For V(x) and Vl(X) nonnegative functions in L[G/KJ and f LZ[G/K] let

mrf (x) V(x)f(x), m,f (x) Vl(X)f(x).

Let L^(a, a)and Lo (, a) be nonnegative functions on A_K which vanish at
that is, given e > 0 there exists a finite subset _AK(e of A_ K with the property

L (a,a)<e, Lo(a,a) <e if (e, a) _AK(e).

The formula

RL^f (x) d() L’(a, a) f ^(, i,j)g(, i,j, x),
AK jl(o,a) i=

where f L2[G/K], and the analogous formula for R/Z define RL and R/, as
self-adjoint, nonnegative, completely continuous operators on LEG/K]. It is
convenient to use the purely formal notation

T- V(x)L(y- ix) V(y)

to indicate that T MvRL^Mv If

TI V(x)L(y x)V(y) To V(x)Lo(y- x) V(y),

then T, To and T1 are all self-adjoint nonnegative, completely continuous opera-
tors on LZ[G/K].

LEMMA 5.1. If L"(e,a) <= L(e,a) for all (,a)eA_ K, then N+[e, T] <= N+[,
7;3

Proof. By (5.2) it is enough to show that T =< To. Given qe LZ[G/KI let
,(x) V(x)q)(x). Then LZ[G/K] and

dK(CX) d(x)

0(x) d(a) 0"(a,J,i)g(a,J,i,x),
AK i=1 j=l

where this series converges unconditionally in L2[G/K]. From

and

it is apparent that (Ttpltp) __< (Toqlq)), etc.



INTEGRAL EQUATIONS 335

LEMMA 5.2./f V(x) <= Vl(x for all x e G, then N + [e, T] <_ N + [e, T1].
Proof. If C is the operator on L2[G/K] defined by

V(x)
Cf .(x) --f(x),

where 0/0 is defined to be 0, then C is a self-adjoint contraction, Cf _-< f for
all f e L2[G/K]. We have

r= crc,
where T1 is positive and completely continuous. Our assertion is an immediate
consequence of this and the minimax principle.

Let f be a measurable K right-invariant set in G and let L (0, a) be as above.
Put

(5.31

Let us list some conditions on L"

(i) if Fl(e)= {(, a)e A_:’L ^(, a) > e}, then for each (7, c)e A_(, Q^(e, 7, c)/

(5.4) H(e) # as e 0+
(ii) H(el) # o[H(e) as el, e 0+ if e o(e);

(iii) for 0 > 0 fixed, H(0) # O[ll(e)# as 0 +. By a() > b() as e ---, 0 +
we mean that

lim inf a(e)/b(e) >= 1,
0 +

etc.
LEMMA 5.3. Ifassumption (i) of(5.4) is satisfied, thenfor every 0 < c5 < 1 we have

N+[, Tn] > f#H -f-Z as 0+.

Pro#’. For any e > 0 we have

L (, a) >= eP (e, 0, a), (0, a) e _A

where P (e, e, a) is, as before, the characteristic function of H(e). By Lemma 5.1.

T, => eP(e).

By (5.2) and Theorem 4.3,

N + [(1 6), Tn] >__ N + [e(1 c5), Pn(e)] N+ 6, Pn()] > H() # f#.

An evident change of variable now gives the desired result.
LEMMA 5.4. If assumptions (i) and (ii) of (5.4) are satisfied, then for every

0 < c5 we have

asO+.N+[e Ta] > )I-I
1 +

Proof. Let e > 0 be a function of e. We shall explain in the course of the
argument how e is to be chosen. In all that follows

A 1.u.b. L (, a).
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Since ifO<e<el <Awehave

L (,a)=<e +elP (e,,a)+ AP (e,,a), ,aA_(,

it follows from Lemma 5.1 and (5.1) that for 6 > 0,

N+[(1 + (5), Ta N+a,aI] + N+5a,alP,(a)] + N+O,AP,(al)]

N+Efee[ 1, Pa(e)] + H(ei)

since N+e, eI] 0, and since &(el) has rank not exceeding H(el). If we now
choose el to be a function of e satisfying

e=o(ex) ase0+,
then it follows from assumption (ii) of (5.4) that

(el) o(e) as e 0+.

Let r(e) rl(e) 1/2 where r(e) is as in Theorems 4.1 and 4.3. If

1 o(er(e)-) as e 0+,

it follows that r(e) 6eex for sufficiently small, and thus

N+[a &() < N+r() &() < an() as 0+

It is clear that we can choose el so that both of the conditions listed above are
satisfied.

COROLLARY 5.5. U assumptions (i) ad (ii) are satisfied, then for every 0 < <
we have

asO+,

N+ asO+.

We have paused to prove this special case of our general theorem partly
because of its intrinsic interest and partly because we are able to obtain it so very
cheaply. Our main result is not a consequence of the arguments we have just
given. But it is proved by similar (more complicated) arguments.

We begin by considering the case where

i=1

here the {}= are disjoint measurable K right-invariant sets in G, and h > h
> >h>O. Let

(5.6) Tv V(x)L(y- 1X) V(y).

THEOREM 5.6. !f V(x) is given by (5.5) and Tv by (5.6), and f L satisfies the
coMitions (5.4), then jbr 0 < 6 < l,

N+[e, T N+[ r <
1+

as e O+
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where

(x) I{(x, , a)’V(x)L^(, a) > }1_.
Proof. Let us prove the first inequality for n 3. If

R^(e,a,a) eh-[zp^(eh-[2,a,a) + e(h 2 h2)p*(ehZ,a,a) + e(hf 2 h 2)
P (eh 2 a)

then

L (,a)R (e,,a), (e,a)ehr.

This can be verified by checking the cases"

0 < L(e, a) G h2, h28 < L(e, a)

h;2e < L(, a) h; 2, h;2 < L*(, a).

Consequently, if

then by Lemma 5.1,

If we set

then

where

Rv(0 V(x)R(, y- ix)V(y),

Tv >= Rv(O.

Ri(e hzn,(x)R(e, y- lx)z(y),

3

Q,(),
i=1 v=l l_<i<j=<3

Here Pi,;(O Pa,,nj(e) is defined as in (4.6). We have
3

Tv >= Z Ri() nt- E E
i=1 v=l l_<i<j=<3

from which it follows that
3

i=1 v=l l=<i<j__<3

From this and from (5.1) we obtain
3

(v)Qi,j(e,)

3

N+[e(1 -6), R,(e)] _< N+[e(1 106), Tv-I + _, _,
i=1 v=l l_<_i,j<=3

i= 1,2,3,

N[e,6, ()
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Using Theorem 4.4 and condition (iii) of (5.4) we have

N + Eel, (k)Qi,j(e)] o(H(eh-2) #) as e - 0+

fork= 1,2,3,1 <j__< 3.
Since 3=1 Ri(e)is direct,

S + [e(1 c5), Ri03)] 2 S+ Is(1 5), Ri03)].
i=1 i=1

It is not difficult to verify that

R (e,e,a)>= eh2P 0?h/-2, , a), i= ,2, 3,

from which it follows by Lemma 5.1 that

Ri(e) >= Pi(eh[-2).

Here Pi() Pn(e) as defined in Theorem 4.1. The argument used to prove Lemma
5.1 implies that

N + [e(1 (5), Ri(e)] ff Fl(eh- 2)#, 1,2, 3.

Combining our results we have shown that

N + [e(1 10), rv] > fH(eh- 2) # tp(e) as e --, 0 +,
i=1

etc.
We now turn to the proof of the second inequality. We again take n 3. Let

R ^(e,, , a) eh - 2 + e(h 2 h - 2)p "(eh - 2, , a) + e(h- 2 h- 2)p "(eh 2, , a)

+ (el eh- 2)p ^(eh- 2, , a) + AP ^(e 1, , a).

Here A 1.u.b. L^(, a) and el is a function of e, such that el 0+, : o(el)
as e 0 + el will be specified precisely later. It is not difficult to check that

L ^(cz, a) __< R "(e, , a), (, a) _A.

Consequently, if

then

If we set

then

Rv(. - V(x)R(e, y- x) V(y),

Tv <= Rv().

Ri(e) hzn(x)R(e, y-x)zn(y), i= 1,2,3,

4

Rv(e) R(e) + R2(e + R3(e + 2 Z
v=l l=<i<j=<3
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where

QIj).(e) hihe(h; a h-[ a)Pi,(eh-[
Ql)(e) hihe(h; a h; a)P,(eh ),

Q2() hihj( eh; 2)Pi,j(h; 2).
4) hihAPi,j(e)

Note that the mixed term corresponding to eh 2 in R(e, e, a) is identically 0.
Using (5.1) we see that

g+[(1 + 06), r] < N+ ( + ), R(e + 2 N+[e, Q,j(e)]
i=1 v=l 1Ni<jN3

+ Z N+[0,
1Ni<jN3

Moreover, since the sum R() + R2() + R3() is direct,

By Theorem 4.4 and condition (iii) of (5.4),

N + [e6, hihje(h; 2 hi 2)Pi,j(eh 2)] o[H(eh; 2)el,

g+[e6, hihje(h; 2 h 2)Pi,j(eh 2)] oEn(eh; a)].
By Corollary 4.5 and condition (iii) of (5.4) there exists a function t)](e) 0 + as
e 0 + such that if

(5.7) o(t2()-) as 0+,

then

g+[e6, hihj(e eh; 2)Pi,(eh; 2)] o[n(ehy).
Moreover, since the rank of P,j(el) does not exceed 2H(e) e, it follows that

N+[O, hhjAPij(e)] 2H(e) e

if

(5.) e o(e)

by condition (ii) of (5.4).
It is not hard to check that

2hR(e, , a) e + hkeP(eh a, e, a) + hAP (e e, a)

for k 1, 2, 3. Arguing as in the proof of Lemma 5.4 we see that

N + [e(1 + ), R(e)] n n(eh; ) as e 0 +
provided

(5.9) e O(et(e)-) as e 0+,

where tk(e) 0 + as e 0 +, and provided (5.8) holds.
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Let us choose, as we clearly may, ei to be a function of e such that (5.7),
(5.8) and (5.9) all hold. Collecting results we see that

3

N+ [e(1 + 106), Tv] < H(eh- 2) # fff T(e) as e --, 0 +.

THEOREM 5.7. Let V(x) be a nonnegative function in L[G/K] and let L (, a)
be a nonnegative function on A_K which vanishes at infinity. Assume further that
(5.4) holds. If Tv V(x)L(y- ix)V(y), then for 0 < (3 < 1"

.
(i) N*[e Tv]> aseO+;

\ -o

(ii) N + [e, Tv] < P 1 +
as e 0 +.

Proof Given r/> 0 there exist a measurable K right-invariant set f and a
function Vs(x) of the form (5.5) such that"

(a) f # < r/;

(b) V(x) <= V(y), x e f, y f

(c) V(x) <= V(x), x 6;

(d) V(x) <= (1 + r/) Vs(x), x n.

If we make use successively of (c), (5.2), Lemma 5.2, and Theorem 5.6 we find that

U+[, Tv] >_ N+[e, Tvs; > ]{(x, , a)’x q f, Vs(x)2 g"(, a) > e(1 / )}1 A,-
By (d),

{(x, e, a)’x n, Vs(x)2L"(e, a) > e(1 + r/)}
2 {(x, , a)’x f, V(x)2L A(e, a) > e(1 + r/)2}.

Using (a) and (b) we find that

]{(x, e, a)’x n, V(x)ZL"(e, a) > e(1 + r/)2}]G _,
_>_ (1 r/)]{(x, , a)" V(x)2L^(e, a) > e(1 + r/)2}[a,,

from which it follows that

N +[e,Tv] >(1-q)T(e(1 +q)2) as0+.

This proves our first assertion. To prove our second assertion we note that given
r/ > 0 there exist a measurable K right-invariant set f and a function Vs(x) of the
form (5.5) such that:

(a) f # <

(b) Vs(x) <= Vs(y),

(c) V(x) <= Vs(x),

(d) Vs(x)(1 rl)<= V(x),

xG;

xf.
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If we use (c), (5.2), Lemma 5.2, and Theorem 5.6, we obtain

N*[, Tv <= N*[, Tv I{(x, ,a)" Vs(x)L^(a,a) > (1 r/)}l_,,.
Using (a) and (b) we see that

I{x, , a)" Vs(x)ZL-(a, a) > e(1

(1 )- ll{(x, , a)"x n, (x)2L(a, a) > e(1 ,)}l.
y (d),

{(x, , a)’x n, (x)L-(, a) > (1 )} {(x, , a)" V(x)U(, a) > (1 ,)},
and therefore,

N + [, Tv] (1 .)-’W((1 )) as 0 +.

If we take G T, and K {0}, then Theorem 5.7 is very much the same as
Widom’s theorem mentioned in 1, except that Widom requires V to be Riemann
integrable and we do not.

It is not necessary to require that V(x) L[G/K] be nonnegative. Suppose
that V(x) is complex-valued, and let

T V(x)(y- ’x)V(y).

This operator is unitarily equivalent to

since

Tvl V(x)IL(y- x)l V(y)I

rv UTIU- ,
where U. f(x) u(x)f(x) and

V(x)/lV(x)l if V(x) O,
It(X)

1 if V(x) O.

Let us record our principal result in its most general form.
THEOREM 5.8. Let V L[G/K] and let If(a, a) be a nonnegative function on

which vanishes at infinity. Assume further that (5.4) holds. Then for 0 < < 1,

(i) N +[e,r] aseO+,

(ii) N+[e,r]
1-

asO+

(x) I{(x, , a)’lV(x)12L"(z, a) > }1_.
where

For each e e AK let

[J "()] [J ^(, i, j)]i,/= 1,...,dc(a)
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be a matrix with complex entries such that"
(i) J ()] is positive semidefinite;

(ii) IIJ()ll vanishes at
Here J "()] is the norm of IJ "(z)] operating on the right on the d/()-dimen-
sional Hilbert space of row vectors taken with the usual inner product. The
formula

Rs- f. (x) d() f ^(, i, k)J "(, k, j) g(z, i, j, x),
AN j=l .k--1

where f L2G/K], defines R as a nonnegative completely continuous operator
on LZG/K]. Let

S MRjAMv,

where V L*G/K]. We indicate how, in some cases, it may be possible to obtain
some information about N + S, el. Let L "(, a) be as in Theorem 5.8, and for each
z A/(, 1 =< i, j d/(), let

L (,i,j)= 6(i,j)L (,a) if/I(,a).

[L (z) L (,i,j)] is then a dK(z) d/(z) matrix. Suppose that L (,a)
satisfies conditions (5.4) and that for each A the matrix

J (z, i, j) L (z,i,j)]

is positive semidefinite. A simple computation shows that Rj >= RL^, which
implies that S >= T. By (5.2) and Theorem 5.8 we see that

N+ S> ase 0+

for each , 0 < 6 < 1. If, on the other hand,

-[J (z,i,j)-L (cz,i,j)]

is positive semidefinite, then

N+s S<T 13) as: -0+

for each ,0 < 6 < 1, etc.
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THE EXISTENCE OF OSCILLATORY SOLUTIONS FOR A
NONLINEAR DIFFERENTIAL EQUATION*

J. W. HEIDEL AND DON B. HINTON’

Abstract. For the differential equation j) + q(t)y 0, where q(t) is nonnegative and continuous
and 0 < 7 - 1, a necessary and sufficient condition for the oscillation of all solutions is known.
However, it is possible for oscillatory and nonoscillatory solutions to coexist. This paper gives sufficient
conditions for the existence of oscillatory solutions in both the superlinear case < 7 and the sublinear
case 0 < 7 < 1. In the former it is shown that, under certain conditions on q(t), every solution with
a zero is oscillatory. In the sublinear case three different sets of conditions are given for the existence
of oscillatory solutions.

1. We consider the differential equation

(1.1) : / q(t)y-- O,

where the conditions

q(t) >= O, continuous on (0, ),
(1.2)

7 the quotient of odd, positive integers,

will always be assumed to hold.
A nontrivial solution y(t) of (1.1) is said to be oscillatory if it has no "last"

zero; that is, if y(tl) 0, then there is a 2 > tl such that y(t2) 0. In the super-
linear case 7 > 1, this is not necessarily equivalent to y(t) having arbitrarily
large zeros since it is possible to have an oscillatory solution which is not extendable
to . The above definition of oscillation avoids this problem; the reader is referred
to F143.

In the linear case 7 the Sturm separation theorem implies that either all
nontrivial solutions are oscillatory or they are all nonoscillatory. There are many
sufficient conditions on q(t) for the oscillation of all nontrivial solutions in the
linear case and there are many necessary conditions, but there is no simple condi-
tion which is at the same time both necessary and sufficient.

The situation in the nonlinear case 7 - 1, 7 > 0 is just the opposite. It is
possible to have both (nontrivial) oscillatory and nonoscillatory solutions of (1.1)
for the same coefficent q(t) and the same value of 7. However, there is a simple
necessary and sufficient condition on q(t) for the oscillation of all solutions of (1.1).
Indeed, Atkinson [1 showed that if 7 > 1, then all solutions of (1.1) are oscillatory
if and only if

sq(s) .ds

Received by the editors January 28, 1971, and in final revised form September 30, 1971.

" Mathematics Department, The University of Tennessee, Knoxville, Tennessee 37916.

344



THE EXISTENCE OF OSCILLATORY SOLUTIONS 345

Belohorec [2 showed that if 0 < 7 < 1, then all solutions of (1.1) are oscillatory
if and only if

sq(s) .ds

In this paper we are concerned with the question of existence of oscillatory
solutions of (1.1). This question has been studied already by Jasny [18, Kurzweil
[191, Kiguradze [20, Hinton [17, and Coffman and Wong [8], [9] in the case

7 > and by Belohorec 4], [5] and Coffman and Wong [9] for 0 < 7 < 1. No
single necessary and sufficient condition has been given for the existence of oscilla-
tory solutions in the nonlinear case. In fact, a reasonable conjecture [8, p. 366 has
been shown to be invalid [14, Exs. 2, 3, [23.

2. The superlinear case 7 > 1. Jasny and Kurzweil [181, [19 have shown that,
under the hypotheses of the following theorem, every solution y(t) such that
y(to) 0 and ly’(to)l is sufficiently large, to > 0, is oscillatory. Our purpose is to
show that every solution with a zero is oscillatory. Moore and Nehari 21 raised
the question as to whether it is possible for oscillatory solutions and nonoscillatory
solutions with at least one zero on (0, ) to coexist. Our theorem shows that this is
not possible for a large class of coefficients.

THEOREM 2.1. Suppose < 7. If q(t)t(+ 3)/2 > 0 and d/dt(q(t)t(+ 3)/2) 0 On

(0, 00), then every solution of (1.1) with a zero is oscillatory.
Proof. We make the change of variables, x log t, y(t)= tl/Zw(x) which

transforms (1.1) into

(2.1) w" 1/4w + f(x)w 0, ’= d/dx,

where f(x) q(t)t+ 3)/2. Clearly, the (0, ) t-interval corresponds to the (- v, c)
x-interval. Define G(w(x)) by

Wt(X)2 f(x) W(X)2

G(w(x)) -- w(x)y+l s
Then G(w(x)) G(W(Xo) + (1/(7 + 1)) j’x f’(u)w(u) + du along solutions of (2.1)
which means that G(w(x)) is nondecreasing along solutions of (2.1).

Suppose that y(t) is a nontrivial solution of (1.1) such that y(to) 0 for some
to > 0. By uniqueness of initial value problems, valid for ?, _> 1, P(to) =/= O. We may
assume that P(t0) > 0 since the negative of y(t)is also a solution of(1.1). Thus y(t)is
positive in some deleted right neighborhood of to and we want to show that
y(t) 0 for some > to.

Let x0 log to. Then W(Xo) 0 and w’(xo) > 0. Also, w(x) is positive in some
deleted right neighborhood of Xo. Define

L 8f( )Iv + i/(y-I)

and

Note that 0 </3(x) < 0(x) for all x and that ,/3 are nonincreasing.
Our problem is to show that w(x) 0 for some x > x0. Suppose first that

w’(x) 0 for some Xl > Xo. Since G(w(x))is nondecreasing along solutions of(2.1)
we must have a(w(x))>= a(w(xo))> 0. Hence w(x)> cz(x). This means that
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w"(xl) < 0 since w"(x) < 0 for w(x) >/?(x). Let X2 be the first point greater than xl
such that w(x2) (x2). Then w’(x2) c < 0 and w’(x) < c in some deleted right
neighborhood of x2. We assert that w’(x) < c to the right of x2 as long as w(x) > O.
Suppose to the contrary that w’(x3) c, where w(x) > 0 for x2 < x =< x3 and
w’(x) < c for x2 < x < x3. Then w"(x3) _-> 0. Thus w(x3) <-_ (x3). But then
G(w(x3)) < c2/2 G(w(x2)). This contradicts the fact that G(w(x)) is nondecreas-
ing. Thus w’(x) < c as long as w > 0. Hence w(x4) 0 for some x4 > Xo.

The remaining case is that w’(x) > 0 for all x > Xo. Since w" > 0 for w </,
there is an xl > Xo such that w(xl) =/(xl). Letting g(x) f(x)w(x)- 1/4 we see
that g(x) > 0 and increasing for x > x. Now w(x) is a positive solution of

(2.2) w" + g(x)w 0.

But all solutions of (2.2) are oscillatory since g(x) > 0 and nondecreasing. This
eliminates the second case and shows that y(t) must have another zero to the right
of to. By repeating the process y(t) has no last zero.

Remark. Coffman and Wong [9] have also established Theorem 2.1. However,
we include our proof since it is more direct and is closely related to the proofs in the
next section.

Remark. Kiguradze 20] has given a shorter proof of the Jasny-Kurzweil
result and his proof actually establishes our result if limt_oo q(t)t+3)/ as

---, oc. We do not require this condition, and our proof is entirely different from
his.

Remark. The sharpness of the condition d/dt(q(t)t+ 3)/2) => 0 is indicated by a
result of Nehari I22] which says that (1.1) has no nontrivial oscillatory solutions if
q(t) (t log t)+ 3)/2 is nonincreasing (see also [20] and [7]).

3. The sublinear ease 0 < 7 < 1. Although in the superlinear case all of the
abovementioned results (including ours) were known to Fowler [10] in 1930 for the
"Emden-Fowler" equation q(t)---t, our results in this section have not been
anticipated for any special cases. In fact, the question of the existence of oscillatory
solutions of (1.1) (when not all solutions are oscillatory) has not been treated at
all except for one "borderline" case considered by Belohorec 4] (see also [9), to be
mentioned below.

It is known [15] that if there exist nonoscillatory solutions, then there exist
nonoscillatory solutions with at least one zero. Hence the restriction below that
the initial slope be sufficiently small in absolute value cannot be omitted.

TI4EOIEM 3.1. Suppose that 0 < 7 < 1. If q(t)t+3)/2 > 0 and d/dt(q(t)t+3)/)
> 0 on (0, ) and limt_o d/dt(q(t)t+3)/2) , then every solution y(t) of (1.1)
such that y(to) 0 and IT’(to) is sufficiently small is oscillatory.

Proof. We make the same change of variables and transformation as in
Theorem 2.1 and obtain (2.1)"
(3.1) w" 1/4w + f(x)w O.

As before, f’(x) >= 0 so that G(w(x)) is nondecreasing along solutions of (3.1).
Again define /(x) (4f(x))/-). This time/(x) is nondecreasing.

We assert that if W(Xo) 0 and

W’(XO)2
< Kf(xo)21-) K 4(l +)l(l-). (1 7)

2 2(1 + 7)’
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then Iw(x)l < Nx) for x => Xo. To see this consider

G(w(x)) G(w(xo)) + f’(u du.
1

As long as [w(x)[ __</(x), then w7+ < (4f)(1 +7)/(1-7). Hence

G(w(x)) <__ w’(xo)2/2 Kf(xo)2/1-7) + Kf(x)

< ICf(x)/l-’.

Suppose that [w(x)[ =/(x) for some x > Xo and let x > x0 be the first such point.

G(w(x1)) wt(xl22
_

f(x1)(4f(x1))(1 +7)/(1-7) (4f(x1))2/(1-7)
2 7+1 8

w’(x)2

+ Kf(x)/-"

Kf(x1)2/(1-7)

Then

But this contradicts G(w(x))< Kf(x)2/(1-7) for Xo =< x _<_ X This proves the
assertion.

We now assert that if W(Xo) 0 and W’(Xo)2/2 < Kf(xo)2/(1-7), then w(x) is
oscillatory. Suppose not. Then w(x) has a last zero, say at x xl. We may assume
that 0 < w(x) for x > X (otherwise consider -w(x)). Also, w(x)</(x) from
above. Thus from (3.1) we have w"(x) < 0 for x > xl and w’(x) > 0 for x > Xl.
Hence limx. w’(x)= L < exists. But limx_o if(x)= . Thus there exist
numbers x2 >= x and 0 < c < 1 such that w(x) < c(x) for x >= x2.

Transforming back to variables we obtain

y(t)/t/2 < c(4q(t)t(7+ 3)/2)1/(1-7)

for large t. This is equivalent to

t2q(t)y(t)7- > c7-1/4 (1 + e)/4
for some e, > 0 or

q(t)y(t)7- >
4t2

for large t. Thus y(t) must be an oscillatory solution of

)9 + (q(t)y(t)7-1)y O.

This contradiction proves the theorem.
THEORZM 3.2. Suppose 0 < 7 < 1. If q(t)t7+ 3)/2 > 0, d/dt(q(t)t7+ 3)/2) >= 0, and

q(t)t(7+ 3)/2 k < O0 for > 0, then every solution y(t) of (1.1) such that y(to) 0 and
ly’(to) is sufficiently small is oscillatory.

Proof Proceeding as in Theorem 3.1 we see that if w(xo) 0 and w’(xo):/2
< Kf(xo)2/-), then not only is Iw(x)l </(x) for x => x0, but also

G(w(x)) < Kf(x)2/(1-7)- e, XXo
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where 0 < e, < gf(xo) 2/(1-) W’(Xo)2/2. Thus

W(X)V+ f(x)
(3.2)

7+1
Since ]w(x)l < fi(x), we have

f(x) w(x)
7+1 8

Therefore, dividing (3.2) by (3.3), we have

W(X)I-2| < Kf(x)2/(I_2) 8.
8

where

W(X)Y+I < (4f(x))(1 +’)/(I-’)

< (x(4f(x))(1 +)/(1-),

2(1 + 7) 1

1-7 k

(4k)(1 +)/(i-’) 8E2(1 + y)/k(1= <1.
(4k)(1 + ’)/(1 ’)

Hence Iw(x)l < 5{1/(+ 1)(4f(x))l/(1-Y) z1/(Y+ 1)(x) and o’/(+ 1) < 1.
Thus, proceeding as in Theorem 3.1 we see that w(x) must be oscillatory.
COROLLAP,Y. The sublinear Emden-Fowler equation (0 < 7 < 1, q(t) ) has

oscillatory solutions if a >__ -(7 + 3)/2.
Remark. It is interesting to note that Belohorec [4] has shown that if

d/dt(q(t)t(+ a)/z) 0 and q(t)t(+ )/2 >= kl > 0 for > 0, then (1.1) has oscillatory
solutions.

Remark. These results on the existence of oscillatory solutions are sharp since
Brunovsky [6 has shown that if q(t)= , a < -(7 + 3)/2, then all nontrivial
solutions of (1.1) are nonoscillatory. Belohorec [3], [4], Gollwitzer [11] and the
first author [12] have obtained nonoscillation theorems for (1.1) in the general case.

4. A Liouville transformation. In this section we make a change of variables
of (1.1) which reduces to the Liouville transformation in case 7 1. By this means,
we obtain an additional criterion for the existence of oscillatory solutions of (1.1)
in the sublinear case. For a large class of oscillatory solutions our method of proof
will yield an asymptotic formula for the number of zeros. The more general
equation with positive coefficients,

(4.1) (r(t).P) + q(t)y O,

is considered since the transformation is equally applicable to it.
If y is a solution of (4.1), define H(y(t)) by

H(y(t)) (y(t)/rl(t)) +1 + E(7 + 1)/2]r(t)2Erl(t).P(t) Y(t)l(t)] 2

where

rift) Er(t)q(t)- 1/(7+ 3).

THEOREM 4.1. Suppose 0 < 7 < 1, r and q are positive with continuous second
derivatives on a ray [a, ), K Irl(ril)l dt < , and 1/(rr/2) dt o. Then
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there is a positive number L such that if y is a nontrivial solution of (4.1) satisfying
H(y(a)) < L, then y will have the following two properties"

(i) H(y(t)) has a positive limit as

(ii) y is oscillatory and if N(t) denotes the number of zeros of y on [a, t], then
N(t)/’ 1/(rr/2) dt has a positive limit as .

Proof We make the change of variables x , 1/(rq 2) dt and y(t) q(t)w(x).
Equation (4.1) transforms into

(4.2) w" + A(x)w + w O, d/dx,

where A(x) [rq3(rO)](t). Hence

IA(x)l dx Io(r0)’l dt < .
For (4.2), define the polar coordinates p and 0 by

(4.3)
p sin 0 (sgn w)lwl( + 1)/2,

p cos 0 [(7 + 1)/2 /2w’.

Since p2 we+ + (7 + 1)w’2/2, it follows that p is differentiable and

(4.4) 2pp’ (7 + 1)ww’ + (7 + 1)w’w" -(7 + 1)Aww’.

From Iw’[ N [2/(7 + 1)]/2p and Iwl N pz/(v+ ), equation (4.4) is of the form p’
Bp2/(e+l), where B -(7 + 1)Aww’/2P+3)/(+). An integration of

p, Bp2/( + x) yields

1 (0)(l-y)/(1 +) p(x)(l_y)/(1 +) B() d.

From (4.5) and

IB(g)I d [( + 1)/2 1/2 IA(g)l d [(7 + 1)/231/2K,

it follows that if p(O) is suciently small, then p is bounded on 0, m); in fact, if

1- (1 + )1/2 (7+ 1)/(7-1)

(0) <
1 + 2

K L1/2

then p has a positive limit at . Since p(x)2 H(y(t)), we have established property
(i).

When w(x) # O, we have from (4.3) that 0 is differentiable and

p’ sin 0 + pO’ cos 0 (7 + 1)lwl(- 1/w’/2,
(4.6)

p’ cos 0- pO’ sin 0 [( + 1)/21/2w".

Solving (4.6) for 0’ yields

0’= {[( + 1)/2]wl(- 1)/2w’ cos 0 + [( + 1)/2J/2(Aw + w)sin O}/p

( + 1)/21/2{1w(-1)/2 cos20 + Awsin 0 + [w{(-i)/2p sin2 O}/p

( + 1)/2]1/2{p sin 0(- 1)/(+ 1) + A(w/p) sin 0}.
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Therefore, 0 satisfies the equation

(4.7) Isin 0la-)/a +)0’ (y + 1)/21/2p(-1)/(+ 1 + C,

where C [(7 + 1)/2]I/2A(w/P) sin 0l sin 01(1-)/(1 +).
If p(0) < L 1/2, then w/p is bounded and IC(x)l dx < ; hence we have

from (4.7) that O(x) oe as x o. Choosing 0 __< 0(0) < 2re and defining xk by
O(xk) krc, k 2, 3,..., we have from (4.7) that

Thus

fk+Isin 0l (1 -e)/(1 +e)0’ dx [(7 + 1)/231/2 p(- 1)/(v+ 1) dx

+ C dx

]sin ul (1 )/(1 + du I.

(4.8) ;n+2 fn+2nI [(7 + 1)/2] 1/2 p(-1)/(+ 1) dx + C dx.

Since p(x) --, p(c) as x --, , from (4.8) we obtain

IN(t)
[(7 + 1)/211/2P()(- )/(+ 1)x

hence property (ii) is established.
Remark. For the coefficients r and q with _>_ a > 0, Theorem 4.1 is

applicable if 2(z + a)/(7 + 3) > e 1. For e 0, Theorem 3.1 applies if 2a(7 + 3)
> 1 and Theorem 3.2 applies for 2a(7 + 3) 1.

Remark. The second author has discussed the existence of oscillatory solutions
for the superlinear case under similar conditions, but with different techniques, in
17]. An asymptotic formula for the distribution of zeros of (4.1) in the superlinear
case was obtained in [16].

Added in proof Using the techniques of Theorems 3.1 and 3.2, Mr. Kuo-liang
Chiou [24] has succeeded in establishing the following unifying result’if 0 < 7 <
and if q(t)t(+3)/2 > 0 and d/dt(q(t)t(+3)/2) >= O, then every solution of (1.1) such
that y(to) 0 and ly(t0)l is sufficiently small is oscillatory.
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EXPLICIT EVALUATION OF CERTAIN POLYNOMIALS*

L. CARLITZ

Abstract. For real nonzero k, put

where c, runs through the nonzero roots of tan k and ft, runs through the roots of k cot/3 + fl 0.
Liron I2, pp. 105-107] showed that Sm(k (k 1)-m-lPm+l(k), where Pm+x(k) is a polynomial in k
of degree tn + 1. He showed also that Tm(k is a polynomial in k of degree tn + 1. In the present paper
it is shown that the coefficients of Pro+ l(k) and Tm(k can be expressed simply in terms of tangent co-
efficients of higher order.

1. Introduction. For real nonzero k, put

(1.1) Sin(k)--- 2 (Z rn-2

n=O

where , runs through the nonzero roots of

(1.2)

Liron 2] showed that

(1.3) Sm(k)t2m
m=O 2kt2

and

tan ka.

k-1
k2t2

ksin

kt cos sin t’

(1.4) Sm(1)t2,
3 sin

m:0 2t2 + 2(t cos sin t)"
He showed also that

(1.5) Sm(k) (k 1)- -lPm +l(k), k 1,

where Pm+ 1(k) is a polynomial of degree m + 1 in k, with rational coefficients, and

(1.6) n,.+ 1(1) 3 -m-1

While P,+ l(k) was exhibited as a determinant of order m + 1, explicit formulas
for the coecients were not obtained.

Next put

1
(1.7) Tm(k) fi2 2- 2
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where ft, runs through the roots of

kcotfl + fl=0.(1.8)
Liron [2 showed that

k2 k] cos
(1.9) T,,(k)t2,,

k- 1 1
+ t2m=o 2t2 2 k cos + sin

and that T(k) is a polynomial of degree m + 1 in k with rational coefficients.
Again T,,(k) was exhibited as a determinant of order m + 1 but explicit formulas
for the coefficients were not obtained.

In the present note we show that the coefficients of P,, + l(k) and T,,(k) can be
expressed simply in terms of tangent coefficients of higher order. As an application
we get simple generating functions for S’m(k) and T;,(k); see (4.1) and (4.2) below.

2. The polynomial T,,(k). It is convenient to begin with Tm(k). Put

(2.1) tan’t= E T)t--"
!

and, in particular,

(2.2) tan T,-n,,
n=l

so that T(,1) T,. The coefficients T(,r) are rational integers. Indeed, by a result due
to Hurwitz [1, p. 345] they satisfy

T(,r) 0 (mod r !),
Now

kcost+tsint 1 +k-ttant

(- 1)k--t tan

+

r=0

Z tn (_1)
r-i

o

(2.3)

Thus,

k-1
2t2

k2 kl cos
2 k cos + sin

k-1 1(1 k-1) T(r)
2t2 2 + 2 t" 1)r

k-

2k =o 2r<n (n r)

2 ,=o 2r<n+2

T(r)(-1)(n- r + 2)! -"-+2"
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Clearly only even powers of need be considered. We therefore have

2k
t2"

,=o
(- 1)*

(2n r) ’T(zr)".
k ,1 k-

2
tan (--1)(2n- r + 2)’n=0 r=O

Comparison with (1.9) now yields

1
(- 1Y(2n r)I

T,(k)
2k r=o

n+l k-r(2.4) (k 1)
=o

(- 1)’
(2n r + 2).’T(zr)n-r+2

2n-r+2"

nl (-1y k

2=o (2n- r + 2)!
{(2n- r + 2)(T,-_1)+ + T(2’,+2)+ 1)+ T(2),_,+2}.

Returning to (2.1) and differentiating gives
tn

r(tanr-1 + tan+1 t) n+
n=r-1

so that

(2.5) r(T-1) q_ T+ 1)) T(r)
--n+

Therefore, comparing (2.5) with (2.4), we get
n+l k-r

T,(k) (n / 1)
r=o

1)
r(2n r + 2).

T2)"- + 2

(2.6) + k- "("- + 1)

(n + 1) Z (- l)n-r+l T(n-r+ 1)

r=0 (n- r + 1)(n + r + 1)! -"++1

Since, by (2.1),

(2.7) T? n!,

it follows from (2.6) that the coefficient of k-"- in T,(k) is equal to (- 1)"+ 1. To
get the constant term in T,(k) we note that, in the right member of (2.4), the term

T2,---1)+ is to be ignored when r 0. We find that the constant term is equal to

(2.8) 2(2n + 1)!
y2"+ 1"

Since

T2,+1 =0 (mod2), n> 1,

it follows from (2.3), (2.6) and (2.8) that

(2n +1)T,(k(2.9)
n+l

has integral coefficients.
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3. The polynomial S.(k). Turning next to S.(k), we put

(3.1) (tan t)
n=3r

The U[ are rational integers, and by Hurwitz’s lemma,

(3.2) U[ =-- 0 (mod r !),

Thus,

Now, for k 4: 1,
sin tan tan

kt cos sin kt tan (k- 1)t-(tant- t)

tan
(k 1)-- t-(tan ty

r=0

k-1
1 +k (k- 1)-t-(tant-t)

+k 2" (k- 1) rr(r)
k- =1 =1 (2n + r)i ’2"+

k 1) k sin

k2f2 kt cos sin

2kt2 +- k 1 +- q-k E t2n It(r)

n=l =X (2n + r)i "2n+r

k ( k2 L(k-1)-r
2 k- 1 - k- 2 E t2n It(r)

n=l r=l (2n + r)i 2"+r

1 k 1 1 1L t2.{k2 L (k-1)--
2k- 1 6k- 1 (2n+r)’n=l r=l

r=l (2n + r + 2)! U2’++2

while, for n >= 1,

lk2 L (k- 1)--S.(k) - (2n + --i ,2,+

After a little manipulation this becomes

S.(k)=- (k- 1)-
[(2n+r- 1)

(3.3)
=o

So(k) k y= 1,

1"1 (k- 1) U),++.
2 r=Z’l(2n + r + 2)!

+2--
(r)
2n+r

(2n + r)!

u(2r:2)r+l 2n_+ + 2

(2n + r + 1)! (2n+ r +2)

n>_3r.

Therefore, by (1.3),
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Now it follows on differentiating (3.1) that

(3.4) rU,r+ 1)_

Therefore, (3.3) reduces to

+2+
(r- 1) }n-2

(n 2)!

n+l

Sn(k)- (n + 1) (k- 1)
r=O

The constant term (r 0) is

(3.6)
2(2n + 1)!

(r)
n+l

n!

(r)
2n+r+2

r(2n + r+ 2)!’

2,/+
2(2n + 1)!

It follows from (1.5) and (3.5) that

Pn+ 1(1) l(n+ 1)
3n+3"(3n + 3)!

Also it follows at once from (3.1) and T 2 that

(n+ 1) (3n + 3)!
3n+ 3 3n+

and therefore,

Pn+ 1( 1 3-n-

as proved by Liron in a different way.
It is also clear from (3.6) and (3.2) that

(3.7)
(3n + 3)!p,+ l(k)
(n+ 1)!

has integral coefficients. This result may be compared with (2.9).

k4:l, n>=l.

4. Generating functions for T’(k) and S’.(k). Differentiation of (2.6) with
respect to k gives

n+l

kT’.(k) (n + 1) 2 (- 1) T(
--2n-r+2(2n- r + 2)!

Thus,

Z t" E (-1)
k

T()
O<2r_<n (n r)!

2 (-1)r-lk-r 2 T(.)-
r=l n=O t/!
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It follows that

t2n + 2 sin
(4.1) k ’, T’,(k)

,=o n + 1 kcost+ tsint"

Similarly, differentiation of (3.5) gives

(k 1)S;(k) (n + l)
,25 )7"

Thus,
2n+2

(k 1) S’,(k)
,=o n+l

A little manipulation leads to

(4.2) (k- 1) S’,(k)
n=O

2n+r+2

Z t2" (k- 1)-
n=l r=l (2n + r)i U(2)"+

--E tn
n=l 0<2r<n (/1 -- r)! ’n+r

n=3r

t2n + 2 COS sin

n+ 1 kt cos sint"
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PERTURBING UNIFORM ULTIMATE BOUNDED
DIFFERENTIAL SYSTEMS*

STEPHEN R. BERNFELD"

Abstract. We obtain results on the eventual uniform boundedness and eventual uniform ultimate
boundedness of solutions of the differential equation +/- f(t, x) + g(t, x) given that solutions of the
equation +/- f(t, x) are uniformly bounded and uniformly ultimately bounded. By assuming various

regularity conditions on f we obtain admissible classes of g such that the boundedness properties
are preserved. By use of various examples the admissible classes of g are shown to be "maximal."

1. Introduction. A great deal of research has been done concerning the
perturbation of uniform asymptotically stable differential systems. Recently,
Strauss and Yorke [5] have generalized many of the earlier results concerned with
this question by considering systems in which the perturbation terms are dimin-
ishing.

Our purpose here is to obtain results concerning the perturbation of uniformly
bounded (hereafter called UB) and uniformly ultimately bounded (hereafter called
UUB) differential systems. In particular, we shall prove theorems on the eventual
uniform boundedness (hereafter called EvUB) and eventual uniform ultimate
boundedness (hereafter called EvUUB) of solutions of the differential equation

(P) f(t, x) + g(t, x),

given that the solutions of the equation

(E) 2 f(t, x)

are UB and UUB, where f and g satisfy various conditions. We shall always
assume f, g :[0, oe) x R" --, R" are continuous.

Yoshizawa [6], using Lyapunov functions, has proved that if system (E) is
UB and UUB and f satisfies a uniform Lipschitz condition, then system (P) is
EvUB and EvUUB if g is either "integrable" or approaches zero as . Using
techniques similar to those used by Strauss and Yorke [4], [5], we generalize this
result by assuming f satisfies either a more general Lipschitz condition (not
necessarily uniform) or an inner product condition, and that g satisfies a condition
called "strongly diminishing," special cases of which include those considered by
Yoshizawa. Examples are provided which show that the conditions on g cannot
be easily weakened.

For the case when f(t, x)= A(t)x, we prove that if g(t, x)= g l(t, x) + h(t),
where g is strongly absolutely diminishing and h(t) satisfies a condition widely
used by Massera and Schaffer [3] (sup,[o,oo)tt+llh(s)] ds < ), then solutions of
(P) are EvUB and EvUUB. An example is provided which shows the conditions
on h and g cannot be easily weakened.
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Our results are applied to systems with small parameters as well as to second
order equations with a forcing term.

2. Preliminaries. Let R denote Euclidean n-space and let I" denote any
n-dimensional norm. We use I1" for the Euclidean norm and (x, y) for the inner
product of x, y e Rn. We shall assume throughout that the right-hand side of every
differential equation is continuous on Ds {(t,x): __> 0, Ixl > S,S > 0}. For
(to, xo) e Ds we denote by x(t, o, xo) that solution satisfying x(to, to, xo) xo.
(For clarity, we shall often use y(t, to, Xo) to be a solution of (P) and x(t, to, xo)
for (E).)

DEFINITION 2.1. The solutions of (E) are eventually uniformly bounded (EvUB)
if for each a > 0 there exist 7 7(a) >_- 0 and fl(z) such that

Ix(t, to,Xo)l < fl() for Ixol < and >_ to >= 7.

The solutions are uniformly bounded (UB) if 7() 0.
DEFINITION 2.2. The solutions of(E) are eventually uniformly ultimately bounded

(EvUUB) if there exists a B > 0 such that for each a > 0 there exist 7 7(a) >- 0
and T(a) _>_ 0 such that

Ix(t, to, Xo)l < B for Ixol < , to ->_ 7 and _>_ o + T(e).

The solutions are uniformly ultimately bounded (UUB) if 7(0 0 for all e.
DEFINITION 2.3. Let h’[0, oe) R be continuous. Then h is absolutely dimin-

ishing if

DEFINITION 2.4. Let h’[0, ) R" be continuous. Then h is diminishing if

sup
O<u<l

h(s) ds --.0 as t- o.

DEFINITION 2.5. Let g" [0, oo) x R - R be continuous. Then g is strongly
absolutely diminishing if

as t-,ds 0

for each bounded continuous function x(s).
We notice that if for all m sufficiently large there exists an absolutely dimin-

ishing function hm(t such that Ig(t, x)l-< hm(t) for _> 0 and Ixl _-< m, then g is
absolutely diminishing.

DEFINITION 2.6. Let g" [0, oo) x R R" be continuous. Then g is strongly
diminishing if

sup
O_<u<l

’+ Ug(s, x(s)) ds -0 as t- o

for each bounded continuous function x(s).
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DEFINITION 2.7. Let Co(x) be the class of continuous functions f(t, x) defined
on [0, ) x R" with range in R" such that for each > 0 there exists L(a) > 0
such that

(2.1) If(t,x)- f(t, Y)I -< L()lx Yl
for all => 0 and all Ixl =< , lyl _-< . We say f is a Lipschitz function iff e Co(x).

DEFINITION 2.8. Let / be the set of continuous functions h" [0, )--, R"
satisfying

t+

sup Ih(s)l ds < ,
t[O,)

and let/# be the set of continuous functions h [0, ) - R" satisfying
+

sup h(s) ds < .
O<u<l
t[O,)

We shall also consider the following condition.
(H1) There exists K > 0 such that for each continuous bounded function

x(t) Ds, -> O,

lim sup f+l Ig(s, x(s))l ds

We observe that if Ig(t, x)l _-< h(t)Ixl, where h(t) /A/, then g satisfies (H 1) or if g is
strongly absolutely diminishing, then g satisfies (H1).

Definitions 2.1, 2.2, and 2.7 may also be’found in [6], Definitions 2.3 and 2.4
in [5], and the definition of////in [3].

We now present some lemmas which will help simplify the proofs of our
main results. Lemma 2.9 is an inequality of the Gronwall type and Lemma 2.10
is analogous to Lemma 2 of [1, p. 102]. We shall omit the proofs of these two
lemmas.

LEMMA 2.9. Let r(t), p(t), u(t) be continuous for >__ to; let c > 0 and u(t) >= 0;
and let

r(t) <= c + [u(s)r(s) + p(s)] ds.

Then

r(t) <= c exp u(s) ds + p(s) exp u(m) dm ds.
to

LEMM, 2.10. Let x(s) be a continuous bounded function. Assume
+

lim sup Ig(s, x(s))l ds <= k

for some k > O. Then for each e > 0 there exists to(e) such that for any c > 0,

k (e) e2c
sup e -ct eCSlg(s, x(s))l ds <= e 1t>=to

where kl(e)= k + e.
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LEMMA 2.11. If g(t, X) is a strongly diminishing function, then for each a > 0,
+u

sup g(s, x(s)) ds 0 as --, oe
0<u<l

uniformly for all continuous bounded functions x(t), >_ O, satisfying Ix(t)l =<
Proof Suppose the conclusion is false. Then there exist an a > 0, a sequence

of points {t,} such that t, as n , a sequence of points {u} where u,
Uo _-< 1 as n , a sequence of continuous functions {y(s)} where ly(s)l _-<

and an e > 0 such that
+

g(s, y,,(s)) > e.ds

We may assume t,+ t > 1. Construct the continuous bounded function

yl(t) for e [0, t],

y.(t) for It., t. + u.],
p(t)

(t- t.- u.)
y(t, + u.) + (y,+ t(t,,+ ,)- y,(t, + u.))

(t.+, t
for

Hence,

g(s, y.(s)) ds

which is a contradiction, since from the hypothesis we have

+ Un

lim g(s, (s)) ds O.

Using similar techniques as in Lemma 2.11 we can prove the following lemma.
LEMMA 2.12. Assume g(t, x) satisfies (H1). Then there exists K > 0 such that

for each a > 0 there exists to(a) such that for >= to(a),

Ig(s, x(s))l glx(t)lds

for all Ix(t)l a.
In the following lemma we omit the proof.
LEMMA 2.13. If solutions are UB and EvUUB, then they are UUB.
We now give a characterization of UB and UUB in terms of Lyapunov

functions.
THEOREM 2.14 (Yoshizawa [6, p. 107]). Assume f(t,x) is locally Lipschitz in x

(for each point (t, x) there exists a neighborhood where the Lipschitz condition (2.1)
holds). Then solutions of(E) are UB if and only if there exists a continuousfunction
V: Ds R satisfying

(2.2) V is locally Lipschitz;

(2.3) a(lxl) v(t, x) <= b(Ixl),
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where a(. ), b(. are continuous increasing functions and a(r) o as r o

(2.4) l?(t, x) lim sup
V(t + h, x + hf(t, x)) V(t, x) < 0

h-,o+ h

Moreover, solutions are UUB ifand only if V satisfies, in addition,

(2.5) l?(t, x) <= -cV(t, x) for some c > O.

Moreover, iff Co(x), then V Co(x).
It has also been proved [6, p. 92] that iff(t, x) A(t)x, then solutions of (E)

are UB and UUB if and only if there exists a continuous V" Ds R satisfying
(2.3) with a(Ixl) Ixl, (2.5) and

(2.6) IV(t, x)- V(t, Y)I <- Fix- yl

for some F > 0 and all x, y satisfying Ixl, lYl >= S.

3. Perturbed linear systems.
THEOREM 3.1. Assume solutions of

(L) A(t)x

are UB and UUB. Consider the perturbed system

(PL) A(t)x + y(t, x) + g(t, x) + h(t).

Assume y is continuous on Ds and satisfies
IT(t, x)l <_- L(t)lxl,

where

lim sup
1 fro + L(s) ds < Q

for sufficiently small Q and large o. Assume g is continuous on Ds and g satisfies
(H1) for sufficiently small K. Assume h h/. Then the solutions of (PL) are EvUB
and EvUUB.

Proof. From the remarks after Theorem 2.14 we have the existence of a
function V satisfying (2.3), (2.5) and (2.6). Hence, we have

L)(t, x) _< L)(t, X) + Fly(t, x)l / rig(t, x)l + FIh(t)l

(3.1) <= -cV(t,x) / FZ(t)lxl + FIg(t,x)l + lh(t)l

<_ (-c + FL(t))V(t, x)+ Fig(t, x)l + Nlh(t)l.

Let x(t, to, Xo) be a solution of (PL) and define, for >= to,

r(t, to, ro) V(t, x(t, o, Xo)).

Hence, from (3.1) we have

(3.2) i’(t) <= (-c + FL(t))r(t) / Fig(t, x(t))l + Flh(t)l.

Pick T1 so large that for to > T and z > T1, (1/z)’, +* L(s)ds <_ Q, where we
assume Q < c/F. Define -# QF c; and hence, for > to + T and to > T1,
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we have

(- c + FL(s)) as <_ 12.
t-- o

Therefore,

(3.3) (- c + FL(s)) ds <- #(t to).
O

From (3.2), (3.3), using the variation of constants formula for linear systems, we
obtain

(3.4) r(t, to, ro) <= e-"(t-t)ro + F e -"t Wig(s, x(s))l ds + F e -ut Ih(s)l eus ds.

Using (2.3), we have from (3.4),

Ix(t, to, Xo)l =< e-"(’-t)b(Ixol) + F e -"t e"lg(s, x(s))l ds

(3.5)

+ F e-U’ Ih(s)l eus ds.

Pick any a > S, and from Lemma 2.12 there exists T2 T2(a) such that for
t- T2

t+l

(3.6) ]g(s, x(s))l ds <= Klx(t)l

for all continuous functions x(t) such that Ix(01 <_- . For to >- max (T2(3b(a)), T1)
and for Ixol -_< , we have from (3.5), using Lemma 2.10 and (3.6), that for as long
as Ix(t, to, Xo)l <- 3b(a),

2KF e2" FK1 e2"
sup Ix(s, to,Xo)l+ e"- 1(3.7) Ix(t, to, Xo)l-< e-U"-t)b(Ixol) + e" 1 t>_s>_to

where K1 supt>_of+lh(s)lds. We may assume that a is so large that

FK e2"/(e" 1)< b(a)/2. Pick K so small that K < (e"- 1)/(4F e2U). Hence,
from (3.7) we have, for as long as Ix(t, to, Xo)l <- 3b(a),

sup Ix(s, to, Xo)l
to <_S<_t

2KF e2ul __< b(a) +
FK

or

(3.8) Ix(t, o, Xo)l < 2b(a) + b(a)= 3b(a).

Hence (3.8) holds for all >_ to(a) max (G(3b(a)), T). This implies solutions are
EvUB. There exists T3 T3(a) > 0 such that e-"T3()b(a) < 1 for all a. Hence, for
all => to + T3 we have, from (3.8),

2FK e2"
Ix(t, to, Xo)l <- 2 +

eu- 1

which implies solutions are EvUUB, thus proving the theorem.
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We now consider perturbed systems with small parameters. Such systems 2
often arise in mechanical processes where one is interested in preserving the
process under small perturbations. From the proof of Theorem 3.1 we may state
the following result which extends the work of Yoshizawa [6, p. 132] to systems
with boundedness properties.

COROLLARY 3.2. Assume solutions of (L) are UB and U UB. Consider the
perturbed equation
(Pc) A(t)x + g(t, x, ),
where e is an m-vector. If

Ig(t, x, )[ h(t, )lxl

and if there exists a K > 0 such that
t+

Ih(s, e)l ds <= Klel,

then there exists an eo > 0 such that for all lel < eo solutions of (P) are EvUB
and EvUUB.

In Theorem 3.1 we observed that we could perturb (L) by a function h(t)
satisfying sup, >__ 0yt+ lib(s)[ ds < . A natural question is whether we can weaken
the condition on h(t) so as to satisfy h(t) e ///; that is,

(3.9) sup
O<u<l
t>o

and still have solutions of

(PLH) A(t)x + h(t)

be EvUB and EvUUB. The following example, based on one given by Strauss and
Yorke [5, p. 472], shows that Theorem 3.1 does not hold for h(t) satisfying (3.9).

Example 3.3. Consider the linear system

c A(t)x, A(t)

Then a fundamental matrix satisfies

X(t) e-’ X-(t)= e
COS e sin e --cos e sin e

Also, IX(t)X-(s)l < Ke-(-) for some K > 0 and for all _>_ s _>_ O. Define

et/2 sin. e
h(t)

et/2 cos e

It is not difficult to show h(t) satisfies (3.9).
We now consider the solution through (to, 0), x(t, to, 0) of (PLH). For any

to >0andt->to,

x(t, to, O) X(t) X- (s)h(s) ds.
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Hence,

2 -it- 3to/
sin e

x(t, to, O) -(e’/ e 2)
cos e’

Therefore lim suPt_. Ix(t, to, 0)1 ; that is, solutions are not even eventually
bounded.

We observe that h(t) is diminishing in Example 3.3. In fact, a reasonable
conjecture is that we can perturb (L) by a function h(t) satisfying (3.9) if and only
if we can perturb (L) by a diminishing function h(t). Moreover, with the same
techniques as in Lemma 4.1 in [5], we can show that if A(t) , that is,
sup>_ol +1 ]A(s)] ds < oe, then a necessary condition on h(t) for solutions of
(PLH) to be EvUB and EvUUB is that h(t) satisfy (3.9); and in Corollary 4.3 we
show that a sufficient condition is that h(t) be diminishing. Hence, if our previous
conjecture is true, then if A(t) //and solutions of (L) are UB and UUB, then
solutions of (PLH) are EvUB and EvUUB if and only if h(t) satisfies (3.9)

4. Perturbing nonlinear systems. In this section we consider the equation (E)
and the perturbed equation (P) and we assumef(t, x) satisfies either a generalized
Lipschitz condition or an inner product condition. In order to prove solutions of
(P) are EvUB and EvUUB when solutions of (E) are UB and UUB we essentially
show that on compact intervals each solution of (P) stays close to a solution of (E).
This technique has been used by Strauss and Yorke previously [4], [5] in the case
of stability.

THEOREM 4.1. Assume solutions of (E) are UB and UUB and that for each
> 0 there exists L() > 0 such that fsatisfies, on Ds,

(4.1) If(t, x)- f(t, Y)I _<- R(t)L()lx Yl,

for all Ixl _-< and lyl _<- , where 2(0 e . If g(t, x) is strongly diminishing on Ds,

then solutions of(P) are EvUB and EvUUB. Moreover, if solutions of(P) are UB,
then they are UUB.

Proof Define

A(to) sup 2(s) ds.
T>=to

There exists an M > 0 such that A(to) <= M for all to >= 0. Hence, we have for
t>=to,

t tto + fto+2 ft2(s) ds 2(s) ds + 2(s) ds + + 2(s) ds
Oto+ o+m

=< (t to + 1)A(to) =< M(t to + 1).

For any > S define

G(t) sup
O<u<l
T>t

Ix(s)-i _<_

,,T +u

g(s, x(s)) ds
T

and we conclude from Lemma 2.11 that G(t) $ 0 as . Hence, for all x(t) such
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that Ix(t)l - a and for _) to =) 0, we have

g(s, x(s)) ds <_ g(s, x(s)) ds + g(s, x(s)) ds
ato+

+ + g(s, x(s)) ds
o+m

<= G,(to)(t- to + 1).

Let x(t, to, Xo) be a solution of (E) with IXol < a. Then there exists fl(a) such that
Ix(t, to, Xo)l < fl(a) for _>_ o, and there exist a B > 0 and a To(a) such that
Ix(t, to, xo)l < B fort >__ to + To(a). Define

B1 Bl(a) max(fl(a) + 1, fl(B + 1) + 1).

Let y(t, to, x) be any solution of (P). Then for as long as ]y(t, to, Xo)] _-< B(a) on
the interval [to, to + z] for some z > 0, we have, using (4.1),

ly(t, to, Xo) x(t, to, Xo)

(f(s, y(s, to, Xo) + g(s, y(s, to, Xo))) ds f(s, x(s, to, Xo) ds

<-_ 2(s)L(B)ly(s, to, xo) x(s, to, xo)l ds + (t to + 1)G,(to)

Gn,(to) + (2(s)L(B)IY(s, to, Xo) x(s, to, Xo)l + Gn,(to)) ds.

Using Lemma 2.9 we conclude

[y(t, to, Xo) x(t, o, Xo)

<__ G,(to) exp L(B) 2(s) ds

+ 6,(to) exp L(BI) 2(u) du ds.

<= G(to)exp(L(B)(t- to + 1)M)

+ G(to) exp (L(B)(t to + 1)M) ds.

Hence, for as long as ly(t, to, Xo)l -< B for e [to, to +
ly(t, to, Xo) x(t, to, Xo)l <- G,(to) exp (L(B)(r, + 1)M)

(4.2) + G(to) exp (L(B)(r + 1)M)

(1 + )G,(to) exp (L(BI)(r + 1)M).

Choose z (a) To(B(a)). We may pick T T(a) so large that for >__ T
we have

(4.3) (1 + )G(t) exp (L(BI)(. + 1)M) < 1.
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Pick to >-TI(), and thus for as long as ly(t, to,Xo) <_ B(oO in the interval
[to, to + r], we have, using (4.2) and (4.3),

(4.4)
ly(t, to, Xo)l < ly(t, to, Xo) x(t, to, xo)l + Ix(t, to, Xo)l

< 1 + fl(z) <= B(z).

Hence, ly(t, to, Xo)l =< B x(e) for all e [to, to + r]. Since we may assume To(B())
>_-To(), we have IX(to / :,to,Xo)l < B, and using (4.4) we conclude ly(to
+ z, to, Xo)l =< 1 + B __< B(e). Let x y(to + z, to, Xo). Then since Ixl _-< 1 + B,
we have Ix(t, to+r,x)l<fl(B+ 1)_<B() for t>=to+Z. For as long as
[y(t, to + r, x)l -< B(e)on the interval [to + , to + 2], we have, using (4.2)and
(4.3),

lY(t, to / r, Xl)l =< ly(t, to / r, xl)- x(t, to / r, xa)l / Ix(t, to / r, xl)l

< 1 + fl(B + 1) __< B().

Hence, ly(t, to + r, xl)l =< BI(Z for all e [to + r, to + 2r]. Since r To(B(cz))
>__ To(B + 1), we have IX(to -4- 2r, to -4- r, x t)l < B. Thus, we have

ly(to + 2r, to + r, Xl)l =< ly(to + 2r, to + r, x1)- X(to -4- 2z, to +
+ IX(to + 2r, to + r, xl)l

<I+B.

Let m be any positive integer and assume ly(t, to, Xo)l _-< BI(Z) for [to, to + mr]
and ]y(to + mr, to,Xo)] <- B + __< Bl(CZ). Let x,, y(to + mr, to,Xo), and thus
Ix(t, to + mr, Xm)l < fl(B + 1) for >= to + mr. For as long as ly(t, to -4- mr, x,,)l
=< B(00 on the interval [to + mr, to + (m + 1)r] we have

(4.5)
ly(t, to -4- mr, Xm)l <-ly(t, to -4- mr, xm) x(t,to + mr, Xm)l + Ix(t, to -4-

__< 1 + fl(B + 1)__<

Hence, ly(t, to + mr, x,.)l <= B(e) for all [to + mr, o + (m + 1)r] moreover,

ly(to -4- (m -4- 1)r, o -4- mr, X

-< lY(to + (m + 1)r, o + mr, xm)- x(to + (m + 1)r, o + mr, x,,)[

+ Ix(to + (m + 1)r, o + mr, Xm)
_<I+B.

Thus, by induction we have ly(t, to, xo)l =< B() for [to + mr] for all m > 0;
that is, ly(t, to, xo)l _-< BI() for >_ o >_ T(). Hence solutions of (P) are EvUB.

We also observe from (4.5) that for [to + mr, to + (m + 1)r] for all m _>_ 1,
that is, for _> to + z, we have

ly(t, to, Xo)l ly(t, to + mr, x,,)l <- 1 + fl(B + 1).

Hence, for any > S > 0 and for IXol < , we have for to -> TI(a) and __> to
+ To(Ba(a)) that ]y(t, to, Xo)l =< 1 + fl(B + 1). Hence, solutions of (P) are EvUUB.
If, moreover, solutions of (P) are UB, then by Lemma 2.13 solutions are UUB,
thus completing the proof of Theorem 4.1.



368 STEPHEN R. BERNFELD

Remark. We observe that if.f ]g(s, x(s))l ds < for each bounded continuous
function x(t) or if Ig(t, x(t))l 0 as - for each bounded continuous function
x(t), then g(t, x)is strongly diminishing. Moreover if f(t, x)e Co(x), then f(t, x)
satisfies (4.1). Hence as a special case ofTheorem 4.1 we have obtained the following
result of Yoshizawa [6, p. 127].

COROLLARY 4.2. If solutions of (E) are UB and UUB, where f e Co(x), and
i/fY,o Ig(t, x(t))l dt < for each bounded continuousfunction x(t) and iflg2(t, x(t))[ -- 0as for each bounded continuous function x(t), then solutions of

2 f(t, x) + g,(t, x) + g2(t, x)
are EvUB and EvUUB.

In proving this result Yoshizawa used Lyapunov functions. However, it
does not seem that a Lyapunov function can be used alone to prove Theorem 4.1
for two reasons. First, the condition (4.1) onfmay not necessarily imply that there
exists a Lyapunov function V(t, x) satisfying (4.1) as it does in the case forf Co(x).
Second, since g(t, x) is strongly diminishing and not absolutely strongly diminish-
ing, we are not able to obtain a differential inequality in terms of a Lyapunov
function. We now apply Theorem 4.1 to (L).

COROLLARY 4.3. Assume solutions of (L) are UB and UUB and that

Itt+1suptto,oo) IA(s)l ds < . If g(t, x) is strongly diminishing, then solutions of
2 A(t)x + g(t, x)

are EvUB and EvUUB.
As we pointed out in Example 3.3 we cannot perturb (L) by a diminishing

function h(t)without restrictions on A(t).
We now apply Theorem 4.1 to a forced Lienard equation. Various examples

offorced Lienard equations are presented in [6] where the forcing term is integrable,
and using Lyapunov functions, one is able to conclude that the forced equation is
UB and UUB. In our next example we weaken the conditions of our forcing term
and conclude that solutions of the forced equation are EvUB and EvUUB.
This type of "trade-off" sometimes may be desirable.

Example 4.4. Consider the Lienard equation

Y + f(x)2 + g(x) 0,

where f(x), g(x) are Lipschitz, F(x)= ff(u)du--, +, as x +, and where
xg(x) >__ 0. Then, under these conditions, it is known that solutions are UB and
UUB (see [6, p. 41]). It has been shown [6, p. 41] that if we consider

2 + f(x)2 + g(x)= p(t),

where f p(s)ds < v, then solutions are UB and UUB. From Theorem 4.1 we
may weaken the condition on p(t) by assuming p is diminishing and thus conclude
that solutions are EvUB and EvUUB.

Remark. In Theorem 4.1 we have seen that a sufficient condition for solutions
of
(PH) 2 f(t, x) + h(t)

to be EvUB and EvUUB when solutions of (E) are UB and UUB is for h(t) to be
diminishing. It would be of interest to see whether solutions of (Pn) are EvUB and
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EvUUB if h(t) ////, assuming of course solutions of (E) are UB and UUB andf
satisfies (4.1). In the following example we show we cannot necessarily even perturb
(E) with a function h(t)

Example 4.5. Consider the scalar equation

(4.6) 2 f(x),

where

-l/x for x > 1,
f(x)

-x for xN 1;

and we seef e Co(x) (in fact the Lipschitz constant is 1 for all points in the space).
For Xo =< 1 we have all solutions approaching zero uniformly. For x > 1 we have,
for any point (to, Xo),

and

x(t, to,Xo)=x//x)-2(t- to) for to =< t<= to +(xg- 1)/2,

x(t, o, Xo) exp to + . for => to +

Hence, solutions of (4.6) are UB and UUB for a bound 1. We now perturb (4.6)
by h(t) 1. Consider then,

(4.7)
2= -x+ 1, x=<_l.

For any point (to, Xo), to [0, ), Xo > 1, we see that is increasing, and hence
solutions of (4.7) are unbounded for Xo > 1.

We observe that Theorem 4.1 does not include the cases where f(t,x)
i[l(t)xzn+ 1, rt 0, 1, 2, where (t) is negative but is not contained in . For

example, we cannot apply either Theorems 3.1 or 4.1 to the scalar function

f(t, x) tPx2n+ 1, where p > 0.
We now present a theorem which will allow us to perturb (E) whenfsatisfies

the following’inner product condition" for each > 0 there exists L() > 0 such
that

(4.8) (x y, f(t,x)- f(t, y)) <= 2(t)L(a)]lx yl[ 2

for [Ix[I , Ilytl and 2 /{. A similar condition for 2(0 -= and L() L
has been used by Strauss and Yorke 5] for the case of stability. For the case in
which f(t, x) tPx2"+ 1, we see f satisfies (4.10) by letting 2(0 0.

THEOREM 4.6. Assume solutions of(E) are UB and UUB, wheref satisfies (4.8).
Then, ifg is strongly absolutely diminishing, solutions of (P) are EvUB and EvUUB.

Proof Much of the proof is similar to that of Theorem 4.1 and we shall omit
it.



370 STEPHEN R. BERNFELD

Remark. In Example 3.3 we observe that f(t, x)= A(t)x satisfies the inner
product condition since (x, A(t)x) -Ilxl12o Hence, Theorem 4.6 is not true for
diminishing functions.

We have assumed throughout that solutions of the unperturbed system are
UB and UUB. In Theorems 4.1 and 4.6, we may, however, only need to assume
that solutions of the unperturbed system are EvUB and EvUUB in order to con-
clude the identical results. The proof of this result imitates the proof given in
Theorem 4.1 in that we now show solutions of the perturbed system are eventually
close to solutions of the unperturbed systems. Such conditions on the unperturbed
system have been considered by Strauss and Yorke [5] in the case of stability.
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SEMIGROUPS AND ASYMPTOTIC STABILITY OF NONLINEAR
DIFFERENTIAL EQUATIONS*

C. V. PAOt

Abstract. The purpose of this paper is to extend a well-known theorem of Lyapunov on matrices
to unbounded linear operators in an infinite-dimensional Banach space by using semigroup theory.
This extension is used for the study of stability problems of nonlinear differential equations. In the
special case of a Hilbert space, a direct extension of Lyapunov’s theorem for a bounded operator is
obtained; and in the general case of a Banach space the idea of equivalent semi-inner products is
introduced. Applications are given to a class of initial boundary value problems in a bounded domain
in R" under nonlinear perturbations.

1. Introduction. Let X be a complex (or real) Banach space with norm I. [.
In case X is a Hilbert space, we denote it by H. If X is the finite-dimensional
space C" (or R"), Lyapunov’s theorem states that an n n matrix A is stable
(i.e., the eigenvalues of A all have negative real parts) if and only if the matrix
equation A*P + PA -I has a unique solution P which is Hermitian positive
definite, where A* is the adjoint of A (for example, see [1, p. 245]). If we consider
A as an operator on C", it can be shown that a stable matrix is a bounded operator
which generates a strongly continuous group {T;- < < } such that
T, _-< Me -#t for _>_ 0, where M, fl are positive constants. In a recent paper [2],
Datko extended this result partially to an infinite-dimensional Hilbert space by
considering A as an infinitesimal generator of a strongly continuous semigroup.
In this paper we extend, on the one hand, Lyapunov’s theorem fully in a Hilbert
space by considering A as an infinitesimal generator of a group and, on the other
hand, we extend similar results in a Banach space when A is unbounded and
generates a semigroup. We do this by using the notion of an equivalent semi-
inner product in X (cf. [3] or [7, p. 250]). This latter consideration improves
considerably the result given in [5]. This improvement is crucial in studying the
stability problem of the nonlinear differential equation

(1.1) du/dt Au + f(t,u), t R / =_ [0,
where f is a nonlinear mapping on R / x G to X with G an open subset of X.

It is well known that if A is a stable matrix and if If(t, x)] o(Ixl) uniformly
in as Ixl 0, then the zero solution of (1.1) is asymptotically stable. We extend
this result to a Banach space for an unbounded operator A which generates a
semigroup (of class Co). In the meantime, we weaken the condition onfto include
a largerclass ofnonlinear perturbations. Finally we give an application ofthe results
on the abstract differential equation (1.1) to the following initial boundary value
problem"
(1.2) c3u/t Lu + f(t, x, u),

(1.3) u(t,x’)=O onR + c3,

(.1.4) u(O,x)=(x) in,
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where f is a bounded open subset of R" with smooth boundary c3f, and f are
given functions and

Lu (aij(X)Ux,) + c(x)u, x f.
i,j=

Conditions on the coefficients of L and the function f are given to ensure the
stability of the system (1.2)-(1.4) in the space L2(F).

2. Semigroups and positive operators. A semi-inner product x, y] defined for
x, y X is a complex (or real) number such that:

(i) Ix + y, z x, z + [y, z],
(ii) [ex, y] e[x, y], e C1,
(iii) Ix, x] Ixl 2,
(iv) I[x, y31 _-< Ixl lyl.

Any Banach space can be made into a semi-inner product space. In general, semi-
inner product is not unique. If X is a Hilbert space, it is unique and coincides
with the inner product in X. Two semi-inner products [.,. , [.,-e defined on
the same vector space X are said to be equivalent if the norms 1. I, I" le are equi-
valent, where IXle UX, X]A/2, The space X (i.e., X equipped with 1. [e) is called an
equivalent space to X. Thus X is a Banach space if and only if X is. A linear
operator A with domain D(A) and range R(A) both in X is said to be dissipative
with respect to [.,. if Re [Ax, x <= O, x D(A); and it is said to be strictly dis-
sipat}ve if there exists a constant/ > 0 such that Re lAx, x] <_ -/3lxl 2, x e D(A).
A bounded operator P on a Hilbert space H with inner product (.,.) is said to
be nonnegative if (x, Px)>= O, x X; and it is called positive definite if there
exists a constant c5 > 0 such that (x, Px) >= filxl 2, x x. It is known that P is
symmetric positive definite if and only if (x, Y)e (X, Py) defines an equivalent
inner product on H such that

(2.1) 6]xl 2 _< ]xl2 __< 7lxl 2, x e H,

where IPI Y (cf. [6]).
THEOREM 2.1. Let A be the infinitesimal generator of a strongly continuous

group {Tt;-oo < < oo} of class Co in a (complex) Hilbert space H. Then
ITtl <- Me -a’, >= 0, for some positive constants M, if and only if there exists a
unique symmetric positive definite bounded operator P on H such that

(2.2) (PAx, x) + (x, PAx) -(x, x), x D(A).

If, in addition, A is a bounded operator on H, then

(2.3) A*P + PA -I.

Proof Necessity. Assume that ITel =< Me -tst for _>_ 0. Define

(2.4) (x, Y)e Tx, Ty) dt, x, y H.

It is readily seen that (x, y)e is sesquilinear, (x, y) (y, x) and

(2.5) I(x, Y)el 3’]xl lyl,
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where 7 M2/2 Since Tt) is a group, there exist positive constants K, co such
that 17_t[ -< Keltl. Thus

]xl IT-tTtx[ <= KeltllTtx]

which implies that ]Ttx[ >= K-Xe-"lxl for >__ 0. It follows from (2.4), (2.5) that

(2.6) [x[ 2 =< [x[

where 3 (2coK2) 1. By the Lax-Milgram theorem (for example, see [7, p. 92)
there exists a unique bounded linear operator P with [P[ =< y such that

(X, Y)e (X, Py), x, y H.

The condition (x, y) (y, X)e and (2.6) imply that P is symmetric and positive
definite. To show (2.2) we observe that for >__ 0,

(Tx, Tx) (x, X)e lim (Ts / tx, T + tx) ds (Tx, Tx) ds

(:2.7) lim (Tx, T) d (Tx, Tx) d

It follows from the relation

(Tx, Tx) as.

(2.8) (Ax, X)e -3
t- (X, AX)e lim [(Ttx, TtX)e (X, X)e

t,o

that (Ax, X)e + (X, Ax)e --(x, x). Hence (2.2) is proved.
Sufficiency. By hypothesis, (x, Y)e (X, Py) defines an inner product in H

satisfying (2.1). From (2.2), (2.1),

2 Re (Ax, X)e --Ix] 2 < 7- llxl2, x D(A),

which shows that the operator A1 A + 7-11 is dissipative in He. Since A is
the infinitesimal generator of a strongly continuous semigroup in H, there exists
a real constant co such that any number 2 with Re 2 > co is in the resolvent set
of A. In particular, R(M A1) H if > co + 7. This fact together with the
dissipative property of A imply that R(I- A1) H (cf. 8]). Hence, A is the
infinitesimal generator of a contraction semigroup {&; _>_ 0} on H (cf. 3]).
Let T--e-’/vS,. Then {T;t => 0} is a strongly continuous semigroup with
infinitesimal generator A in H and satisfies

Ttxle <= e-t/Vlxle.
It follows from (2.1) that

[Txl <= (7/6)e-’/lx[, x e H.

The equivalence relation between [. [e and [. ensures that A is the infinitesimal
generator of {Tt;t _>_ 0} in H. This proves the sufficiency.

To show (2.3) we observe from (2.2) that

((A*P + PA + I)x,x)= O, x H.



374 c.v. PAO

It is easily shown by using the above equation and the symmetric property
of B =_ A*P + PA + I that B 0. This completes the proof of the theorem.

COROLLARY. IfA is unbounded and is the infinitesimal generator ofa semigroup
{T;t => 0} of class Co in H such that [T[ Me -at, then there exists an inner
product (.,.)e in H such that

[x[2 __< (M2/2fl)Ix[ 2, x e H,

and

(2.9) 2 Re (Ax, X)e --Ix[ 2, x e D(A).

Proof Define (x, Y)e by (2.4). Then (2.5) holds and if (x, X)e 0, we have, by
the continuity of T,xl in t, T,xl 0 for all > 0. Letting $ 0 gives x 0. Thus
(’,")e defines an inner product on H. From (2.7), (2.8) we obtain (2.9).

Remark 2.1. By using a different approach, the second part of Theorem 2.1
for bounded operators has been shown by Wong [9], and the corollary to the
same theorem is essentially the same as the main theorem given by Datko [2].
However, our proof seems to be simpler than that given in [2].

THEOREM 2.2. Let A be a bounded operator which generates a strongly con-
tinuous semigroup {T;t >= 0} of class CO in n. Then IT, _-< Me -at, >= O, for some
positive constants M, fl if and only if there exists a symmetric positive definite
operator P on H such that

(2.10) (A*Px, x) + (PAx, x) <= #lxl 2 x H

for any given # with 0 < # < 1.

Proof The sufficiency follows from the proof of Theorem 2.1. To show the
necessity, we define

(2.11) (x, y)’ (Tx, Ty) dt + 6o(X, y),

where 6o > 0 is to be chosen. Since (2.5), (2.6) hold with 7 (M2/2fl) + 6o, there
exists a symmetric positive definite operator P on H with IP[ =< such that (x, y)’

(x, Py). By using the relations (2.7), (2.8) and (2.11) we obtain

2Re(Ax,x)’ -Ixl 2 + 260 Re(Ax,x) <_ -(1 2bolAl)lxl 2.

Therefore the condition (2.10) follows by taking
THEOREM 2.3. Let A be the infinitesimal generator of a strongly continuous

semigroup {T; > 0} of class Co in a Banach space X. Then ITI =< Me -a’, >_ O,
for some positive constants M, fl if and only if there exists an equivalent semi-inner
product [.,. ]e in X such that

< Mlxl(2.12) Ixl < IXle
and

(2.13) Re Ihx, Xe <= --/lXle,
Proof Necessity. Assume that IT, _-< Me -at. Let

and {S >= 0} is also a semigroup of class Co in X. Define

(2.14) Ix[ sup IS,xl, x e X.
t>0

xX,

x e D(A).

eat T. Then IS, M



SEMIGROUPS AND ASYMPTOTIC STABILITY 375

It is easily seen that I. ]e
t_>_0,

is a norm in X and satisfies (2.12). Moreover, for each

(2.15) IS, le sup [StXIe sup (sup ISt+,xl) =< sup (Ixl0 1.
Ixle-- Ixle- :_> o Ixle-

Thus by the equivalence relation (2.12), {S,; => 0} is a semigroup of class CO in

Xe and by (2.15) it is a contraction semigroup. Since

lim t-(Stx x)= lim t-{ea’(T,x x) + (eat- 1)x} Ax + fix,
tO tO

x D(A),

in X we see from (2.12) that the above limit holds in X and thus the infinitesimal
generator of {S, ;t _>_ 0} in X is (A + flI). Hence, for each x D(A),

Re [(A + flI)x, lim t- Re [S,x x, X]e lim
tO tO

<_ lim t-l(IS,xlelXle -Ixl2) _<_ 0,
t+o

1(Re IS,x, x]e Ix,

where we have used the fact that ]S,Xle IXle. Notice that for each fixed x X
the semi-inner product [y, X]e is continuous in y (cf. [7, p. 250]). The above in-
equality shows that (2.13) holds. Thus the necessity is proved.

Sufficiency. If (2.13) holds, then (A + flI) is dissipative in Xe. Since A is
an infinitesimal generator, D(A) is dense in Xe and R(I- (A + flI))= X for
> o9 + ft. Thus R(I-(A + flI))= X (cf. [8]). This shows that (A + ill)

generates a contraction semigroup {S,; >= O} in Xe. Let T, e-’S,. It is easily
seen that the infinitesimal generator of T,;t => 0} in X is A and satisfies

Txle _-< e-a’lxle
By the equivalence relation (2.12), {Tt; >= 0} is a semigroup in X such that
Ttx] <= Me-a’lxl for x e X. This completes the proof of the theorem.

Remark 2.2. The norm I. le defined in (2.14) was given in [10] and was used in
[4] for the investigation of contraction groups. Equation (2.4) was introduced in
[4].

3. Stability of nonlinear equations. By a solution of (1.1) we mean an X-valued
function u(t) with values in D(A) such that u(t) is Lipschitz continuous on R / and
the strong derivative du(t)/dt exists and satisfies (1.1) for almost all values of in R /.
The definitions of stability and asymptotic stability are in the sense of Lyapunov
(e.g. see [63). Let G be an open subset of X containing the zero vector and let
f(t, u) be a (nonlinear) mapping from R / G into X. Throughout this section we
always assume that for each Uo D(A) f) G there exists a local solution u(t) to
(1.1) with u(0) Uo which can be continued so long as it remains in D(A) fq G.

THZOREM 3.1. Let A be a (possibly unbounded) linear operator which is the

infinitesimal generator of a strongly continuous semigroup {T;t >= 0} of class

Co in X such that TI <= Me-t’ for some positive constants M, . Let[. [e be the
equivalent norm defined in (2.14). Assume thatf(t, O) O. Ifthere exists a continuous
real-valuedfunction k(t) on R + satisfying

(3.1) lim sup
1 f",- -i o

k(s) ds <
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and if
2(3.2) Re If(t, u), bile k(t)lUle U e G, e R +,

where [.,. ] is any semi-inner product consistent with the norm l. I, then the zero
solution of (1.1) is asymptotically stable.

Proof The existence of an equivalent semi-inner product [.,.] satisfying
(2.12) and (2.13) follows from Theorem 2.3. Let u(t) be a solution of (1.1) with
u(0) u0. Then from the relation llu(S)le lu(t)lel lu(s) u(t)le for s, tin R + we
see that lu(t)l is also Lipschitz continuous in R /, and thus it is almost everywhere
differentiable in (0, ). Let e (0, c) be a fixed point at which u(t) and lu(t)[ are
differentiable. Then for every s e (0, ),

(3.3) Re [u(s) u(t), u(t)] Re [u(s), u(t)] [u(t), u(t)] <= [N(t)[e([U(S)[ ]U(t)le).

By dividing (3.3) by s > 0 and letting s $ we have

d
(3.4) Re [u’(t), u(t)] <= ]u(t)[ -]u(t)[
Similarly if we divide (3.3) by s < 0 and let s ]" t, then

(3.5) Re [u’(t), u(t)] >= [u(t)[e-ff[u(t)[ e.
It follows from (3.4), (3.5) that

(3.6) lu(t)]eff-[u(t)[ Re [u’(t), u(t)]

for almost all (0, ). Substituting u’ Au + f(t, u) and using the relations
(2.13), (3.2) we obtain from (3.6) that

d
(3.7)

dt
[u(t)[e2 --< 2(fl k(t))lu(t)12e

After transforming the right term to the left, multiply by exp (2 (fl- k(s))ds)
and following by integration from 0 to t, we obtain

exp 2 (/- k(s))ds lu(t)le2 --lU(0)[e2 --<__ 0.

This inequality together with (2.12) imply that

lu(t)l < lU(t)le _--< exp (/ k(s))ds lUo]
(3.8)

__< M exp (//- k(s))ds luol.

The above inequalities hold for as long as ]u(t)l remains in G. By the assumption
(3.1),

o lim sup fl, -i ( k(s))cs > O.
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Thus for some finite value T,

(3.9) (- k(s)) ds >= -t fort >= T.

Therefore, if luol is sufficiently small, then by (3.8) and (3.9), lu(t)l can be made arbi-
trarily small for all >= 0 and thus remains in G. This shows that u(t) can be con-
tinued to R / and the zero solution is stable. Since (3.8) and (3.9) also imply that
lu(t)l 0 as t- oe, the zero solution is asymptotically stable. This proves the
theorem.

Remark 3.1. If If(t, u)l o(lul) uniformly in as lul--* 0, then there exists
6 > 0 such that If(t, u)] =< (2M)- /lul for lul =< . Since

2Re If(t, u), U]e <= If(t, U)lelUle <= MIf(t, u)l [Ule <--_ (H/2)lUle

if we take k(t) =/3/2, then f satisfies all the conditions in Theorem 3.1, where the
subset G may be replaced by G f’l {u; lul < 6}. It should be noted that the function
k(t) in Theorem 3.1 is not necessarily nonnegative. In particular if lim sup k(t) <_ 0
as o, then (3.1) holds.

Example. As an application of Theorem 3.1 as well as a demonstration to the
formulation of an infinitesimal generator from a partial differential operator, we
consider the initial boundary value problem (1.2)-(1.4). Let f be the closure of fl
and let Ck(f) (respectively, Ck(fi)) be the set of all k-times continuously (respectively,
uniformly continuously) differentiable functions in f. Let G be an open subset of
Lz(fl) containing the zero vector. We assume that"

(i) aij(x) C1(), c(x) C() and there exists a constant Co > 0 such that

i,j=l i=1

where (1,..., ,)e C".
(ii) f(t, x, u) is defined for e R +, x fL u G and with values in L2(f) for

each t. Moreover there exists a continuous real function k(t) on R + such
that

(3.11) Re f(t x, u(x))u(x) dx <= k(t) [U(X)I 2 dx R + u e G

In order to formulate (1.2)-(1.4) into an abstract Cauchy problem (1.1), we
set V {u C2(); u 0 on f2} and let F be the closure of V in H2(ff2) (see
[11, p. 573 for the definition of H2()). Define two operators A, fwith D(A)
andD(f)=R + G by

(Au)(x) (Lu)(x), u D(A),

(f(t, u))(x) f(t, x, u(x)), R + u G

Then by (i), (ii), A is a densely defined linear operator with domain and range
both in L2(f) andf is a mapping on R + x G into L2(). With this definition, the
system (1.2)-(1.4) is formulated as an abstract equation (1.1) in L2(f) with the
initial condition u(0) 0. To show that A is an infinitesimal generator, we perform
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integration by parts for (Lu, U)o and use (3.10) to obtain

Re (Lu, u)o Re (Lu)(x) a(x) ax <= Co
i=1

]Uxi’2 C(X)’tl]2

for u V. Using the inequality

f ]blxi ’2 dx>=7 fn [tl[2 dx,
i=1

where 7 > 0 depends only on f, we see that

(3.12) Re (Lu, u)o <- -(7co min c(x))lulg,

Let

(3.13) fl yCo min c(x)x

dx

uV,

uV.

and assume, for convenience, that fl => 0 (this assumption can be removed). Then
by the definition of , for each u D(A) there is a sequence {u,} in V such that
u, u in H2(). Thus u, u in L2() and by (i), Lu, Au in L2(). It follows
from (3.12) that for each u D(A),

Re (Au, U)o lim Re (Lu,, u,)o <= lim /lu.l)(3.14)

It is known that if the assumption (i) holds and if c3 is sufficiently smooth, then
there exists a real constant 2o such that R(21 A) L2() for all 2 >__ 2o (cf. [11,
p. 75). This condition and (3.14) imply that R(I- A)= L2(). Therefore, A
generates a contraction semigroup {T; __> 0} of class Co in L2() with
(cf. [7, p. 250]). As an application of Theorem 3.1 we obtain the following results"
Under the conditions (i), (ii) and some smoothness condition on fl, the zero
solution of the initial boundary value problem (1.2)-(1.4) is asymptotically stable
provided that f(t, x, 0) 0 and the function k(t) in (ii) satisfies (3.1) with fl given
by (3.13). In particular, if f(t, x, u) 0, then for each ff V there exists a unique
solution to the linear system (1.2)-(1.4) in L2, and if, in addition, fl > 0, then the
zero solution of the linear system is exponentially asymptotically stable.
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SUMS OF CONVOLUTION OPERATORS*

STAN K. KRANZLER?

Abstract. Let fl be an open set in R. and let g(fl) denote the space of infinitely differentiable
functions on . Necessary and sufficient conditions are exhibited for a family {)i}/u= of open sets in

R. and a family {Si}= g’(R.) in order that the convolution equation

Si*u f
i=1

have a solution (u, u2, uN) in ( iN__ (’i) for every f in (D).
A simple example and a geometrical interpretation of the condition on the family {)isi= is

provided.

1. Introduction. Consider the convolution equation

(1.1) S * u f,

where S d’(R,) and f is a distribution. Ehrenpreis [5] has obtained necessary
and sufficient conditions on the distribution S in order that (1.1) have a solution
u in @’(R,) (respectively ’v(R,),((R,)) for every f in @’(R,) (respectively
(R,), g(R,)). H6rmander [73 has extended this result by giving necessary and
sufficient conditions on a pair (fl, f2) of open sets in R, and on S d’(R,) for the
existence of a solution u in ’(f2) (respectively (f2), o(f2)) for every f in
(respectively ;-(fl), g(fa)).

The question naturally arises: What can one say about convolution equations
of the following form:

N

(1.2) Z S, * u, f,
i=1

where {Si}/u= is a finite set in o’(R,) and f is a distribution? We shall exhibit
necessary and sufficient conditions on the family {Si}=a and open sets
in R, in order that (1.2) have a solution (u, u2, "", u,) in (=1 g(fi) for all f
in g(fo).

Before proceeding to the main work we first introduce the following notation
and definitions. For each compact set K in the open set f c R, and each multi-
index 0 (01, 2,"’, 0N) where the 0 are nonnegative integers we denote by
(K) the set of all functions in C(f) whose supports lie completely within K
and are provided with the topology determined by the semi-norms

(1.3) IIqll sup IDotq)(x)[,
lot] <_ xeK

where c runs through Z". We denote by () the space of all functions in C(f)
with compact support in f and equip @(f) with the strict inductive limit topology.
g(f) is the space C(f) provided with the topology determined by all semi-norms
of the form (1.3), where K runs through all compact sets in 2 and e runs through
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Z". The spaces @’() and g’(fl) are the respective topological duals of () and
g(). ’(fl) is called the space of distributions on D, and )(D) are the distribu-
tions of finite order (see Schwartz [11]). Also note that g’(D) is the space of all
distributions with compact support (see Schwartz [11]).

The convolution of two distributions S and o is always defined provided at
least one ofthem has compact support (for the definition ofsupport ofa distribution
see Schwartz [11]). Here we shall define convolution only where p is in @()
and S is in g’().

(1.4) s 0(x) (s,

where 0(Y) q(-Y). The trivial part of Lions’ theorem [8] (Titchmarsh’s theorem
[12] in one dimension) shows that

supp S * qo c supp S + supp

and thus if (11, ’-2) are a pair of open sets in R, and

(1.6) ’-’1 + supp S c 2,

then clearly supp S * q c -’2 for all distributions p with support in g,1.
Finally for all S in g’(R,,) we denote by ; the Fourier transform of S which is

defined by

(1.7) ({) (S, e- 2rti(’,{)).

2. Solution of the problem. We begin first by giving the basic definitions
introduced by H6rmander and stating his result [7].

DEFINITION 2.1. Let S e g’(R,). The pair (2, 22) of open sets in R, is called
S-convex if

(2.1) "1 + supp S

and given any compact set K2 c )2 there exists a compact set K c f such that
q (fl) and supp S * q0 c K2 imply that supp qo c K.

DEFINITION 2.2. The distribution S e g’(R,) is said to be invertible if there
exist constants A1, A2 and A 3 such that for every { e R, one can find r/e R, such
that

(2.2)

1 11 =< Alog(2 + I{l) and

I(q) (A2 + Il) -A3.

Finally if we let T be the mapping from (1) into (’2) defined by

T(9 S * (49, (49 ("1),

and T* the dual mapping from t(’)2) and ’(’1), we may state H6rmander’s
result.

THEOREM 2.1. The following conditions are equivalent:
(a) T*g(f:) g(f);
(b) T*)(f2)=
(c) T*’(f2) =
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(d) T-1 is a sequentially continuous operator from ("2) to (1);
(e) S is invertible and (fl, f2) is an S-convex pair.

S N g’(g.) and {Oi}=o a finiteSuppose we now have a finite family { i}i=
family of open sets on R. satisfying

(2.3) fo + supp S i, 1 <= <= N.
Define the mapping T from (fo) into 1--I= @(f3 by the relations

(2.4) pro T(o) S * qg T(qg), 1 _<_

_
N,

where pr denotes the ith projection in the product space YI= @(fl). We equip

1-I= (fi) with the product topology and since each T is a continuous mapping
from (fo) into (f) it follows that T is continuous. Clearly T is linear and thus
there is a natural mapping T* from @= @’(f) into (fo) defined by

N

(2.5) ( T*(u u2
i=1

for all 99 in (fo).
We now generalize Definitions 2.1 and 2.2 in the following way.
DEFINITION 2.3. The family {$1,$2,"’, SN} N’(R,) is called invertible if

there exist constants A A 2 and A3 such that for every R, there exists t/e R,
such that

(2.6)

I r/I =< A1 log (2 + Il) and

N

I,()1 > (A2 + Il) -A3.
i=1

DEFINITION 2.4. Let {$1, S2 SN} C g’(R,). We say that (fo, ")1, "N)
is an {Si}N-convex (N + 1)-tuple if and only if

(2.7) flo + supp S ’-’i, 1 < <__ N,

and given any compact set K fi, 1 =< N, there exists compact Ko f2o
such that 99 g’(fo)and 1-[/= supp S, * 99 1-[7= K, imply that supp 99 Ko.

We wish to prove the following theorem.
THEOREM 2.2. The following are equivalent"
(a) T*[@)= e(n3]
(b) T*[@)7= .(n,)] =
(c) T*[@)7= ’(n33 =
(d) T-1. I-I= (fi) (o) is sequentially continuous;
(e) the family {$1,$2,’.., SN} is invertible and (flo,fll,..., fiN) is an

{S}N-convex (N + 1)-tuple.
Clearly (a) - (b) - (c). We shall first show that (c) (d).
LEMMA 2.1. If T*[O7= .@’(’-i)] ("o), then r -1 is a sequentially con-

tinuous mapping from Image T I-I= () into (o).
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(2.8)

Proof. For each 1 __< __< N, let Ki c ni be a compact set. Define

@ (P e (fo)" 1-I supp S * q) K
i=1

and consider the mapping

(2.9) (f q)) fR fq) dx

from g(f2o) x (I) into C. The topology defined by the family of semi-norms

N

Zqll []Si * qllM
i=1

makes into a metrizable space. Since g(no) is a Fr6chet space and (2.9) is a
bilinear form, to show continuity of (2.9) it suffices to show that it is separately
continuous. Continuity for fixed q9 is trivial. Fix f e g(no). By hypothesis there
exists (ul, u2, uN) in ()= ’(fg) such that T*(Ul, u2, uN) f. Then we
have

(2.10)

fR T*(ua, U2, UN)q9 dx

Tuiq) dx
i’-

N

<= 2 I(u,, s,,
i=1

and hence it is clear (2.9) is continuous for fixed f e o(no).
The remainder of the proof involves only functions on no and thus is the

same as in H6rmander’s paper [7].
We now wish to show that (d) implies (e).
LEMMA 2.2. If T- is sequentially continuous, then
(i) (no, f,, .", n)is an {Si}7= 1-convex (N + 1)-tuple and

(ii) given any compact set Ko no there exist constants C and M such that

(2.11) [[qg{[o CIIT(D M

for all q) (R,) with supp q) Ko.
Proof. The proof involves only minor changes of the proof in H6rmander’s

Theorem 3.2 [7], and thus will be omitted.
LEMMA 2.3. If T- is a sequentially continuous mapping from its image in

1-lui= (f,) onto !(no), then the family {S, $2,..., Su} is invertible.
Proof. We may assume that 0 e no. Let Ko be a compact set in fo such that

0 is in the interior of Ko. From Lemma 2.2 we see that there exist constants C
and M such that

(2.12) I111o < CIIZqll
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for all q0e(f2o) with supprp c Ko. Let Je(Ko) such that >= 0 and

R, 0 dx 1. Define

0g(X)= * k"tp,(kx) fork=l,2,...,
i=1

where Ji qJ for 1 <__ __< k. Then supp Og
a > 0 such that

c Ko and there exists a constant

10g(x)[ _-< e -ag for 11 _>_ k.

Choose constants A > (# + M)/a and A 3 > M where # Z/N_1 order Si.

Suppose that for no A2 do we have (2.6) valid. It is clear that for any bounded
sequence {j} R, one can find an A2 making (2.6) valid. Thus there exists a
sequence {j} R, such that j oe and

for all

IH 1 A log (2 + IjI).
Let k the integral part of A log (2 + IjI) and

q)j-- e2ri(j,X)Okj.
Then ()= kj( j) and (e (Ko). As in H6rmander’s Theorem 3.3
qo[I o tends with j to

It remains to show that Tq0llM converges to 0. Since

it suffices to show that
each 1 __< _<_ N,

N

Tqll IIs* ,
i=1

* rpj It converges to 0 for each 1 =< __< N. But for

IS,(r/)l- IjI -A3

for Ir/- .il A1 log(2 + Ii[). Thus by exactly the same argument as in
H6rmander’s Theorem 3.3, we have the required result.

We now turn to the important implication (e) (a).
LEPTA 2.4. Let <p (0), {S, $2, "’, Su} g’(Rn) such that not all S O.

Then for every r > 0 we have

(2.13)

Ib()l =< 2 1 sup Ii(z)l sup
i= [-zl <4r [-z[<4r

+ sup ISi(z)l
I-1 <r i=

for all C,.
Proof. By utilizing Harnack’s inequality one can obtain
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for all e C. and 1 =< __< N. Thus we have

Ib()l sup [$,(z _<_ 2u
i= I-zl <r

for all e C,. However, since

N

sup Ii(z)l >_-
i= I-zl <r

we have the result.

sup [@i(z)l sup
i= I-z[ <4r I-z[ <4r

N

sup [i(z)[ > 0
I-zl <r i=

LEMMA 2.5. If the family {$1, $2, "-, SN} is invertible and (fo, 1,
is an {Si}U-convex (U + 1)-tuple, then T* is a surjection from @=x g(fi)onto (o).

Proof. The method of proof is due essentially to Malgrange [9]. Let
E @= g(Oi) and F g(Oo). Since both E and F are reflexive Fr6chet spaces
we see that T* is a surjection if and only if T is one-to-one and T(F’) is a(E’, E)-
closed in E’. (See Bourbaki [1].)

Clearly T is one-to-one. It remains to show that Tg’(flo) is weakly closed in

=1 g’(i). A standard theorem in topological vector spaces (see Bourbaki [1])
states that a linear subspace, V, of the dual of a Fr6chet space, E, is closed ifand only
if V U is a(E’, E)-closed for all neighborhoods U of 0 in E.

Let U be an open neighborhood of 0 in E @= g(i). Then U is a(E’, E)-
compact. Since U is a neighborhood of 0, there exist fixed constants M and C
and fixed compact sets K , 1 N N N, such that

{(@i’’’’’@N)’C 11M supp[Di(x)ll’liN}’U"
Thus we have

N N

(2.14) 1,(31 C supp
i= i= I1 M xeKi

for all (1,’", )in @= g() and (1,"’, )in U.
We now easily see that if (1, "’", 0)e U, then

N N

H supp Oi H
i=1 i=1

Choose compact Ko c flo such that e ’(o) and
N N

suppSi*o K
i= i=

imply that supp c Ko.
Let {(,, O})}v be a net in U T[g’(o)] which converges weakly

to (1, 2,’", ) in E’. Clearly (1,2,"’, On)e U, and thus
N N

 upp E
i=1 i=1

Since each ()is semi-Montel (see Horvath [9]), so is @= (i), and
thus fil al on every equicontinuous set L of= g’(3. Hence {(,, ...,
})} (E’, E)-converges to (O, :, )in E’.
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Let toy g’(flo) such that g, S toy for =< =< N. Then supp q c Ko.
0v)} c UwehaveSince {(0 02,
N N

i=1 i=1

(2.15) _<_ C sup IDe-z’i<’’z>

C(1 + ]z])t e2blIml,

where C, M and b are independent of v. If A is a compact set in C,, we have

sl {e-<’>" z e A}
is a bounded set in g(fi) and thus --, Oi uniformly on d for 1 __< __< N. Hence
we have

@i(z) (0,

converges to

i(z) (Oi, e-2’i<x’>>

uniformly on compact sets of C,, and consequently

(z) (z)l (z)

converges uniformly on compact subsets of C, to an entire function b(z). From
Lemma 2.4 we obtain

N

I&(OI sup I.(z)l sup
i=ll-zl<4r

for r A log (2 + I{I). Thus we have

(2.16) Iq3,(z)[ _<_ C(1 + [z[) ez=gl’mzl

where the constants C, B and R are independent of v, and thus (2.16) holds for
Ib(z)l. Hence b -, b in 5’ and thus to to in 5’. Now we have

Si * to =limSi*to,=limO=Oi

for 1 =< <_ N, and therefore supp tO c Ko and (, lit2,’’" I[JN)ft. U0 (’ T(F’).
We now attempt to provide a geometrical interpretation of the notion of

{S}N-convexity.
THEOREM 2.3. If (fo,fl,-.., fN) is an {Si}-convex (N + 1)-tuple, then

given any qo e g’(fo) we have

(2.17) d(supp tO, R.\fo) min d(supp Si * tO, R,,\fi).
<_i<N

Here d(A, B) denotes the distance from A to B for sets in R,.
Proof. Since o + supp Si )i we have

d(supp tO, R,\fo) c d(supp S * tO, R,\)
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forl <i<Nandthus

d(supp qg, R,\fo) =< min d(supp Sg * qg,
l<i<N

Let qgC(fo) and S d(suppSi*qg, Rn\fo). Thus qga(x)= qg(x- a)
Cff(fo) for all a such that ]al < S, but supp qa is not contained in any fixed

compact subset of fo for all lal < S. Suppose there exist compact sets K, ..-, K
in fl, ..-, flu respectively such that supp S * , K for all and lal < S. Then
by hypothesis there exists a compact set Ko o containing all supp @a such that
lal < S (contradiction). Let {a,} be a sequence of vectors in R, such that [a,I < S
and supp ,. is not contained in any compact set of flo for all n. Since there are
only a finite number of S’s, there exist 1 o N and a subsequence of {a,},
again call in {a,}, such that So, ,. is not contained in any compact set of o"
But Sio * an Sio * (x an). Thus

d(supp Sio * , R,io d(supp , R,o).

It is interesting to note that Theorem 2.2 may be used to prove a result that
has no analogue in the case of H6rmander’s theorem.

THEOREM 2.4. Let , 2, "’", be a finite family of open sets in R, having
nonempty intersection o. lff is in (o), then there exists f in g(i) for 1 N
such that

N

(2.18) f= Ono.
i=1

Proof. Let Si 6 for 1 i N. Then (o,, "", ) is clearly an
{S}= -convex (N + 1)-tuple. Also every S is invertible and hence so is the family
{S}= . From the previous theorem we obtain

T*[ (,)J (o).

That is, given f in (o) there exist in () for 1 N such that
N

f= T*(f, fn) ,lno
i=1

i= i= o
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SPHERICAL MEANS OF CONJUGATE FOURIER INTEGRALS
IN E2 AT THE CRITICAL INDEX*

G. E. LIPPMAN’

Abstract. In this paper the following result is obtained: Let f be a function in LI(E2) and let
K(r, O) r-2 2 (ak COS kO + b sin kO) be a Calderdn-Zygmund kernel satisfying
Assuming thatf satisfies a restricted Dini-type condition, at (x0, Y0), the difference between the spherical
Bochner-Riesz means of order 1/2 of the conjugate Fourier transform of f and the principal-valued
Hilbert transform of f converges to 0. The proof depends upon facts concerning the Bessel functions
of the first kind and on the one-dimensional Riemann-Lebesgue theorem for Fourier integrals.

1. Introduction. Let T be the k-dimensional torus and E be k-dimensional
Euclidean space, k __> 2, let f be a function integrable on T and periodic in each
coordinate of Ek, and x be a point in Tk. In 1936 Bochner [1 proved that the
limit behavior at x of the Bochner-Riesz partial sums of order of the Fourier
series of f depends only on the values of f in any neighborhood (no matter how
small) of x, as long as e remains greater than (k 1)/2. In the same paper Bochner
proved that an analogous result holds for Bochner-Riesz means of order e,
for e greater than or equal to (k 1)/2, ofFourier transforms offunctions integrable
on Ek, and that localization fails in the Fourier integral case for an index of
summability less than the critical index (k- 1)/2. In the same paper Bochner
also gave an ingenious proofofthe existence ofa function fperiodic in Ek, integrable
on the torus, identically zero in an open ball centered at the origin, with the
property that the Bochner-Riesz sums of order (k- 1)/2 of its Fourier series
diverge at x 0, thus proving the failure of localization at the critical index of
summability for Bochner-Riesz sums of Fourier series.

In 1954 Calder6n and Zygmund [2], using their singular integral theory,
defined the notion of conjugate multiple Fourier series. In 1961 Shapiro [8] proved
localization theorems for Bochner-Riesz summability, of order greater than the
critical index, for conjugate Fourier-Stieltjes series under very general conditions
on the conjugate kernel. The following theorem in E2 is a localization theorem
at the critical index for Fourier integrals conjugate with respect to series of
spherical harmonic Calder6n-Zygmund kernels, and is similar to Theorem 1
[6, p. 43]. The function f is subjected to a "Dini-type" condition. The proof
depends on fundamental lemmas involving Bessel functions, many of which are
proved in [6, Chap. II].

2. Statement of Theorem.
THEOREM. Let f be a function integrable on E2, and let

() I((r, o) r-
be a Calder6n-Zygmund kernel, where

(2) f(0) (a cos kO + b sin kO)
k=l
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satisfying

(3) k4([ak[ + [bk[)< +.
k=l

Assume that f satisfies the following restricted Dini-type condition at (xo Yo)"

(4) (dUO f(xo + cos 0, Yo + sin 0) f(xo, Yo)l dO < +
0

for some r > O.
Then

R--* (0
()

(P)f(P) exp {i(P, Xo)} (1 IPI2/R2) 1/2 dP
,R).

(2)- 2 rE2- B(0,1/R)
f(Xo -X)K(X)dX}=O.

In the above theorem P (p, q), X (x, y) and Xo (xo, Yo) are points in
E2. Notice that condition (4) implies the weaker hypothesis

(6) (dr f(xo + cos 0, Yo + sin 0)(0)dO <

since fl(0) is a trigonometric series which is uniformly absolutely convergent
for 0 < 0 < 2. In the proof of the theorem we shall use this hypothesis rather
than (4) whenever possible.

3. Examples. In this section we cite some examples of spherical harmonic
kernels satisfying (2) and (3).

The kernel K(x, y) x(x2 + y2)-3/2 arises in the study of Newtonian poten-
tial in E3 (see, for example, [2]).

The wave kernel K(x, y) (x2 y2)/(x2 -+- y2)2 is used in the study of sets
of uniqueness for the vibrating string problem in I7] and is the real part of the
kernel K(x + iy)= (x + iy) -2 (see [3).

4. Lemmas. In order to facilitate the proof, we shall prove several lemmas
concerned with Bessel functions of the first kind"

(7) J,(t) (- 1)J(t/2)"+2j/j!r(n + j + 1),
j=0

where and n are real. From the well-known fact that

it follows that

tJ,(t)--- 2(n- 1)J,_l(t tJ,_z(t

n-1

(8) tJ,(t) 2 cjJj(t) + c’ltJl(t + C’otJo(t),
j=l

where

(9) Icjl j or 0, Ic] or 0, and I#1[ 1 or 0

(see [8, pp. 47-48, Lemma 3]).
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LEMMA 1.

s2/t2)l/2SJl(s)ds F(t) sin t,

where IF(t) B’I O(t-1/2) as , B’ being a constant.

Proof. Integrating by parts, and using the formula Jl(s)ds -Jo(s), we
find that the above integral is equal to

(1 s2/t2)l/2Jo(s)ds- (1 s2/t2)-l/2(s/t)2Jo(s)ds Ii(t)- I2(t).

Define P(t) fto Jo(s) ds Jo(s) ds + Jo(s) ds. The first integral is finite and
the second one is equal to

S(Jo(s)/s)ds J,(t)- J(1)+ (Jl(S)/s)ds

which is dominated by

[Jl(t)[ + [Jl(1)[ + const. S -3/2 ds.

Therefore, P() limo P(t)exists, and we notice that P() P(t) O(t-1/).
We consider I(t) which equals

(1 s2/t2)l/2Jo(s)ds (1 s2/t2)-’/2p(s)(s/t2)ds.

Furthermore,

hence,

$2/t2) 1/2(S/t2) ds

Ii(t)- P()= (1 s2/t2)-l/2{p(s)- P()}(s/t2)ds.

Next, let us consider

1/2 (1 s2/t2)-’/2{p(s)- P()}(s/t2)ds

which is less than or equal to

const. (1 $2//2) 1/2(s1/2/f3/2)ds,

where the constant is independent of t. Let u sit. This last integral is then equal
to

(1 U2) 1/2ul/2 du <= (1 U2) 1/2 du Tel2.
o
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Therefore Ii(t P() O(t- 1/2). Since

I2(t) (1 s2/t2)-l/2(s/t)2Jo(s)ds

and

(s/t)2 (s/t)- (1 s/t)(s/t),

we see that

I2(t) (1 s2/t2)-l/2(s/t)Jo(s)ds- (1 sit)l/2(1 + s/t)-l/2(s/t)Jo(s)ds

I3(t 14(0.
By Sonine’s first integral and the fact that J1/2(t)= (2/t) 1/2 sin t, we have I3(t)

sint.
Using the fact that SJo(s)ds sJl(s), and integrating I4(t) by parts, we

obtain

14(0 (1/2t2) (1 sit)l/2(1 + s/t)-3/2SJl(s)ds

+(1/2t2) (1 s2/t2) 1/2SJl(s)ds,

and this sum is dominated by a constant multiple of

-/2 {(1 u)/2 + (1 u)-/2}u/ du.

Since the integral is finite, we have lib(t)[ O(t-1/2).
Hence, if we define F(t) Ii(t) + I(t), B’ P(), the conclusion of Lemma

1 holds.
LEMMA 2. If rt is a positive integer and > O, then

(10) (1 r2/t2)l/2rj,(r)dr I,(t) + I’,(t) + I(t),

where

(11)

(12)

I’,(t) -C’l(n)A’ sin t,

I’(t) C’o(n)tl/ZJ3/z(t),

and there exist constants B, and C,, depending only on n, such that

(13)

where

(14)

The constant C’o(n is such that

In(t) Bnl < Cn/x/,

C, O(nS).

Ice(n)[ 0 or
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and

Ic’(n)l 0 or 1.

(1 rZ/tZ)X/zJ.(r)dr 2 1 cj (1 rZ/tZ)a/zJj(r) dr
j=l

+c (1 r/ta)/rJ(r)dr

+ c; (1 ra/ta)/rJo(r) dr,

where lcjI 0 or j, and IC’ll and Ic or 0. By Sonine’s first integral [10, p. 373],

i(1 r2/t2)X/2rJo(r)dt x/F(3/2)tx/2J3/2(t).

Therefore, define I(t) c (1 r2/t2)/2rJo(r)dr. In Lemma we have shown
the existence of absolute constants B’ and C’ such that

r2/t2)/2rj (r) dr F(t) sin

" sin and thuswhere IF(t) B’] =< C’t-/2 for > o > 0. We define I’.(t) -c

I,(t) 2 c (1 r/t)x/J(r)dr + c’f(t).
j=l

At this point we recall Lemma 4 from [8, p. 48. Let 0 < e __< and j be a
nonnegative integer. Then there exists a constant b such that

q- 1)3t -/2,r2/t2)ajj(r) dr bj 30C(j

cab; we havewhere b depends only on j and C only on e. Defining B, 2

c (1 r/t;)x/aJ(r)dr- b

j=l

n-1

2 2 Icjl {30C/2(j + 1)3t-’/2}
j=l

n-1

<= 6OCt/at -1/ (J + 1)
j=l

G const, t- 1/2n5"
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Thus

[I,(t) B c’B’[ <= const, t-1/2n5 + c’lF(t) B’I
_< const, t- 1/2n5 + C’t- 1/2.

By defining B, B’, B’ we have

II,(t) B,I < const. (n + 1)t- 1/2

This proves Lemma 2.
LEMMA 3.

(15) cos nO exp { -it cos (0 cz)} dO cos ncz {2(- i)"rcJ,(t)},

(16) sin nO exp -it cos (0 z)} dO sin ncz {2re(-i)"J,(t)}

for > O.
Proof of (15). (Equation (16) is proved similarly.)

cos nO exp -it cos (0 z)} dO

cos n(O + z) exp -it cos 0} dO

cos ne cos nO exp { it cos 0} dO + sin ne odd function

cos n{2( i)"J,(t)c},

using the series expansion of exp {- it cos 0} in terms of Bessel functions and the
orthogonality of the trigonometric functions.

5. Proof of Theorem. We assume without loss of generality that Xo is the
origin and f(Xo) 0. Thus we need only show

lim {f. R(P)f(P)(1-IPI2/R2)I/2dp
R- (O,R)

(17)

(2=)- 2 f o,1/R, f(-X)K(X)dX}=O.
Define

(18) IR f R(P)f(P)(1 -IPI2/R2)1/2 dP.
(0 ,R)

By the definition of f and by Fubini’s theorem,

(19) IR (2rc)-e fE f(X)dX fB /(P)(1 -IPle/Re) lie exp {-i(P, X)} dP.
(0 ,R)
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Expanding/ by the formula given in [5, p. 141, we obtain

IR (27)- 3 f(g) dg r(1 r2/R2) 1/2 dr

(20)

(-i)nn l(a cos nO + bn sin nO) exp -irlXI cos (0 )} dO,

where is the polar angle of X. By Lemma 3,

(21) IR 1/(2rt)2 f(X)dX A(n, o) r(1 r2/RZ)l/2Jn(rlXl)dr,

where

(22) A(n, 0) (- 1)"(a cos n + b sin noO/n.

Since IJnl 1 for every n 1,2,..., EnV__l A(n, )Jn(rlXI) is by hypothesis (3)
uniformly absolutely convergent for all values of , r and X. By a change of
variables in the inner integral of (21),

(23)

Ig 1/(2)2 (f(X)/IX 2) A(n, ) r(1 r2/R2lXl2)/2j.(r)dr
n=l 0

1/(2)2 + (f(x)/IXl 2) A(n, z)
B(O, 1/R) (0,1/R)

r(1 r2/R21XI2)l/2jn(r)dr.

We first notice that

(24)

(f(X)/IXI 2) A(n, z) r(1 r2/R2lXl2)l/2Jn(r)dr
(0,1/R)

< Jo t-1 A(n, 0) (1 r2/R2t2)l/2rjn(r)dr
n=l

2

f(tcosO, tsinO) dOdt
o

Since (1 r2/R2t2)l/21Jn(r)l __< 1 for all r and such that 0 < r N Rt, the right-hand
side of (24) is dominated by

’/

Rt A(n, ) f(t cos 0, sin O)dO dr,
0 n=l

and since n%llA(n, 0)l is uniformly bounded and < l/R, then this last integral
is dominated by

(l/t) f(t cos 0, sin 0)dO dt,

which is o(1) as R --, c by hypothesis (4).
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We now consider the integral in (23) over E2 B(0, 1/R). By Lemma 2, the
inner integral in (23) is equal to

(25) c’(n) sin RIX + C’o(n)(RIX )x/2J3/z(RIX]) / I,(RIX])

for each positive integer n, where there exist constants B. and C, depending only
on N such that C, O(n5) and

(26) IIn(RlXl Bnl < C./w/RIX
for ISl 0, Putting (23) and (25) together we obtain

I -(2re) -2 f(X)lX1-2 A(n, )ci(n) sin RIXI dX
B(O, 1/R)

(27) +(272) -2 f(X)lX1-2 A(n,)C’o(n)(RlXl)l/2J3/2(RlXl)dX
B(O, 1/R)

+(2re) -2 f(x)lx1-2 A(n, oOI,(RlXl)dX + o(1)
B(O, 1/R)

as

We consider each of these three integrals separately.
The first integral in (27) can be written as the sum of two integrals, the integral

over E2 B(0, 6) and the integral over B(O, 6)- B(O, 1/R) for some 6 > 0 in-
dependent of R (6 will be specified later). Consider the integral

f(X)lXl- A(n, a)c (n) sin RIXI dX
B(O,)

(28)

Zta,)(r)r- sin Rr C (n)A(n, )f(r cos , r sin )d dr.
=1

Since the function

,(r)r- c’ ()A(, )f(r cos , r sin )d
=1

is intcgrablc over the real line, by the iemann-Lcbcsuc theorem for functions
intcgrablc on E, the integral on the lch side of (28) goes to 0 as R .

Given > 0, by hypothesis (4) wc can pick 5 > 0 so that the integral of the
absolute value of the interand over B(0, 5) is bounded by e. Thus the first integral
in (27) goes to 0 as R .

The second integral is equal to

f(X)X - c;(n)A(n,e)
(29) B(0,1/R)

{const. sin RIXI (RIXI)- const, cos RIXI dX,

where the constants are independent of n and R.
Following the same reasoning as we did for the first integral in (27) we see

that the term with cos RIXI as a factor approaches zero as R . For the other
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term we break the integral into two terms:

(0,6) B(O, 1/R) B(O,6)

where, as before, b > 0 is chosen by hypothesis (4) so that for e > 0 given,

(30) f(X)lXl C’o(n)A(n, ) dX < .
(0,6)

Since Isin RIXI I/(RIXI) =< 1, this implies that the integral over B(O, 6) B(O, 1/R)
of the integrand in the first term of (29) is bounded by e.

f(X)IX[-2 E C’o(n)A(n, )sin RIXI/(R[X[)dX
B(0,6)

goes to 0 as R --* ov by the one-dimensional Riemann-Lebesgue theorem, since
6 was chosen independent of R. Thus the second integral in (27) goes to 0 as

We have remaining the third integral in (27):

(31) f(X)lX1-2 E A(n, z)I,(RlXl)dX.
2-B(O,1/R)

Since the other integrals in (27) go to 0 as R - , in order to complete the proof
of the theorem we must show that, as R , the difference between the integral
(31) and

(32) f(- X)K(X)dX
2-B(O,1/R)

approaches 0.
Expanding the integrand in (31) we have (31) equal to

f(X)lX1-2 (1/n)(a, cosn + b, sinn)I,(RIX )dX
B(O, 1/R)

while (32) is equal to

f(- X)IX (a cos ne + b sin n) dX
B(O, 1/R)

f(x)lx1-2 (O COS na + b, sin n)(- 1)" dX

since cos n(a + r) (- 1)" cos na, for n 1, 2, .... We therefore need only to
show that, as R o ,
(33) f(X)X1-2 (a, cosna + b, sinn)(-1)"(I,(RlXl)/n- 1)dX 0.

B(O, 1/R)

Without loss of generality we shall assume that b, 0 for n 1, 2,-...
The effect of this will be to show that (33) holds for the cosine series only; a similar
argument will also work for the sine series, thus establishing (33). Therefore, we
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shall prove

(34) f-(o,x/R) f(x)lx1-2 (- 1)"a, cos n(I,(RlXl)/n 1)dX
n=l

goes to 0 as R .
The fact that will allow us to show that (34) goes to 0 is that for each positive

integer n the constant B, in (13) in Lemma 2 is actually equal to n. The proof of
this fact is as follows"

Assume that a, 0 for n > 1, n m, where m is a fixed positive integer.
We shall show that

(35) lim fR 2-B(O,1/R)

This implies that

f(X)lX1-2am cos mcZ(Im(RlXl)/m B,,/m) dX O.

f R(P)f(P)(1 -IPI2/R2)/2 dP
(0 ,R)

(36)

-(- 1)"Bm/((2c)2m) t f(-X)K(X)dX
B(O, l/R)

goes to 0 as R --, , where

(37) K(X) a,,lXl- 2 COS me,

e being the polar angle of X. However, for f e C(E2) and with (37) defining
K(X), for e > 0,

lim f R(P)f(P)(1 -IPIZ/R2)1/2 dP
R dB(O,R)

fe R(P)f(P)dP

(38) lim f /(P)f(P)(1 IPI2/R2)/2 + dP
R-oo /B(0,R)

(2TO- 2 f(_ X)K(X) dX
E

lim (2:)- 2 f f(- X)K(X) dX,
R d E2 -B(O,1/R)

since all of the above integrals and limits exist, and by virtue of Theorem 1 6,
p. 43].

Therefore Bm/m 1.
We now prove (35) in the following way.
By (13) and (14) in Lemma 2 the difference

Im(elXl) B.,
is dominated by m/(RIX])/2. Therefore there is a constant C, independent of
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m, R and XI, such that

(39) [I..(RIXI)/m- Bm/m Cm4/(RIX]) 1/2.

Inequality (39) implies that the integral in (35) is dominated by

(40) + R- 1/2t- 3/2m4 f(t cos z, sin ) cos mad dt,
/R

where 6 > 0 is independent of R. The integral over (6, ) goes to 0 as R
since it is O(R-1/2).

Let e > 0 and choose 6 > 0 so that the integral over [0, 6] in hypothesis (6)
is dominated by e. In the integral over (1/R, 6) in (40), 1//Rt _<_ 1, so this integral
is dominated by elamlm. This proves (35).

We now have the fact that B, n for every positive integer n, and we need
only show (34) holds in order to complete the theorem.

The integrand in (34) is dominated by a constant multiple of

Since by hypothesis (3),

we have

If(S)llX1-2 la.ln4(RIXI) -/2.
n=l

a.ln is finite,
n=l

(41)

lim rE2-B(O,1/R) f(X)lXI- 2 (_ 1)"a, cos n(I,(RlX])/n 1) dX
n=l

<= const, lim la,ln4R 1/2 t- 3/2 If(t cos 0, sin 0)l dO dt.
R R

Applying the same reasoning as used in proving (35) and using hypothesis (4) in
place of (6) we see that the right-hand side of (41) is equal to 0.

This completes the proof of the theorem.
In a forthcoming article [4 we shall present localization theorems in Ek,

k >= 2, for Bochner-Riesz means of order (k 1)/2 for Fourier series and integrals
conjugate with respect to the spherical harmonic kernels which, in E2, are special
cases of the conjugate kernels discussed here.
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BERGMAN OPERATORS FOR ELLIPTIC EQUATIONS IN FOUR
INDEPENDENT VARIABLES*

DAVID COLTON’

Abstract. Integral operators are obtained which map analytic functions of three complex variables
onto solutions of linear elliptic partial differential equations in four independent variables. An inversion
formula is given and used to construct a complete family of solutions for the elliptic equation under
investigation.

1. Introduction. The theory of integral operators for elliptic partial differential
equations was initiated by S. Bergman [1] and I. N. Vekua [20], both of whom
constructed operators which map analytic functions of a single complex variable
onto twice continuously differentiable (class C2) solutions of the elliptic equation

(1.1) A2u + a(x, y)u, + b(x, y)Uy + c(x, y)u O.

These operators were then used to construct complete families of solutions and
to investigate the analytic properties of solutions to (1.1). Recently, Colton [3],
[4], [5] was able to extend the results of Bergman and Vekua to the case of three
independent variables, that is, the equation

(1.2) A3u + a(x, y, z)u + b(x, y, z)uy + c(x, y, z)u + d(x, y, z)u O.

More specifically, integral operators were obtained in [3], [4] and [5] which map
analytic functions of two complex variables onto C2-solutions of (1.2), and were
then used for purposes of analytic continuation and to construct a complete
family of solutions to (1.2). This work was the culmination of the efforts of several
mathematicians, among them Bergman [1], Tjong [18], [19], Colton and Gilbert
[6] and Gilbert and Lo [14]. In this paper we indicate how the approach used to
treat equation (1.2) can be extended to treat elliptic equations in four independent
variables, that is, the equation

A4u + a(x X2, X3, X4.)Hx, -JI- b(xl X2, X3, X4)Hx2 -[- C(X1, X2, X3, X4)Ux3
(1.3)

q-d(x1, x2, x3, x4)Uxa q- f(x1, x2, x3, x4.)u O.

Our methods unfortunately do not appear applicable to elliptic equations in
more than four variables, and so at present it seems that the use of integral operators
in investigating the analytic theory of elliptic equations is restricted to equations
in two, three and four variables.

Until a few years ago integral operators for elliptic equations in four in-
dependent variables were available only for the harmonic equation and certain
classes of equations with spherically symmetric coefficients [11], [12], [13], [16].
Recently, however, Colton and Gilbert obtained an integral operator which
mapped analytic functions of three complex variables onto an unspecified sub-
space of solutions to (1.3) in the special case when a b c d 0 (see [6]).
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If in addition the coefficient f(x x2, x3, X4) was independent of xl, then Colton
and Gilbert were able to construct an operator which mapped ordered pairs of
analytic functions of three complex variables onto the space of ca-solutions of
(1.3). This last result was then used to investigate Cauchy’s problem for certain
classes of elliptic equations in four independent variables and hyperbolic equa-
tions in three space variables and one time variable [6], [7]. In the present paper
we overcome the problem of showing that our operator maps analytic functions
onto the whole space of real-valued ca-solutions of (1.3) by carefully choosing
new independent variables, reducing the question of invertibility to the problem
of showing that a Goursat problem for an ultrahyperbolic equation in the space
of four complex variables is well-posed, and then solving an integral equation
associated with this Goursat problem. We shall furthermore give an explicit
formula for constructing the analytic function associated with a given real-valued
Ca-solution of (1.3) by our integral operator. A special case of this last result is a
new inversion formula for the operator Re G4, where G, is Gilbert’s generalization
of the Bergman-Whittaker operator [11, pp. 75-82] and "Re" denotes "take the
real part." As an application of our main theorem we shall construct a complete
family of solutions for (1.3) in a bounded, simply connected domain in Euclidean
four-space R4.

For the sake of brevity we only consider the special case of (1.3) when a b
c--d- 0. The extension to the more general case can easily be made by

combining the results of this paper with the approach used in [4] for the case of
three independent variables. We furthermore assume that the coefficient
f(x, X2, X3, X4) is an entire function of x, x2, x3 and x4 (considered as complex
variables), although with slight modification our results remain valid when
f(x x2, x3 x4) is only assumed to be analytic inside some polydisc in the space of
four complex variables. It will also always be assumed that f(xl, Xz,X3, x4) is
real-valued for x, x2, x3 and x4 real. Since much of our analysis is based on the
ideas of [3], it might be helpful if the reader had access to this paper.

2. The operator P4. In this section we consider the partial differential equa-
tion

(2.1) A4u + f(x x2, xa, x4)u 0,

where f(x, x2, x3, X4) is a real-valued (for xl, x2, x3, x4 real) entire function of
its independent (complex) variables. Our first result is the following theorem
which is central to the analysis which follows.

THEOREM 2.1. Let r 21--(Xl -- iX2) r* 1/2(x, ixa), Z = 1/2(x + ix),
Z _1-(x3 ix,O, and let u(x, x2, x3, x4) be a real-valued Ca-solution of (2.1)
in a neighborhood of the origin. Then U(Y, Y*, Z, Z*) u(x x2, x, x4) is an
analytic function of Y, Y*, Z, Z* in some neighborhood of the origin in C, in the
space of four complex variables, and is uniquely determined by the function
u(, o, z, z*).

Remark. Note that Y Y*, Z -Z* if and only if x x2, x 3, x4 are real.
Proof of Theorem 2.1. The fact that U(Y, Y*, Z, Z*) is analytic follows from

the fact that C2-solutions of second order linear elliptic equations with analytic
coefficients are analytic functions of their independent variables (cf. [10, p. 164).
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Hence, locally we can write

Yly*mznz*P(2.2) U(Y, r*, Z Z*) Clmnp
l,m,n,p=O

(2.3) U(Y, O, Z, Z*) Z ClOnp YIZnZ*p’
l,n,p 0

Y*mznz*P.(2.4) U(0 Y*, Z Z*) Comnp
m,n,p 0

Since u(x x2, x3, X4) is real-valued, we have that for xl, x2, x3, x4 real,

(2.5) U(Y, Y*, Z, Z*) U(Y, Y*, Z, Z*),

where the bar denotes complex conjugation. This implies that for xx, x2, x 3, x4
real,

y,lym(__Z,)n(__Z)p(2.6) Z c,,,,,p Y’Y*mZ’Z*p 2 Clmnp
l,m,n,p 0 l,m,n,p 0

Or

(2.7) Clmnp (-- 1)n+PCrnlpn

Equations (2.3), (2.4) and (2.7) now show that U(0, Y*, Z, Z*) is uniquely deter-
mined from U(Y, O, Z, Z*). However in the Y, Y*, Z, Z* variables, (2.1) becomes
an equation of ultrahyperbolic type, viz.

(2.8) Urr, Uzz, + F(Y, Y*, Z, Z*)U O,

where

(2.9) F(Y, Y*, Z, Z*) f(x x2 X3, X4).

From Hormander’s generalized Cauchy-Kowalewski theorem [15, pp. 116-119],
[2], we have that U(Y, Y*, Z, Z*) is uniquely determined from the Goursat data
U(0, Y*, Z, Z*) and U(Y, O, Z, Z*), which we have already seen are determined
from U(Y, 0, Z, Z*) alone. The theorem is now proved.

We now begin to construct an integral operator which maps U(Y, O, Z, Z*)
onto U(Y, Y*, Z, Z*). We first introduce the following notation:

r/--y*,

2 r/-l -1Y* +
(2.0)

rt-Z* + Y,

-Z + Y,

(2.11) / 2 + 4 Y + -1z "-I’- /-lz* "nI’- -1-1 y,,

where if, r/are complex variables such that e < I1 < 1 + e, e < Irtl <
+e, 0 < e < 1/2. Noting that the Jacobian of the transformation (2.10) is equal
to -(r/)-2

_
0, one can prove the following theorem by straightforward differ-

entiation and integration by parts (cf. [6, Theorem 4.1]).
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THEOREM 2.2. Let D be a neighborhood of the origin in the t-plane, B {(’, r/)"
-e < [] < +e, -e < ]rll < 1 +e}, G a neighborhood of the origin in

(1, 2, 3, 4)-sPace and T {t’ It] =< 1}. Let f(#, , rl) be an analytic function of
three complex variables in the product domain D x B and E*( 2, 3, 4, , rl, t)
=_ E(Y, Y*, Z, Z*, , 1, t) be a regular solution of the partial differential equation

(2.12) 2tt(ET3 + ET4 + E3 E4 --[- riCE*E*) -- (1 t2)ETt jET 0

in G B T, where F*(I, 2, 3, 4, (, r/) _= F(Y, Y*, Z, Z*), and

c3E* 2E* 2E*
i,j=1,2,3,4.

Then,

u(f, r,, z, z,)

(2.13) 47c2 l=i .l=l

dt drl d
x//1--t2 q ’where 7 is a path in T joining -1 and + 1, is a (complex-valued) solution

of (2.1) which is regular in a neighborhood of the origin in (Y, Y*, Z, Z*)-space.
We must now show that the integral operator P4 exists;that is, we must

show the existence of a function E(Y, Y*, Z, Z*, , rl, t) satisfying the conditions of
Theorem 2.2.

THEOREM 2.3. Let D {(1, 2, 3, 4)" 1i1 < r, 1, 2, 3, 4}, where r is an
arbitrary positive number, and let B2 {(, r/)" 1 o] < 2e, It/ r/o < 2e}, 0 <
< 1/2, where o, qo are arbitrary with Iol Iol 1, Then, for each n, n 0, 1, 2,
there exists a unique function P")(I, 2, 3, 4, , q) which is regular in
(the bar denoting closure) aM which satisfies

(2.14) p],+ 1)

(2.15)

where

2n + {’’") + 2p1"4) + 2p]")3 9,,,) +k’l 3

p(n+ 1)(0 2, 3, 4, , r/) 0, n 0,1,2,...,

,!n)
63p(n) t!n. 2p(n)

i,j-- 1,2,3,4.

The .function

(2.16) E*(I, 2, 3,4,ff,r/, t) -- E t2n]2np(n)(l’ 2,3, 4,,
n=l

is a solution of (2.12) which is regular in the product domain GR B T, where R



BERGMAN OPERATORS 405

is an arbitrary positive number, and

G {(, 2, 3, 4)" Il < R, 1,2, 3, 4},
(2.17) B {(, rt)’l < ICI < / , < Ir/I < / }, 0 < < 1/2,

T- {t’ltl__< 1}.
The function defined in (2.16) satisfies
(2.18) E*(0, 2, 3, 4, , r/, t) 1.

Proof. It is easily verified from (2.14) and (2.15) that P(")(I, 2, 3, 4, ’, q)
exists, is uniquely determined and is regular in D x Bze for n 0, 1, 2,....
Straightforward differentiation and collection of terms shows that the series (2.16)
formally satisfies (2.12). It remains to be shown that this series converges absolutely
and uniformly in G x B x Z To this end, note that since B is a compact subset
of the (,q)-space, there are finitely many points (j, qj) with IjI Iqj[ 1,
j 1, 2, ..., N, such that B is covered by the union of sets

(2.19) Nj={(ff,q)’l-jl <e,ln-qj] <:}, j= 1,2,...,N.

Hence it is sufficient to show that the series converges absolutely and uniformly
in G x Nj x Z To this end we majorize the p(")(, 2, 3, , , q) in D x B2t.
Since F(K Y*,Z, Z*)is an entire function, it follows that F*(, 2, 3, , , q)
is regular in D x Bze and hence we have

2.20)
o -o1- 1

for some C > 0 and (, 2, 3, 4, , q) in D x Be. In (2.20) the symbol "<<"
means "is dominated by." The use of dominants is a standard tool in the analytic
theory of partial differential equations, and the reader unNmiliar with their use
is referred to [1] or [11] for further details. From (2.14), (2.15) and (2.10) it is a
somewhat lengthy but straightforward procedure to show by induction that in
D x B2e we have

p]") << M(8 + 6)"(2n- 1)
(2.21)

-2.- ( (o
1-

2e
r/ r/o r-"

2e

(2n

where M and are positive constants independent of n. (For details of the proof
of closely related results the reader is referred to [33, [61 and [18].) Equation (2.21)
now implies (after some slight manipulation) that in D x Bze we have

pC,) << M(8 + 6)"(2n)-1(2n- 1)-1 1 1

(2.22)
-(2n-1) -(2n-1)

__
o q qo

r1 1
2e 2e
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which implies that in D NJ we have

(2.23)

1P")(1, 2, 3, 4, , r/)l M(8 + 6)"(2n)- 1(2n 1) -1

) (2n- 1)

2

2

Now consider It2"/"p")( 2’ 3’ 4’ ’ r/)] in Oar Nj T, where

Dr-- {(1, 2, 3, 4)’[i[ < r/o;o > 1, i-- 1,2,3,4}.
In Dr Nj Twe have

19Rd.

(2.24)
Ir/- r/j[ 1I- (jI >_ 1- >-

2 4’ 2e 4’

Thus, from (2.23) and (2.24) we have that in Dr Nj T,

(2.25)
ItZ"ct"p")(:l, 2, 3, 4, ’, r/) __< Mr(- 1)3(2n- 1)-1(2n)-1 -3

(32eT(S + 6)(a- 1)-8)..
If we choose such that

(2.26) 32e7(8 + 6)(e- 1) -8 < 1,

then the series (2.16) converges absolutely and uniformly in Dr x Nj T.
By taking r eR we can now conclude that E*( 2, 3, 4, ’, r/, t) is regular
in (R Njx T for each j 1, 2,..., N, and hence in GR B T. Equation
(2.18) follows from (2.15).

We now want to show that every real-valued C2-solution u(x 1, x2, x3, x4)
of(2.1) which is defined in some neighborhood of the origin in R4 can be represented
locally in the form

(2.27) U(X1, X2, X3, X4) Re P4{ f}.

We shall furthermore show that the associated analytic function f(#, , r/) has
a simple representation in terms of the Goursat data U(Y, 0, Z,Z*) for
U(Y, Y*, Z, Z*) =_ u(xl, x2, x3, x4). These results will then enable us to construct
a complete family of solutions (in the L-norm) for (2.1).



BERGMAN OPERATORS 407

THEOREM 2.4. Let u(x x2, x3, "4) be a real-valued C2-solution of(2.1) in some
neighborhood of the origin in R4. Then there exists an analytic function of three
complex variables f(l, , rl) which is regular for la in some neighborhood of the
origin and Il < 1 + , lrl[ < + , > 0, such that locally u(x 1, x2, x3, x4)

Re Pc{f}. In particular, denote by U(Y, Y*, Z, Z*) =- u(xl, x2, x3, x4) the
extension of u(x x2 x3, x4) to the (Y, Y*, Z, Z*)-space, and let

(2.28)
82{ffl2(l-t)[2U(ltOo,(l-t)l (1 t)(1 )//)

U(0, 0, (1 t)#, (1 t)(1 )/r/) dt d}.

f,(2.29) f(#, , r/)
27r

g(#(1 t2), dt,

where 7’ is a rectifiable arc joining the points and + and not passing
through the origin.

Remark. Equation (2.29) can be inverted by the formula (cf. [11, p. 114])

(2.30) g(/, ’, r/) f(/(1 t2), , q)
/1 2’

where the path 7 is defined in Theorem 2.2.
Proof of Theorem 2.4. The fact that u(xa, x2, x3, x4) is a strong solution of

(2.1) implies that u(x,x2,x3,x4) is an analytic function of its independent
variables in some neighborhood of the origin. Furthermore, since F(Y, Y*, Z, Z*)
is real-valued (for Y Y*, Z -Z*), Re P4{f} is a real-valued solution of (2.1)
for any function f(p, , ) which is analytic in the product domain D x B (see
Theorem 2.2). Now suppose that locally g(, , q), f(g, , q) and F(Y, Y*, Z, Z*)
have the expansions

0 kl,
n=0 k=0 /=0

k+lNn

n)= ?)’ n)att2

,n=O k=O /=0
k+lNn

F(Y, Y*, Z, Z*) b,,pY’Y*Z"Z*",
l,m,n,p=O

and let the analytic functions (g, , q), f(g, , q), F(K Y*, Z, Z*) be defined by
replacing a, and btmnp by a, and btmnp respectively, in (2.31). Let E(Y, Y*,
Z, Z*, , q, t) be the generating function corresponding to the differential equation
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Urr, Uzz, + F(K Y*, Z, Z*)U 0. Then for x x2, x3, x4 real we can write

l f, f f,E(Y,Y*,Z,Z*,C, rt, t)Re P4{f} 8rc2
dt dq df((1 t:), (,)

(2.32)
1

82 IGI ql

dt dq

where fi Y* - Z* q- Z + q-- E Now from Theorem 2.1 we know
that U(K Y*, Z, Z*) is uniquely determined by the function U(K 0, Z, Z*), end
hence, using (2.18) and (2.32) we try to determine f(g, , q) from the equation

U(Y.O.Z.Z*)= 82 = ,=

(2.33)
82 ;[= .

dt dq df(,( t),

where g Y + -Z + q- Z* and 2 q- 1- y - 1Z, q- 1Z. To this
end we first write E*( 2, 3, , , q, t) E(Y, Y*, Z, Z*, , q, t) in its series
expansion

(2.34) E*(I, 2, 3, 4,
n=l

where, from Theorem 2.3, we have

(2.5) ( - f*(i, , ,, , )di,
2n+

(2.36)
P{"+ 1)(0, {2, {3, G, , ) 0,

with F*({1, {2, {3, {4, , q) F(Y, Y*, Z, Z*). From (2.10) and (2.35) we have

= -, ( +

F(Y+ q--r q--Y*,r,
o

(2.7)

t/(///- 1’- y, + r/- 1Z* ///- 1.- IT) dr.
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The fact that F(Y, Y*, Z, Z*) is an analytic function of Y, Y*, Z and Z* now implies
that

if,
dt drl d 0(2.3s) f(,( t), , ,)/ ,

since the Laurent series of the integrand has no terms involving (r/" for both
> -2 and m > -2. A similar calculation using (2.36) and induction shows that

87"g2
(I r/I

dt drl d
(2.39)

f(2(1 t2)’ ’ r/)
x//1 2 r/

=0,

ff(n)(y, y,, Z, Z*, , l) i0(n)(l, 2, 3, 4, , )
for n 1, 2, 3,.... Because of the uniform convergence of the series in (2.34),
we can substitute this series into (2.33) and integrate termwise to conclude that

(2.40)

lff g(/al,(,rl)drld(U(Y, O,Z,Z*) 8n2 ([=1 q]=l /

f (/2, , q)dr/d
87Z2 (1__=1 1=1 q "

where we have made use of (2.30). To complete the proof of the theorem it now
suffices to show that (2.28) gives the solution of the integral equation (2.40).
In order to show this we let

(2.41) U(Y, O, Z, Z*) 7,,aY"Z*’Z
n,k,l=O

and equate coefficients of Y"Z*kZ on both sides of (2.40). This gives

(2.42)
2n!k!l!Tnkt (n + k + l)!an+k+l,k,

lak+ l,l,k"2k!/!7oa (k +/)la,+,,, + (k + l)!(-1)’+

n>0,

Since U(0, 0, Z, Z*) is real-valued for x3 and x4 real, we have from (2.41) that
7o (-1)k+7o, and hence, we can assume without loss of generality that
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1)k + ak + l,,k ak + ,k,l" Equations (2.41) and (2.42) now give

ynz,kzlF(n + k + / 1) an+k+l.k,U(Y, O, Z, Z*) 1v

+ ku(0, 0, z, z*)

k=O l= +l
(2.43)

ankIYn-k-Iz*kzl / 1/2U(O, O, Z, Z*)

,’"=o k=Z"o ,=o r(n k- + 1)r(k + 1)r(/+ 1)
k+l<n

yn-k-lz*kzla,k + 1/2U(O, O, Z, Z*).

From the definition of the beta function (cf. [8, p. 9]) we can now write

t)EU(tY, O, (1 t)Z, (1 t)Z*) 1/2U(O, O, (1 t)Z, (1 t)Z*) dt

(2.44) 1__ F(k /1+ 2) yn_k_lz,kzl’, k=0 =o (n + 2)(n + 1)F(/ + 1)F(k + 1) a"k
k+l<n

and hence,

(2.45)

(1 t)[U(tY, O,(1 t)Z,(1 t)(1 )Z*)

U(O 0 (1- t)Z (1 t)(1- )Z*)]dtd

y ankl y,- k-lz,kzl
=o k=o ,=o (n + 2)(n + 1)

k+l<n

which implies that

(2.46)

( t) Fu(nt, o, (1 t),(, (1 t)( )n.)

U(O, O, (1 t)/2(, (1 t)(1 )/2r/)l dt d;

n=0 k=0 /=0
k+l<n

Equation (2.28) follows immediately from (2.46), and this proves the theorem.
Note. When F(Y, Y*,Z,Z*)=_ O, our operator P4 reduces to Gilbert’s

operator G4 (see [11, pp. 75-82]), and (2.28) gives a new inversion formula for the
operator Re G4. It is of interest to compare (2.28) with the inversion formula
given by Kreyszig for complex-valued harmonic functions in four independent
variables [16], [11, p. 78.
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Theorems 2.2, 2.3 and 2.4 can now be used to construct a complete family of
solutions in the L-norm for (2.1). The proof of the following theorem exactly
parallels that for the case of three independent variables, and the reader is referred
to Theorem 3.2 of [3] for further details. Briefly, the proof proceeds as follows:
Since (2.1) is elliptic and has analytic coefficients, it possesses the unique con-
tinuation property and hence the Runge approximation property (cf. [17]).
Hence it suffices to find a complete family of (real-valued) solutions defined in an
arbitrarily large sphere S in R4. From Garabedian’s work on Cauchy’s problem
for analytic systems [10, pp. 614-619] it is possible to conclude that the Cauchy
data for solutions of (2.1) defined in S must be regular in some convex region
B in C3, the space of three complex variables. Since convex domains are Runge
domains of the first kind [9, p. 229] and solutions of (2.1) defined in S depend
continuously on their Cauchy data in B, we can approximate solutions in S by
solutions having polynomial Cauchy data, that is, entire solutions of (2.1). Such
(real-valued) entire solutions can then be approximated by (real-valued) solutions
having polynomial Goursat data in the (Y, Y*, Z, Z*)-space. But by Theorem 2.4,
real-valued solutions u(x x2, x3, X4) of (2.1) with polynomial Goursat data can
be represented in the form

(2.47)

where

U(X1, X2, X3, X4) Re P4{hu},

(2.48) hN(#, r/) a k
nkl]A q g,

n=0 k=O /=0
k+l<n

from which follows the theorem below. In the statement of the theorem "Im"
denotes "take the imaginary part."

THEORE 2.5. Let G be a bounded, simply connected domain in R, and define

(2.49)
U2n’k’l(Xl’ X2, X3, X4) Re P4{nk(l},

Im

where 0 <__ n < o, O, 1,..., n, k O, 1,..., n, k + <_ n. Then the set {blnkl} is

a complete family of solutions in the L-normfor (2.1) in the space of real-valued
C2-solutions of (2.1) defined in G.
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DUAL INTEGRAL EQUATIONS WITH TRIGONOMETRIC KERNELS
AND TEMPERED DISTRIBUTIONS*

R. P. SRIVASTAV"

Abstract. Ofconcern here are two theorems pertaining to the questions of existence and uniqueness
of solutions of the dual integral equations

I1() ei" d f(x), 0lxl<l, -- +l,

N
0(4) eix d O, Ixl > 1,

The integrals are interpreted as the classical Abel limits. This furnishes a computational device for the
evaluation of Fourier transforms of tempered distributions. Using the theories of Fourier transforms
and singular integral equations, an explicit solution is constructed, which is shown to be unique.

1. Introduction. In this paper we examine, for existence and uniqueness of
solutions, dual integral equations

(1,1) I1@() dxd f(x), 0 Ixl < 1,

(1.2) t() eiCX d O’ Ixl > 1,

where z +_ 1. The integrals are to be interpreted as Abel limits given by the
relation

p()d lim e-Cllp()d,
cO+

where the limit is taken in the sense of S’, the space of tempered distributions.
The equality in the above equations is also to be considered in the distributional
sense in S’. if, being the Fourier transform of a tempered distribution with a
compact support, must be a tempered C-function. Hence, we consider the
existence and uniqueness of the solutions in this class of functions. In notation
and terminology, we follow Bremermann [13. The object of this paper is to deter-
mine (if possible, uniquely) a tempered C-function if, whose Fourier transform
is a distribution derivative of a prescribed order of a continuous function with
its support contained in [-1, 1] and for which the Fourier transform of I[()
is equal to f on (- 1, 1), where 4-1 and f is a distribution derivative of pre-
scribed order of a continuous function.
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The pair of equations (1.1) and (1.2) arise in a natural way when the Fourier
transform is used for the solution of mixed boundary value problems of elasticity.
Formal solutions of these equations are known (see [6, pp. 96-106]). Not much,
it seems, has been done to determine the conditions which will give a unique
solution. A paper due to I. W. Busbridge 2] may very well be the only one to
consider dual integral equations of the type (1.1) and (1.2) with any attention to
mathematical rigor. The equations considered here are not included in Bus-
bridge’s discussion and our techniques are also very different. There is one feature
in common between this paper and 2]. We too consider the equations on open
intervals. This is so because the equality of distributions is defined for open sets.
We believe that a mathematically precise formulation of the uniqueness problem,
which can be used in applications, will be of interest. The classical theory of
functions and the related theory of integral transforms seem to be inadequate for
this purpose. For, it is known that the physical quantities represented by (1.1)
and (1.2) are not in L2(-oo, oo) but in LI(-oo, oo), and their Fourier transforms
in general may not be in Ll(-oo, oo). Mathematical techniques of classical
analysis required to deal with Ll-functions tend to be abstruse. In contrast,
considerable simplification can be achieved by assuming that the right-hand
sides of equations (1.1) and (1.2) are tempered distributions.

Section 2 contains an example which motivated this investigation. In 3
we introduce a nonstandard definition of the Fourier transform for tempered
distributions using the classical concept of Abel summability instead of Parseval’s
relation which is commonly used. We also show that our definition is equivalent
to the standard one. The definition given here has the advantage that it facilitates
computation. Section 4 is devoted to a discussion of the case e 1, while the
case 0 1 is the subject of 5.

2. An example. Let us consider the problem of finding the stress distribution
in an infinite isotropic elastic medium containing a Griffith crack, which is subject
to an internal pressure varying along the length of the crack. It is well known
I7, p. 26] that the elastic field can be expressed in terms of an auxiliary function
(), which satisfies the dual integral equations

(2.1)
dx

(2.2) fo
0() sin xd f(x), 0<x < 1,

cos xd O, x > 1.

If the constraints of the physical problem are disregarded, it is easy to see that
() Jo() satisfies the homogeneous pair obtained by putting f(x)= 0 (see
Watson [9, p. 405]). Another solution of the homogeneous system can be obtained
by putting

4,() g(t)Jo(t) ,,
where g(t) is an auxiliary function. We note that (2.2) is identically satisfied and
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(2.1) is found to be equivalent to the integral equation

d (-’ g(t) dt
dx

(2.3)
t:)

flx), 0 < x <

Equation (2.3) has a nontrivial solution for f _= 0, viz., g(t) const. For g(t) 1,
we find that

() Jo(t)dt.

Moreover,

(2.4) (I^ 0() cos (x)d x

0, x>l,
and

foO { rt/2, O<xN 1,
(2.5) g,({) sin {x d{

sin- (l/x), x >_ 1.

Obviously, (2.4) and (2.5) satisfy the requirements of a formal solution. This shows
that a more precise formulation is called for.

3. Preliminary mathematics. Let T be a tempered distribution. Then, there
exists a tempered function b and a positive integer k such that 0(k)= T (see
[1, p. 121). We define two operators of Fourier transformation on the space S’
by the relations

(3.1) ’+ T= ix) lim f e-Clld?() ex d,
c- O + /

(3.2) _T= (ix) lim f e-llO() e-’ d,
c-O+ N

where the limits are to be taken in S’. It may be observed that (ix) and (-ix)
both are multipliers of S’. Since ({) is a tempered function,

(3.3)
1 fa -cl eigXao(x) x/

e lck() d

is a tempered C-function for c > 0. As c -+ O, c(X) as well as Oc(-x) converge
to functionals in S’. Let O(x) belong to S, the space of testing functions of rapidly
decreasing Coo-functions. Then

(O(x), O(x)) O(x) e-llq() eiCx d.

Changing the order of integration, which is obviously justified, we get the equation

(O(x), O(x)) e-Cleldp({)O({) d{,



416 R.P. SRIVASTAV

where

eixO(x) dx + 0

and 0 is also a rapidly decreasing Coo-function. Hence

(3.4) lim (Oc(X), O(x)) (dp, 0).
c--O

The Fourier transform of , whether it is a tempered function or a tempered
distribution, is usually defined by the functional relation

For tempered functions our definition is easily seen to be equivalent from the
preceding computation. For tempered distributions the equivalence follows
from Theorem 2 of [1, p. 88]. We observe that for every testing function 0 in S,

(3.6a)

(3.6b)

(3.7)

Likewise,

Hence

(3.8)

For T (),

Hence

(3.9)

Similarly,

<, T, O> < T,

_
0>,

<.+o,_ T, O> <
_

T,+O> < T, ,_+ O> < T, O>.

<_+ T, O> < T, 0>.

+_T _+T T.

<-+0% o> <4,% -+ o>
(- 1)t’<qb(x), +(i)t’O()>.

<+ qb(), O> (-- 1)<(i)+ qS, 0>.

< 4,(, O> <(, -_ O>
(- 1)t’<(;b, _(- i)’0()>,

in other words,

(3.10) <_b(), O> <(i)_ O, 0>.
In general, I is not a multiplier for S’, but if () is a tempered C-function,

so is I () and it belongs to S’.

4. Dual integral equations of a crack problem. For 1, we have the follow-
ing theorem.

THEOREM 1. Let f(x) be continuous on (-1, 1) and right and left continuous
respectively at 1 and 1. Then, there is a unique tempered Coo-function b possessing
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the following properties:
(i) The Fourier transform of / is a continuous function whose support is

contained in [- 1, 1].
(ii) The Fourier transform of I1/() is a tempered distribution which is equal

tof(x) on (- 1, 1), and there exists a temperedfunction whose distribution derivative
is equal to this tempered distribution.

Proof. We prove this theorem by explicitly constructing a solution, which
we show to be unique. Let

(4.1) .+ q(x), -1 <= x < 1,

where q(x) is a continuous function such that q(- 1) q(1) 0, a condition which
is required by the continuity of the Fourier transform of . We set q(x) 0 for
]xl 1. Obviously,

q(x) e-ix dx.(4.2) 0 --q x -1

Further,

However,

(4.3)

Hence

e-11 eix-Y)l d 2-x c2 + (x y)2

(4.4) +{[[0()} lim
1 d rj1 c

2q(y)(x- y)
dy,

0+ a: XX -1 d- (X y)2

where the limit, we may recall, is to be taken in the sense of S’. Equivalently, for
every testing function 0 belonging to S,

lf q(y)dy O’(x))(4.5) (+{11()}, 0(x)> - x’where the prime denotes differentiation and the singular integrals here and
henceforth are to be interpreted as Cauchy principal values. Since on (- 1, 1),

(4.6) + {110()} L
for every testing function 0 whose support is contained in (- 1, 1), we have

(4.7) (if16_-1x-Y’q(y)dy O’(x))=(f,O).
Let

F(x) f(t)dt,
-1

--1 <_x<_ 1.
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F(x) is absolutely continuous and satisfies a Lipschitz condition on [-1, 1}. In
fact, it is differentiable on (-1, 1) with right and left derivatives at -1 and
respectively. Obviously,

<f, o> <F’, 0> -<F, 0’>.
Equation (4.7) may therefore be rewritten as

(4.8)  lf rt_-lx-Yq(y)dy F,O’) O.

Thus (4.7) is equivalent to the singular integral equation

(4.9)
l fl q(y) dY_ F(x) + CO <__ x <_
7c 3_lX--Y

where Co is an arbitrary constant. The solution of this integral equation is well
known (see, for example, Tricomi [8, pp. 173-179). All solutions of (4.9) which
belong to Lp for 1 < p < 2 are given by

(4.10) q(y)
1 1 x F(x) + Co dx +
r
_

1 y x- y v/l y2)

where k is an arbitrary constant. Since F(x) satisfies a Lipschitz condition, by the
Plemelj-Privalov theorem (see Muskhelishvili [4] or Pogorzelski [5]), the function

1/,1 x//(1 xZ)[F(x) + Co dxqo(Y)
7 -1 x y

is H61der continuous. Hence q(y) is continuous at y

_
1 if and only if

(4.11) k=-lf xF(x)dx ---1 .f(t)x//(1 2) dt
,)’--1 N///(1- X2) TC d-1

and

if F(x)dx I f f(t) cos-l(t)dt.(4.12) Co
-1 x//(1 x2) n -1

Substituting these values in (4.10) we find that

fl F(x)dx
(4.13) q(y)_ x//(1 y2)

-1 (x- y)x//(1 x2)
is the only continuous solution of (4.9) and hence (4.2) and (4.13) give us the
unique tempered C-function with the desired properties.

In particular, if f(x) 1, then F(x) x + 1, and q(y) y2. Hence

and+ {]lO()} in the sense of D’ is equal to 1 on (- 1, 1) and to ]x] (x2 1)- 1/2

for ]x > 1. The above analysis serves to show that in the case of constant internal
pressure, the normal component of the stress tensor across the line of crack
has a square root singularity.
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We believe that the conditions imposed on f(x) in the theorem proved above
are unduly restrictive and that the result will hold for a larger class of functions.
However, these conditions are generally satisfied by functions encountered in
applications and our goal in this paper is to strive for simplicity rather than
generality.

5. Dual integral equations for -1. A theory analogous to the one of
the previous section can be developed for the pair of equations

(5.2) + {()} 0, Ixl > .
We have the following theorem.

THEOREM 2. Let f(x) be H6lder continuous of order > 1/2 on (- 1, 1) and
right and left continuous at -1 and 1 respectively. Further, suppose that

f(x) dx
(5.3) 0

-1 X//1 X2

Then, there exists a uniquely determined tempered C-function with the following
properties:

(i) The Fourier transform of [[- 1() is a continuous function which is equal
to f(x)for xl =< 1.

(ii) The Fourier transjbrm of O() is a tempered distribution which is the
distribution derivative of a tempered .function whose support is contained in [- 1, 1].

Remark. The condition (5.3) was noted by Lowengrub [3, p. 71] and Sneddon
[6, p. 101] when f(x) is known to be an even function. In physical problems, this
condition is merely a restatement of some physical law. For example, in the case
of an appropriate indentation problem it is an equilibrium condition.

Proof. As in the case of Theorem 1, we construct a solution whose uniqueness
follows from the theory of singular integral equations. Let

d
’+ {I)()} -Xq(x),

where q(x) vanishes outside [- 1, 1. q is to be determined so that () will satisfy
the equations (5.1) and (5.2). From (3.8) it follows that

(5.4)

and using (3.10) we get the relation

i fl(5.5) ()
,/ -,

q(y) C -iy dy.

On substituting this expression for () in (5.1) and computing the Fourier trans-
form, we obtain the equation

(5.6)
1 t’|l q(y) dy

f(x),
c ._lx-y -l<x<l.
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All solutions of (5.6) belonging to Lp(- 1, 1) for < p < 2 are given by

lfl N/1-x2f(x)dx k
+ -1 <y<l(5.7) q(Y)=

rr
_

1- y2 x- y w/1 y2’
where k is an arbitrary constant. In contrast with the previous case, the constant
available now is one shy and by choosing it appropriately we can only ensure
continuity on the left or on the right. Condition (5.3), however, enables us to get
a continuous solution. We may put

(5.8) k- if ll + X
f(x)dx

This ensures continuity at y 1. For q to be continuous at 1 it is necessary and
sufficient that

(5.9) k=lfll-Xf(x)dx,-rc -a l+x

which is true if f(x) satisfies (5.3). After some elementary computation we find that

lxil y2 f’ [f(x)- f(y)] clx

(5.10) q(y) 7"C -I X -x2, lyl =< 1,

0, 131 >_- l.

Equation (5.5) in conjunction with (5.7) gives a solution of (5.1) and (5.2).
This solution is unique; for, if there were more than one solution in the class

of admissible functions, then the homogeneous pair obtained by putting f 0
would have a nontrivial solution, which could be expressed by the relation (5.5).
It is clear from (5.7) that the only possible solutions belonging to Lp(- 1, 1) tend
to infinity as y tends to

___
1, unless of course the constant k is chosen to be zero.

We wish to add that the theory presented here can be extended in a straight-
forward way to deal with the pair of dual integral equations

1
I1(1 + 2 e-2)@() eix d f(x), 1 < x < 1,

,/77
0() ’"a 0, Ixl > l,

where 2 is any complex number and c$ is a positive real number.
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HYPERGEOMETRIC INTEGRAL EQUATIONS OF A GENERAL KIND
AND FRACTIONAL INTEGRATION*

TILAK RAJ PRABHAKAR’

Abstract. Some integral equations with the kernels containing a confluent hypergeometric function
in two variables are studied by the use of fractional integration. These equations include as special
cases the hypergeometric integral equations as well as the confluent hypergeometric integral equations
discussed by earlier authors.

1. Introduction. In this note we consider the integral equations

F(7) 1 , fl, 7;2(x t), f(t) dt g(x),

(1.2) ff (x-t)’-1
i(7

O a, fl, 7 2(X t), f(t) dt g(x),

where 1 is a confluent hypergeometric function in two variables and : means
"equals almost everywhere." For 2 0, these equations reduce to hypergeometric
integral equations studied in the case a 0 by Love [2] and for fl 0 to confluent
hypergeometric integral equations discussed by the author [3], [4]. We show that
(1.1) and (1.2) can be discussed by a systematic use of fractional integration in
the same way as in [2]-[4]. Section 3 is the central part of the paper and theorems
on solutions of (1.1) and (1.2) follow as easy consequences thereof.

2. Preliminaries. As usual, the function 1(, fi, 7;x, y) is defined by the
double series 1, 5.7.1 (20)]

(2.1) a(, J, 7 ;X, Y) 2
()m+n(fl)nXmyn

m,, 0 (7)., +,m !n

for [y[ < 1 and by its analytic continuation elsewhere. For Re 7 > Re > 0, the
function has the integral representation

(2.2) (I)l(O{ /, 7 x, y)
F(7) 11 u (1 u)’- (1 uy)- e e.X du

.o

which, on putting u 1 t, yields the transformation

(2.3) p(, , 7; x, y) e’(1 y)-tl(7- , j,7;-X,l-Yy
The .fractional integration operator. We denote by L the linear space of

(equivalence classes) of complex-valued functions f which are Lebesgue integrable
on a,b], with the norm Ilf =alf(x)ldx. Throughout it is assumed that
0 < a < b < . For complex/ with Re/ > 0, the linear operator Iv" L ---, L is

Received by the editors June 2, 1970, and in final revised form October 13, 1971.- Department of Mathematics, Ramjas College, University of Delhi, Delhi-7, India.
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defined by

(2.4) (IUf)(x) ff x t)u -I

F(#)
f(t)dt

for almost all x a, b. Standard properties of I" including its definition when
Re/ __< 0 are well known ([21-[41).

The operator A(a, fi, , 2). If , fi, ?, and 2 are complex numbers with Re 7 > 0,
then setting

(A( fl T, 2)f)(x) fo (x t)v-1 )F(7)
(I)1 a, fi,7;2(x t), 1 f(t) dt

for almost all x [a, b], it is easily verified that A(a, fl, 7, 2) is a bounded linear
operator on L into itself.

3. The main result. To prove Theorem l, which may be regarded as the
main result, we require the following lemma.

LEMMA 1. If Re/ > 0 and Re 7 > 0, then jbr 0 < < x,

F(/) F(7)
(I) a, fl, 7;2(v t), 1 dv

(3.)
(x t),+.- x

r( + I ’/’ + ;,(x- tt, -Proof. If Re/ > 0, Re 7 > 0, z and z are complex, the z-plane supposed
cut along z => 1, then using (2.2) it is easily seen that

(1 S)#-1 S7-1

0 l’-’(fi) F(’)))
(I)1(’ /’ 7 ,ZIS, Z2s) ds

(3.2)
1

v(v + .)

which on putting s (v t)/(x t), z1 2(x t), 22 -(x t)/t gives (3.1).
THEOREM 1. If Re 7 > 0 and Re (7 + #) > 0, then operating on L, we have

(3.3) IA(, fl, 7, 2) A(a, fl, 7 + #, 2).

Proof. (i) Suppose that Re # > 0. If f L, then A(c, fi, 7, 2)f and therefore
lUA(, fl, 7, 2)f, also, exists in L so that for almost all x [a, b,

I"A( fl " 2)f(x) ff(x-v)"-1’
F(p)

dv fl (v

(3.4)

By an application of Fubini’s theorem to reverse the order of integration and
using (3.1), we find that the repeated integral (3.4) a.e. in [a, b] equals

fi(x-- t"+’-I )if’)) - i (1 a, ’)) + p; I X f d

which gives (3.3) in the case Re/t > 0.
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(ii) Suppose that Re/ < 0. For Re (7 + #) > 0 and f L, we have, by case (i),

I-UA(a, fl, 7 + #, 2)f A(a, fl, 7, 2)f,

which leads to (3.3) in this case also.
(iii) Suppose finally that Re 0. By (i),

I I+uA(a,fi,7,2)f= A(a, fi,y ++ 1,2)/

and also

IIA(, fl, 7 + , 2)f A(a, fl, 7 + + 1, )f.

Equating the left members we have

A(, fl, 7 + , 2)f I- 111 +UA(, fl, , 2)L

in which the right side, by the definition [3, (2.4)] of I for Re 0, is IUA(a, fi, 7, 2)f.
THEOREM 2. If Re 7 > 0, Re a > 0 and f L, then for almost all x in [a, b],

(3.5) A(a, fl, y, 2)f(x) I-x a eZixa e- f(x).

Proof. By Theorem 1, applied twice,

UA(a, fl, 7, 2).f I’A(a, fl, a, 2)f

which, as can be easily verified, leads to

(3.6) A(a, fl, 7, 2)f I’-A(a, fl, , 2)f.

Using the reduction formula

l(a, fl, a; x, y) e(1 y)-,

we find that

A(a, fl, a, 2)f(x) x eZIx e- .f(x),

which combines with (3.6) to give (3.5).
COROLLARY. If the integral equation

r(l ’ ’ (x , f(t t = g(xl,

for Ree > 0, Re > 0 a a x b, has a solution f L, then the solution is

unique.
Proof. From Theorem 2 together with the theorem on the uniqueness of

fractional integrals, it easily follows that

A(e, , 7, 2)f 0 implies that f 0.

4. Te imegral atis. We first consider two lemmas.
LENMA 2. If Re e > 0, then the integral equation

(4.1) I e-XXf(x) e-XXU4(x), a x b,

has, for each f L, a solution in L, and conversely for each L, a solution f in L.
Proof. This proceeds on the same lines as in the particular cases 2

[3, Thms.7 and 8.
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LEMMA 3. If Re o > 0, then the equation

(4.2) Pxf(x) = xUdp(x), a <= x <= b,

has, for each f L, a solution el) in L, and conversely.
Proof. This is a simple adaptation of [2, Thm. 5].
The following results can be easily derived from Theorem 2 and Lemmas 2

and 3.
THEOREM 3. If Re > 0, Re 7 > 0, then the integral equation

F(7) ’ fl’ 7;2(x t), 1 f(t)dt - g(x), 0 < a <= x <__ b,

has a solution f in L if and only if I-g exists and I-g L.
Also, if I-g exists, then the solution fe L is given by

(4.4) f(x) eZx-aI e- ZXxaI-Vg(x).

THEOREM 4. If Re e > 0, Re 7 > 0, then the integral equation

(4.5) ff (x t),-
F(7)

0,/, y;).(x t),
x

f(t)dt g(x), a < x =< b,

possesses a solution f in L if and only if I-g exists and belongs to L; also such a
solution is given by

f(x) U- exI e- Xx-g(x).

Proof. Using (2.3), we can convert (4.5) into the form of (4.3) which is solved
by Theorem 3.
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A PROOF OF A THEOREM BY DOLEZAL*

REUVEN MEIDAN]"

Abstract. Recently, Dolezal [11 stated a theorem: Suppose {q,} is a sequence in @ converging
to zero with respect to the weak topology generated on 9 by the subspace of the distributions offinite
order in 9’. Then, q),} 0 for the initial topology of9. In this paper a proof of the theorem based on
the theory of topological vector spaces is presented.

Recently, Dolezal [1] stated the following theorem.
THEOREM. Let {q,} be a sequence in @ which converges to zero with respect

to the weak topology generated on @ by the subspace of the distributions offinite
order in 9’. Then {q,} 0 with respect to the initial topology on 9.

The proof given by Dolezal is based on elementary considerations. It is the
purpose of this note to propose a different proof based on the theory of topological
vector spaces.

Notation. Let @ denote the space of infinitely differentiable testing functions
on R, and 9’ the space of distributions on R’. {0,} is, by assumption, a sequence
of functions in @ which converges to zero with respect to the weak topology.
generated on by the distributions of finite order in 9’. Namely, {(f, q),)} 0
for every finite order distribution f, where (., .) denotes the scalar product on 9.
Let m be a nonnegative integer, rn _> 0. m denotes the space of m-times continu-
ously differentiable functions on R" with compact support. K is a compact subset
of R". ’(K) denotes the subset of m consisting of functions whose supports
are contained in K. Similarly, (K) is used to denote the space of infinitely
differentiable functions with supports contained in K.

Proof of the theorem. In order to establish convergence in with respect to
the initial topology we first verify that all p, have their supports contained in
some compact subset K of R". Let m be a nonnegative integer, rn >= 0, and consider
the space m. The q, are members of m. Since the dual ofm consists of distribu-
tions of the order m, hence of finite order, {q,} ---, 0 weakly in 9". Consequently,
{On} is weakly bounded in m. By Mackey’s theorem (Treves [2, p. 371]) it follows
that {0,} is also bounded with respect to the initial topology of m. But this implies
(Treves [2, p. 139) that all 0, are contained in some "(K), where K is a compact
subset of R". Consequently, the supports of all q), are contained in K.

To complete the proof we show that {0,} converges to zero in (K). Indeed,
the dual of (K) is contained in the subspace of finite order distributions in 9’
(Treves [2, p. 258]). Hence, {p,} --, 0 weakly in :(K). Again, by Mackey’s theorem,
{0,} is bounded in @(K) for the initial topology. We use the fact that @(K) is a
Montel space and that, on bounded sets of Montel spaces, the initial and the
weak topologies coincide (Treves [2, p. 376]). Consequently {o,} 0 for the
initial topologies of (K), which completes the proof.

It is instructive to point out that the complication of the proof is due to the
fact that the convergence of { q),} in @ is assumed to hold only for the weak topology

* Received by the editors April 19, 1971, and in revised form September 13, 1971.
Haifa, Israel.
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generated by finite order distributions. If, for instance, the stronger assumption
of weak convergence with respect to all distributions were assumed, then the
proof would be simpler and would only consist of the second part of the above.
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UNIFORM ASYMPTOTIC STABILITY OF
EVOLUTIONARY PROCESSES IN A BANACH SPACE*

RICHARD DATKO"

Abstract. This paper contains two major results. The first one is to obtain necessary and sufficient
conditions for the uniform asymptotic stability of linear evolutionary processes which are defined
in a general Banach space and whose norms can increase no faster than an exponential. This is the
substance of Theorem and its corollaries. The second is to extend the bounded-input, bounded-
output criteria of O. Perron and R. Bellman to evolutionary processes in a Banach space. This is done
in Theorems 6 through 8.

In the special case of Hilbert spaces it is shown that uniform asymptotic stability ofthe evolutionary
processes considered is equivalent to the existence of positive Hermitian bilinear functionals whose
derivatives along trajectories give rise to negative bilinear Hermitian functionals. This is the analogue
of the usual Lyapunov theory for linear differential equations defined in a finite Euclidean space.

Introduction. The purpose of this paper is to extend certain results on the
uniform asymptotic stability of homogeneous linear differential equations in R" to
a class of evolutionary processes in a general Banach space. This extension has
been partially accomplished in 3 and 4] for the case where the process either
eventually became a compact semi-group of operators on a Banach space or
where the process was a semi-group of operators on a Hilbert space. Thus, this
paper is in a sense a sequel to 3 and [4.

By the term evolutionary process, as it is used in this paper, is meant a two-
parameter family of endomorphisms S(t, s), with 0 __< s __< < , defined on a
Banach space X which has the transitive property S(t, s)S(s, to) S(t, to) if 0 < to
<= s < t. Thus S(t, s) is the infinite-dimensional analogue of a fundamental matrix
associated with the solutions of a linear differential equation in R" (see, e.g., 5,
p. 286]). Examples of the type of evolutionary process considered in this paper
are those generated by solutions of linear differential-difference equations, solu-
tions of some classes of parabolic partial differential equations and any semi-
group of operators of class Co defined on a Banach space. Existence, uniqueness
and other properties of evolutionary process have been extensively investigated
(see, e.g., 14], 16] and 181). However, to the best of our knowledge their stability
properties in the sense of Lyapunov have not been systematically investigated
in an abstract setting, although processes associated with differential-difference
equations have been well studied (see, e.g., I12], 13] and I15]). This paper is an
attempt to develop a general theory for the uniform asymptotic stability of a
large class of evolutionary processes.

The paper consists of five sections and an Appendix. Section 1 introduces
some notation and the basic definitions which will be used throughout the paper.
Section 2 contains the main results of the paper. In this section, necessary and
sufficient conditions are found for the uniform asymptotic stability of a general
class of evolutionary processes defined on a Banach space. The main restrictions
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on these processes are that their norms can increase no faster than an exponential
function. The main theorem in this section is Theorem 1. Following Theorem
are several corollaries which give alternate criteria for uniform asymptotic
stability. Theorem 2 gives a sufficient condition for asymptotic stability. Example 1
shows that in general, asymptotic stability does not imply uniform asymptotic
stability even for semi-groups of class Co. However, it is proved in Theorem 3
that if for some positive to a semi-group of class Co is compact, then asymptotic
stability implies uniform asymptotic stability.

Section 3 considers the special case of evolutionary operators defined on a
Hilbert space. In this case, the results of 2 can be phrased in terms of positive
Hermitian mappings of the space into itself. The stability criteria then become
the exact analogues of the well-known Lyapunov theory for finite-dimensional
spaces (see, e.g., 53 or I6]). An application of the results of this section can be
found in I113 (the first corollary to Theorem 4).

Section 4 is a perturbation result which indicates how the usual stability
theory of ordinary differential equations can be extended to evolutionary processes
in a Banach space. Section 5 extends a bounded-input, bounded-output criteria
of O. Perron for determining the uniform asymptotic stability of a linear system
of differential equations in R" to evolutionary processes in a Banach space. The
extension of the Perron condition is in the spirit of [13 and not in the direction
taken in the work of Massera and Schiffer 17. An interesting problem would be
to attempt to extend their work to the types of processes considered in this paper.

1. Notation, conventions and basic definitions. X will denote a real or complex
Banach space with a norm I.I. The zero vector in X will be denoted by 0. H will
denote a real or complex Hilbert space with an inner product (.,.). So(X, X) will
stand for the space of continuous linear mappings from X into itself. In the case
of a Hilbert space, a mapping B a(H, H) will be called positive Hermitian and
denoted by B > 0 if B B* and (Bx, x) > 0 for x :/: 0. The symbol A will denote
the set defined by

(1) A {(t, to):0 __< o __< < }.

DEFINITION 1. A family of mappings {S(t, to)} z (X, X) with (t, to) e A will
be called a strongly continuous evolutionary process with exponential growth if for
all (s, to) and (t, s) in A and x in X:

(2)
(a) S(t, s)S(s, to)X S(t, t0)x;

(b) there exist constants M => and co > 0 such that

(3) IS(t, to)[ <= Mc(t-t);

(4)
(c) S(., to) is strongly continuous for __> to;and

(d) lim S(t, to)X x

for all x in X.
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A family of mappings satisfying (a) through (d) will be called an evolutionary
process of class C(0, e). Thus, in this paper, statements of the form, "Let S(t, to)
be an evolutionary process of class C(0, e)... ," will be met with frequently.
Unless otherwise explicitly mentioned, an evolutionary process of class C(0, e)
will always be denoted by S(t, to).

DEFINITION 2. If the evolutionary process S(t, to) satisfies (a), (c) and (d) of
Definition 1, and in addition

(5) S(t, to)X S(t to, O)x

for all (t, to)s A and x X, then it is called a semi-group of class Co. For semi-
groups of class Co condition (b) is automatically satisfied (see, e.g., [73).

Remark 1. If S(t, to) is a semi-group of class Co, then there exists a dense set
D c X and a linear operator A: D --, X such that if x D,

S(t, O)x
(6) lim Ax.

t-,0

The mapping A is in general unbounded and is called the infinitesimal
generator of the semi-group.

DEFINITION 3. An evolutionary process of class C(0, e) will be called unijbrmly
stable if there exists an M > such that IS(t, to)Xl =< Mlxl for all (t, to) A and
xX.
DHmO 4. An evolutionary process of class C(0, e) will be called asymp-

totically stable if limt_ S(t, to)X 0 for all x e X.
DFHmO 5. An evolutionary process of class C(0, e) will be called uniformly

asymptotically stable if given any e > 0 there exists a T(,) > 0 such that IS(t, to)l < e

wherever _>_ T(e) + to.
DFmoy 6. An evolutionary process of class C(0, e) will be called uniformly

exponentially stable if there exist constants M __> 1 and 0 > 0 such that IS(t, to)l
Me-(t-t) for all (t, to) e A.
Remark 2. It is easy to see for evolutionary processes of class C(0, e) that

uniform exponential stability implies uniform asymptotic stability which implies
asymptotic stability.

In the sequel, it will be shown that uniform asymptotic stability implies
uniform exponential stability, a well-known result for X a finite-dimensional
space. However, it will also be shown by means of an example that in the case of
semi-groups of class Co, asymptotic stability does not in general imply uniform
asymptotic stability, a property which is true if X is finite-dimensional.

2. Some stability properties of evolutionary processes.
LEMMA 1. Let S(t, to) be an evolutionary process of class C(O, e). Then, ij"

S(t, to) is uniformly asymptotically stable, it is uniformly exponentially stable.
Proof. Let S(t, to) be uniformly asymptotically stable. Choose e,o 1/2. Then

there exists T(e,o) > 0 such that IS(t, to)[ _-< e,o for all >__ r(e,o) + to. Hence if
(t, to) A, then

to n T(,o) + r,

where n is a natural number and 0 __< r < T(e,o). By properties (a) and (b) of
Definition 1,
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n-1

IS(t, to)[ S[nT(:o) + to + r, nT(e,o)+ to] [I S[(n k)T(o) + to,
k=0

(n-- k- 1)T(e,o) + to]

<= Mle’(1/2)" M1 exp Ecot] exp [-n In 2]

n T(e,o) In 2]M1 exp cot
T(eo)

n T(:o) + r r o)1M1 exp mr
T(e,o)

+
T(e,

M1 exp [or + z/T(eo) exp [-(t to)/T(eo)

=< M exp [coT(eo) + 13 exp [-(t to)/T(e,o)].

Hence if M--M exp[coT(:o)+ 1] and -e =-1/T(e,o), then IS(t, to)[
< Me-(t-t). This completes the proof of the lemma.

THZOREM 1. An evolutionary process S(t, to) of class C(O, e) will be unijbrmly
exponentially stable if and only iffor each x X, there exists a finite constant M(x),
depending only on x, such that for all to >= O,

IS(t, to)XI 2 dt <= M(x).

Proof Proof of necessity. Assume IS(t, to)[ =< Me-(t-t) for all (t, to) A,
where M _>_ 1 and a > 0. Then if x X and (t, to) e A,

t M2

[S(s, to)X[ 2 ds <= M2 e-2(s-t)lxl 2 ds < -- Ixl 2 M(x).

This completes the proof of necessity.
Proof of sufficiency. We first prove that there exists a finite positive constant

M2 such that for all x X and to >_- 0,

(7) IS(t, to)X 2 dt <= M2lxl 2.

To see this let us define for all (t, to) e A the family of semi-norms {qb(t, to)} given
by

ftt 1/2

(8) 4)(t, to)(X) IS(s, to)X ds

Since for each x e X and pair (t, to)e A, dp(t, to)(X) <-_ M(x), it follows from the
principle of uniform boundedness (see, e.g., [10, p. 68]) that limlxl_ o dp(t, to)(X) 0
uniformly in X hence, given e, > 0, there exists a 6(e) > 0 such that for all (t, to) e A,

qb(t, to)(X) e, if lxl < 6().

Since b(t, to)(.) is a semi-norm for each (t, to) A, this is equivalent to the relation

(t, to)(X)
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for all x X. Thus if we set M2 2/(2() it follows that (7) holds for all x X.
We shall next prove the existence of a finite constant M3 such that for all

(to, t) A and x X,

(9) IS(t, to)X[ -< M3lxl.
The proof of (9) is by means of contradiction. Thus, assume there exists a sequence
{(,, t,)} = A and a sequence {x,} = X with IXnl for each n such that the
inequalities

e(t. t.)(10) Mlrt < IS(,, t,)x,I < M
are satisfied.

Equations (2) and (3) imply that for n fixed and s t,, ?,],

M1EI IS([n, s)S(s, tn)Xnl M1 e’-)lS(s, t,)x,l

Hence,

(11) n e-o-) =< IS(s, t,)x,l

for all s It,, ,3. Squaring both sides of (11), integrating between t, and ?, and
applying inequality (7), we obtain the inequality

/7
2

(12) 2o911 -e 2cO(n tn) < M2"

First we observe that (10) guarantees that t,- t, >= (1/co)In n for each n.
Hence, there exists no such that if n _>_ no, the term in the brackets on the left-hand
side of (12) is greater than 1/2. Thus, for n => no,

n2

(13)
2o9 2 =< m2"

But this is impossible. This contradiction establishes the inequality_(9).
We now prove that for any to >_- 0, x X and e > 0, where N//M2 < 1, there

exists some point in the interval [to, to + 1/e2l for which

(14) IS(, to)Xl x//mze,lxl.
Since S(., to) is strongly continuous of class C(0, e) on the interval [to, ) and (7)
has been shown to hold, we can find for each x -. 0 in X a first time T(x, to, ,) > 0
such that

and

for

IS(to + Z(x, to, e,), to)Xl x//M2e,lxl

x//Mze,lxl < IS(t, to)X

[to, T(x, to, e,) + to).

Thus, because of (7), the inequality
T"(x,to,e) + to

M2f;2T(x, to, e,) < IS(t, to)Xl 2 dt <= M2 xl 2

*/to
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applies. This means that

(15) T(x,/70, ;) 1/;2.

Hence, T(x, to, ,) depends only on c,. This establishes (14).
Inequality (9) and equality (14) imply that if to >= 0 and x X, then

(16) IS(t, to)X] <= M3x/-2e,lx
if 0 =< x//M2; < and > to + 1/3 2. Thus, (16) shows that S(t, to) is uniformly
asymptotically stable, and by Lemma 1, this implies that S(t, to) is uniformly
exponentially stable.

Remark 3. Theorem remains valid if we replace the condition

by

IS(t, to)X] 2 dt M(x)

(18) IS(t, to)Xl ’ dt M(x),

where =< p < 3v. The proof of necessity is obvious. The proof of sufficiency
is almost verbatim that given in Theorem 1. The reason for not establishing
Theorem for condition (18) is that condition (17) is a natural generalization of
known results when X is finite-dimensional and to avoid unnecessary computa-
tion in proving Theorem 1.

If X is a finite m-dimensional vector space over the real numbers, the evolu-
tionary processes we have been discussing are most often solutions to ordinary
differential equations of the form 2(t) A(t)x(t), where A(t) is a continuous m m
matrix. For such systems there exist necessary and sufficient conditions for
uniform asymptotic stability which are stated in terms of Lyapunov functions
(see, e.g., [5] or I6]). The following corollaries to Theorem extend these results
to evolutionary processesof class C(0, e) defined on infinite-dimensional Banach
spaces.

COROLLARY 1. Let S(t, to) be an evolutionary process of class C(0, e) which is

uni[brmly asymptotically stable. Then there exists a unique continuous mapping
V: X [0, oo) --. IO, c) such that for each x in X and to > O"

(i) the mapping

(19) V(S(t, to)X, t) V(t, x, to)

fi’om [to, oo) --, [0, oo) has the property that limt_oo if(t, x, to) 0;
(ii)

(20) dF’(t)/dt -IS(t, t0)xl2;
(iii) there exists a finite positive constant M4 such that for all x X and

e [0, o0) the inequality

(21) V(x, t) < M4lxl 2

is satisfied.
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Conversely, if such a mapping V exists satisfying (19), (20) and (21), then the
process is uniformly asymptotically stable.

Proof. If S(t, to) is uniformly asymptotically stable, then it is exponentially
stable by Lemma 1, and hence the mapping V defined by

(22) V(x, t) IS(s, t)xl2 dt

is well-defined and by (7) satisfies an inequality of the form (21). Moreover, since
S(t, to) is exponentially stable and satisfies (21), it follows that

(23) V(S(t, to)X, to) <__ M4[S(t, to)X[ 2 <= M4M2 e-2(t-t)lX

Hence V(t, x, to)
From (22) and (2) we see that if > to,

(24) V(S(t, to)X, t) IS(s, t)S(t, to)X 2 ds IS(s, to)X[ 2 ds,

and hence,

dP(t)/dt -IS(t, to)X[ 2,

which establishes (20).
Uniqueness is a consequence of the equality

(25) t’ dV(s’ x, to) ds
v(t, x, to) V(x, to) + [s

’(to, X, to) IS(s, to)X[ 2 ds

and the fact that V(t, x, to)
The converse is due to (21) and (25). For, from (25) and (21),

(26) IS(s, to)X] 2dS (to, x, to) V(x, to) < M x 2

and by Theorem 1, (26) is sufficient for uniform exponential stability.
COROLLARY 2. A necessary and sufficient condition that an evolutionary process

of class C(O, e) be uniformly asymptotically stable is the existence of a mapping
V: X x [0, ) [0, ) such that V(O, t) =- 0 for all [0, ), V(x, t) <= m4lx[ 2

for some finite constant M4 and all x X and that

(27)
dV
dt

to)X, t) <__ -Is(t, to)Xl

for all x in X.
Proof. If S(t, to) is uniformly asymptotically stable, then by Corollary 1, a

V satisfying the hypotheses of the corollary exists and is given by (22).



UNIFORM ASYMPTOTIC STABILITY 435

If, on the other hand, a V satisfying the hypotheses of the corollary exists,
then for each x X and to > 0,

Hence,

dV
0 < V(S(t, to)X, t) V(x, t) + o-(S(s’ to)X, s) ds

<= V(x, t) IS(s, to)X[ 2 ds < M4lx] 2 IS(s, to)X[ 2 ds.

(28) IS(s, to)X[ 2 ds <= M4lxl 2.

By Theorem 1, condition (28) implies uniform asymptotic stability.
The following corollary is a minor weakening of Theorem for semi-groups

of class Co.
COROLLARY 3. If S(t, to) is a semi-group of class Co and o ]S(t, 0)X] 2 dt <

for all x in X, then S(t, to) is uniformly asymptotically stable.
Proof. The proof is a consequence of (5), since if x e X and o _>_ 0,

IS(t, to)X 2 dt [S(t o, 0)xl 2 dt ]S(t, 0)xl 2 dt.

Thus an estimate of the form j-,o IS(t, to)X[ 2 dt <= M(x) holds for all to >= 0 if it
holds for to 0, and hence Theorem 1 applies.

DFIITIOY 7. An evolutionary process of class C(0, e) is said to have periodic
behavior of period/3 > 0 if

(29) s(t + fl, fl + to)= s(t, to)

for all (t, to) A.
Remark 4. If X is finite-dimensional, then an evolutionary process with

periodic behavior most frequently corresponds to the set of solutions of an ordinary
differential equation of the form

2(t) A(t)x(t), A(t + fi)= A(t).

The following corollary to Theorem 1 is the analogue for evolutionary processes
with periodic behavior of Corollary 3.

COrOLLArY 4. An evolutionary process of class C(O, e) with periodic behavior

fl > 0 is unijbrmly asymptotically stable if and only iffor each x in X,

(30) IS(t, )XI 2 dt < c.

Proof. (i) Observe that if ],o IS(t, to)X 2 dt < c for each x e X and tl =< to,
then

IS(t, t)x 2 dr’- [S(t, t)x] 2 dt 4- IS(t, to)N(to, ta)x] 2 dt

M[e2(t’t’)- 1]Ix] 2 + ]S(t to)S(to, tl)Xl 2 dt.(31) 2(0
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By application of the principle of uniform boundedness in the same manner
as was done in the proof of Theorem 1, it is easy to show that there exists a finite
constant M(to)such that

(32) IS(t, to)Xl 2 dt M(to)lXl 2.

Using (32) we can write (31) as

(33)

M12 Ee2’"-t’) 3lxl + M(to)e2’"-’)lxl 2IS(t, tl)X[ 2 dt <=

<= + M(to) x] 2.

Clearly the right side of (33) depends only on o and x.
Now let S(t, to) have periodic behavior with period/3 > 0. Then if to >_-/3,

we can write to nfi + , where 0 _<_ r </3 and n is an integer. Hence,

(34)
S(t, to)X S(to + (t to), to)X

S[(t- to) + nfl + , n + r]x S[(t- to) + r, z]x.

Thus using (33), we have

(35)

IS(t, to)Xl 2 dt f to) + , z]xl 2 dt

IS(t, r)xl 2 dt
12oo

+ M(fi) e2’alx

The relation (35) is equivalent to (7), and hence by Theorem 1, S(t, to) is
uniformly asymptotically stable.

(ii) If S(t, to) is uniformly asymptotically stable, then (30) is satisfied.
This completes the proof of the corollary.
COROLLARY 5. (i) If S(t, to) is a semi-group of class Co which is un!formly

asymptotically stable, then the V Jhnction of Corollary is independent of t.

(ii) If S(t, to) is an evolutionary process of class C(O, e) with periodic behavior

fi > O, then the V function of Corollary is periodic of period ft.
Proof. Proof of (i).

(36)

V(x, t)

Proof of (ii).

IS(s, t)xl 2 ds IS(s t, 0)xl 2 ds

IS(s, 0)x[ 2 ds V(x, 0).

(37)

V(x, + fi)= IS(s, + fl)x[ 2 ds
+9 +/

IS(s, t)xl e ds r(x, t).

IS(s fl, t)xl 2 ds
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The next theorem gives a sufficient condition for asymptotic stability of
evolutionary processes of class C(0, e). We shall show by means of an example
that the condition is not necessary.

THEOREM 2. Let S(t, to) be an evolutionary process of class C(O, e) such that
for each x X and o >= O, the improper integral to IS(t, to)X[ 2 dt is convergent.
Then S(t, to) is asymptotically stable.

Proof. By means of the principle of uniform boundedness, it can be shown
as was done in proving Theorem 1 that for each to ->_ 0 there exists a finite constant
Mz(to) such that for all x X,

(38) ]S(t, to)X] 2 dt <= M2(to)lXI 2.

Similarly we can find M3(to) such that

(39) IS(t, to)Xl =< M3(to)lX[

for all x X.
And finally, it can be shown, as was done in Theorem 1, that if e > 0 is such that

w/M2(to)e < 1, then for each x X there is a [to, o + 1/e2] such that

(40) IS(i, to)Xl lxl.
Thus (39) and (40) imply that if => to + 1/e2, then

(41) IS(t, to)xl _<- M3(to)lx[,

which proves asymptotic stability.
COROLLARY. Let S(t, to) be an evolutionary process of class C(0, e) and suppose

there exists a mapping V: X I0, ) [0, ) such that"
(i) V(0, t) 0 for all 0, ) and for all x in X;

(ii)
dV

(s(t, to)X t) < -IS(t, to)X[ 2

dt

Then S(t, to) is asymptotically stable.
Proof. If x is in X and to > 0, then

0 <= V(S(t, to)X, t) <= V(x, to) IS(s, to)Xl 2 ds.

Thus

(42) IS(s, to)XI 2 ds V(x, to)

for all x in X, and hence, by Theorem 2, S(t, to) is asymptotically stable.
Remark 5. If S(t, to) is a semi-group of.class Co which satisfies the hypothesis

of Theorem 2, then S(t, to) is uniformly exponentially stable. This follows from
the fact that for semi-groups,

IS(t, to)Xl 2 dt IS(t, O)xl 2 dt

for all x e X and to >= 0, and hence Theorem applies.
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The following example shows that, in contrast to the case where X is finite-
dimensional, asymptotic stability does not imply uniform asymptotic stability
for semi-groups of operators of class Co. Thus the hypothesis of Theorem 2 is
not necessary for asymptotic stability of evolutionary processes of class C(0, e).
Since if it were, then by Remark 5, all asymptotically stable semi-groups of class
Co would be uniformly stable, contradicting the example.

Example 1. Let b2 be the Hilbert space of all real sequences a- (al, ...,
an,...) such that Zi__l a2 < + . On 2 we define the bounded linear operator
A by the equation

(43) Aa --(--6/1 -+- a2,--a2 nt- a3, --a + an+l,...)

and the infinite system of differential equations

(44) i Xi + Xi + 1’ 1,2,

where x is the ith coordinate of a vector x in 2.
It is not difficult to verify that the solution of system (44) with initial vector

x(O) a is given by the vector-valued function eAta and that the ith coordinate
of eAta has the expression

(45) xi(t) e -t ai+n--.
n--o n!

By means of a few elementary estimates (see the Appendix) it can be shown that
]eAta]-. 0 as -- oo for every a 2. Thus eat is an asymptotically stable semi-
group. However, if eat were exponentially stable, then by Remark 3, the integral

[eatal dt would be convergent for each a 2 and this would imply that each
coordinate xi(t) of eata would have a convergent integral o xi(t dr. Since

(1/n!) t"e-tdt- for every natural number, it follows from (45) that
limt eo Xi(S)ds ,= o ai+, which is divergent if, for example, a is the sequence
with coordinates a, 1In. Hence, eat is asymptotically stable, but not uniformly
asymptotically stable.

There is, however, an important category of semi-groups, which includes
solutions of autonomous differential-difference equations, for which asymptotic
stability implies uniform asymptotic stability. This result is described in the next
theorem.

THEOREM 3. Let S(t) be a semi-group of class Co such that for some o, where
o > O, S(to) is a compact operator. Then ifS(t) is asymptotically stable, it is uniformly

asymptotically stable.
Proof. Since S(to) is compact, its spectrum consists only of isolated points

in the point spectrum and possibly the origin (see, e.g., [7]). Thus, the spectral
radius of S(to) is determined solely by its point spectrum. But if is in the point
spectrum of S(to), this implies that there exists a 2 in the point spectrum of the
infinitesimal generator A of S(t) such that et (see, e.g., [7]). Because S(t) is
asymptotically stable, it follows that It[ < 1 for all r in the point spectrum of S(to).
Moreover, since the spectrum of S(to) can accumulate only at the origin, it follows
that there exists e, with 0 < e < 1, such that the spectrum of S(to) lies in the
interior of the circle [Z[ =< e. Hence the spectrum of the infinitesimal generator
A of S(t) lies in the half-plane Re Z < (ln e)/to < 0 (see, e.g., [7]). This means that
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given (In e)/2t0 there exists a constant K >_ 1 such that IS(t)l - K exp [(In e)/2to]t
(see, e.g., [7]). This implies that S(t) is uniformly exponentially stable and hence
uniformly asymptotically stable.

3. The special case of X a Hilbert space.
THEOREM 4. Let S(t, to) be an evolutionary process of class C(O, e) defined on

a Hilbert space H. Then S(t, to) will be uniformly asymptotically stable if and only
if there exists a uniformly bounded mapping B" [0,) (H, H) such that for
each e [0, ), B(t) > 0 andfor all x e H and (t, to) e A,

(46) (B(t)S(t, to)X, S(t, to)X < -IS(t, to)XI 2.

Proof. Proof of necessity. If S(t, to) is uniformly asymptotically stable, by
Lemma 1 it is also uniformly exponentially stable. Hence IS(t, to)l < M e-(t-t)

for all (t, to) A. Let S*(t, to) denote the adjoint of S(t, to). Clearly IS*(t, to)l
<= M e-(t-t) for all (t, to) A. Thus the mapping

(47) B(t) S*(s, t)S(s, t) ds

in 2’(H, H) is well-defined for each e [0, oe). Moreover, for each x in H and
(t, to) A,

(48)

Consequently,

(B(t)S(t, to)X, S(t, to)X IS(s, to)X[ 2 ds.

d
(49) dZ(B(t)S(t, to)X, S(t, to)X) -IS(t, to)XI 2.

The uniform boundedness of the mappings B(t) follows from (7); that is,

(50) (S(t)x, x)< M21xl 2

for all [0, ) and x H, and hence B(t) is uniformly bounded.
Proof of sufficiency. Assume B(t) satisfies the hypotheses of the theorem.

Let x H and o => 0. Then,

Thus,

0 <= (B(t)S(t, to)X, S(t, to)X

(B(t)x’ x) + s(B(s)S(s’ t)x’ S(s, to)X ds

<= (B(to)Xo, Xo) IS(s, to)Xl 2 ds.

(51) IS(s, to)xl 2 ds < (B(to)X, X) < sup lB(t)llxl 2.

Since sup, IB(t)] is by assumption finite, Theorem 1 applies and S(t, to) is uniformly
asymptotically stable.
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COROLLARY. (i) If S(t, to) is a semi-group of class CO defined on H which is
uniformly asymptotically stable, then the mapping B(t) of Theorem 3 will be
constant if equality holds in (46).

(ii) If S(t, to) has periodic behavior of period fl > 0 and is uniformly asymp-
totically stable, then B(t) will be periodic ofperiod fl if equality holds in (46).

Proof. The proof is similar to the proof of Corollary 5 to Theorem 1, and is
omitted.

Example 2. As in Example 1, let H b2 and this time, eAt will be the semi-
group defined by the infinitesimal generator

(52) Aa (-2a -F a2, -2a, + a,+l, .).

The ith coordinate of eAta has the expression

,--o n!

Let B > 0 in 5 (2, 2) be given by

(54) B I/2 (I is the identity mapping in 2)"

For each a e b;2 and e [0, o), we have after a bit of computation,

(55)

d
(B ea’a, ea’a) 2 x(t) + xi(t)xi+ l(t)

dt i=1 i=1

--Z x(t) q- --2 x(t) + Z Xi(t)Xi+l(t)
i=1 i=1 i=1

The term in the brackets on the right-hand side of (55) is always less than or
equal to zero because of the Cauchy-Schwarz inequality. Hence,

d
-fft(B eara, eaa) <= --lea’a] 2

for all a e #2, and by Theorem 3, eat is uniformly asymptotically stable.

4. A perturbation result. In this section a perturbation result concerning
uniformly asymptotically stable semi-groups of operators will be developed. This
result is the analogue of similar results in the theory of stability for ordinary
differential equations (see, e.g., [5]). The purpose of presenting it here is to demon-
strate how the stability theory of ordinary differential equations can be extended
to evolutionary processes in a Banach space.

We first establish a lemma.
LEMMA 2. Let S(t, to) be a semi-group of class CO and let R: [0, ) 5O(X, X)

be strongly differentiable and uniformly bounded by some constant r on [0,
Then, the evolutionary process U(t, to) having the representation

(56a) U(t, to)X Z S,(t, to)X,
n=O
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where

(56b) So(t, to)X S(t, to)X

and

(56c) S,(t, to)X ftt
is of class C(O, e).

S(t, x)R(s)S._ (s)x as,

Proof. First observe that if (56) makes sense, then it can be written as the
integral equation

(57) u(t, to)X s(t, to)X + f, S(t, s)R(s)U(s, to)X ds.

That (56) and (57) make sense and U(t, to) is an evolutionary process are
consequences of Theorem 6.2 in [9, p. 216].

Using the representation (57), the facts that IS(t, to) <= M e’(t-t) and
IR(t)l < r, we obtain the inequality

(58) IU(t, to)xl e"t < M1 e’lxl + Mlr elU(s, to)X[ ds.

Applying Gronwall’s inequality (see, e.g., [2, Prob. 1, p. 37]) to (58), we get

(59) [U(t, to)xl <_- M e(+’)"-’)lxl
which proves that U(t, to) is of class C(0, e).

THFOREM 5. Let S(t, to) be a semi-group of class Co which is uniformly asymp-
totically stable, and let R:[0, o) (X, X) be strongly differentiable and such
that JR(t)[ 0 as or. Then the evolutionary process described by (57) is uniformly
asymptotically stable.

Proof. Since S(t, to) is uniformly asymptotically stable, there exist positive
constants M and such that IS(t, to)] < M e-(t-t) for all (t, to) A. Hence, we
obtain the inequality

(60) U(t, to)Xl

Multiplying both sides of (60) by et and applying Gronwall’s inequality to the
resulting inequality we obtain, after some rearrangement of terms,

IN(t, to)xl < M e-"-’)lxl + IN(s)[ exp Ie(u)l du ds

(61)

M e -(’-’) exp IR(u)l du Ix

Since [R(t)[ 0 as m, it follows that for some T > 0, lR(t)l G /2 if r.
Hence, there exists M > 0 such that for all x in X and (t, to)e A,

U(t, t0)xl - e -/2(t-t),

which proves that U(t, to) is uniformly asymptotically stable.
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5. The Perron condition in Banach spaces. In this section, we shall extend a
stability criterion of O. Perron for evolutionary processes in a finite-dimensional
space to evolutionary processes of class C(0, e) in a Banach space (see, e.g.,
or ES]).

Some additional notation must first be established. If [to, t] is any interval
in [0, @), then ;q,o, is a real-valued function on [0, o) whose value is 1 on [to, t]
and zero everywhere else. It is usually termed the characteristic function of the
interval.

If X is a Banach space, then LP(X), 1 = p < , will denote the equivalence
classes of measurable functions from [0, ) into X whose norms are pth power
integrable. L() will denote the equivalence classes of measurable functions
from [0, @)into X which are uniformly bounded on [0, @). IffLP(X), 1 13
the norm of f will be denoted by

(62) f p

and if f e L(X), then

fo f(t)l p dt

(63) f ess sup If(t)l.

DEFINITION 8. An evolutionary process S(t, to) of class C(0, e) defined on X
satisfies the Perron condition of class (p, p’) if for every f e LP(X) the function
yto S(t, s)f(s)ds is in LP’(X), where 1 =< p, p’ < .

LEMMA 3. If S(t, to) is of class C(O, e) and satisfies the Perron condition of
class (p, p’), then the mapping P" LP(X) LP’(X) given by

(64) (Pf)(t) S(t, s)f(s) ds

is a bounded linear mapping.
Proof. Let {f,} ---, f in LP(X) and {Pf,} g in LP’(X). Since we are dealing

with LP-spaces, we can find a subsequence {f0} c {f,} such that {f0(t)) - f(t)a.e.
on [0, ) and {to S(t, s)fo(s)ds} g(t) a.e. on [0, ). Because S(t, s) is strongly
continuous on X, this means that {f S(t, s)fo(s)ds} yto S(t, s)f(s)ds for all
e [0, ). Hence, g(t) y S(t, s)f(s) ds a.e. on [0, ). By the closed graph theorem

(see, e.g., [10) this proves that P is continuous.
THEOREM 6. If <= p < and 1 <= p’ < and S(t, to) is an evolutionary

process of class C(O, e) which satisfies the Perron condition of class (p, p’), then
S(t, to) is uniformly asymptotically stable.

Proof. Let x e X and (T, to)e A with T > o. Define the function

(65) Zto,.rl(t)S(t, to)X f(t).

Clearly f LP(X), and

0

s)f(s) ds (t to)S(t, to)X

(T to)S(t, to)X

ift =< o,

if to_<_ < T,

ifT<t.
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By Lemma 3 there exists a finite constant M(p, p’) such that

< M(p,p’) f[[(66) Pf v’= v

Thus, for the function defined by (65),

[Pf(s)[ p’ ds I(s to)S(t, to)X[ p’ ds + [(T- to)S(s to)X[ v’ ds

(67) <= [M(p, p’)]P’ f(s)[ pds

<= [M(p, p’)]P’
1 toevr- 1 Mf’lx[ p’

Relation (67) can be simplified to

(68) (T to)p’ IS(s, to)X] p’ ds <= Ud(p, p’) e’P’(w-t)lx] p’.

Thus if we choose T o + 1, (68) can be used to show that

(69)

And thus,

IS(s, to)X[ p’ ds (p, p’) eP’lxlP’.
o+1

(70)
to+l ooIS(s, to)X[ p’ ds IS(s, to)X[ p’ ds -+- IS(s, to)xl p’ ds

o+1

< [Mf’ + (p, p’)] e’P’lxl p’.

The inequality (70) shows that S(t, to) satisfies the conditions of Remark 3 (equation
(18)) and hence is uniformly asymptotically stable.

THEOREM 7. If p’ and 1 <= p < and S(t, to) is an evolutionary process
of class C(O, e) which satisfies the Perron condition of class (p, p’), then S(t, to) is
uniformly stable.

Proof. In a manner similar to the proof of Theorem 5, we can obtain the
inequality

(71) sup IS(t, to)X <= M(p, p’)eO(r_,o)lx
to<T<=t r- o

for each x X, where M(p, p’) is independent of T and o. Setting T o + 1 in
(71) we obtain

sup IS(t, to)X[ M(p, p’) elx[
to+ <_t

for all x X and o __> 0, which proves S(t, to) is uniformly asymptotically stable.
THEOREM 8. If p and p’ and S(t, to) is of class C(O, e) and satisfies

the Perron condition of class (p, p’), then S(t, to) is un!lorrnly asymptotically stable.
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Proof Let to 0, T > to and x e X. Define f(t) by equation (65). Then

fl s(t, s)f(s) ds

Thus, if > T,

0 ift __< o,

(t- to)S(t, to)X if to < < T,

(T- to)S(t, to)X if T=< t.

(T to)IS(t, to)X =< M(p, p’) sup If(t)] _-< M(p, p’)m e(T-t)[X[.
O<t<_o

Hence, if T= to + landt> to+ 1,

(72) [S(t, to)X] < M(p, p’)M elx].

But (72) implies that there exists a constant M(p, p’) such that

IS(t, to)] _-< M(p, p’)(73)

for allt> o
Now set

S(t, to)X if _> to,
(74) f(t)-

0 ift<to

Applying the mapping P to J] (equation (64)) we obtain

fo {0 ift<to,
(75) S(t, s)f(s)ds-

(t- to)S(t, to)X if >= o.

By (74) and (66) this means that

(76) sup (t to)IS(t, to)X
to<__t<

Hence, if > to,
M(p, p’) xlIS(t, to)X <-_

t-- o

which proves that S(t, to) is uniformly asymptotically stable.

Appendix. We shall prove that the semi-group in Example is asymptotically
stable. First observe that for each a in #2 and __> 0,

1 d
2)- dt(eAtal x(t) + Z xi(t)xi+,(t),

i=0 i=1

where the x are defined by (45). Hence by the Cauchy-Schwarz inequality,
d([eA’a 2)/dt <= 0 for all => 0. This means ]eAt[ < for all t.

The elements af in #2 with only a finite number of nonzero coordinates are
dense in #2, and from the form of (45) it is easily seen that for such an element a,
[eAtafl -- 0 as -+ o0. Thus, let a be arbitrary in #2 and e, > 0. Then there exists an

af in #2 such that [a all < e/2 and a to > 0 such that [eAtall < e/2 for all > o.
Hence

[eata[ < leat(a a)[ + eataf[ < :

if => to. This shows that eat is asymptotically stable.
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INTEGRALS OF PRODUCTS OF BESSEL FUNCTIONS*

A. D. JACKSON? AND L. C. MAXIMON:

Abstract. Simple expressions for a variety of integrals involving the product of three cylindrical
or three spherical Bessel functions are obtained in terms of the angular functions arising in the decompo-
sition of a plane wave in two or three dimensions.

Introduction. Integrals over Bessel functions have been of concern in mathe-
matical physics for well over a hundred years. They arise naturally as solutions of
the wave equation in which one has cylindrical or spherical symmetry, the solutions
involving the ordinary and spherical Bessel functions, respectively. While there
exist extensive investigations of integrals containing the product of two Bessel
functions (see, e.g., [1, Chap. XIII]), there is relatively little available in the case of
integrals containing the product of three or more Bessel functions. Indeed, in an
article in 1934, G. N. Watson [2] begins his consideration of an integral containing
three Bessel functions with the statement:

"It seems unlikely that the integral

;o(1) - J,(at)J(bt)Jo(ct) dt

can be expressed by any simple formula in the general case in which the only
restrictions laid on the various parameters are those which are essential to secure
convergence. Any special cases of the integral, obtained by assuming relations
(neither too numerous nor too trivial) between the parameters, which can be evalu-
ated are consequently of some interest."

While it has been noted by Bailey [3i that the above integral may be expressed
in terms of the Appell function F of two variables, it remains desirable to find
simple expressions for particular values of the parameters, in the spirit of G. N.
Watson.

1. Spherical Bessel functions. In this note we will be concerned primarily
with a case of the integral (1) which arises in quantum mechanical problems having
spherical symmetry. It is then natural to express wave functions and operators
in terms of spherical Bessel functions and spherical harmonics, in which case
matrix elements lead to the evaluation of integrals of the form [4, pp. 567-569]

(2) fo jtl(k r)jl.(kzr)jt3(k3r)rz dr,

where the jt(kr) are spherical Bessel functions, which are related to the ordinary
Bessel functions by

(3) j(kr) kF) 1/2

Jl+a/z(kr).
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Thus in our consideration, the parameters in Watson’s integral (1) are restricted
to have half-integer values. Our derivation will impose the further restriction
that the parameters 11,12, 13 in (2) satisfy the triangularity condition (]/1 12]
<= 13 <= Ii + 12)andthatl + 12 -+- l Liseven. Integralsinwhichtheparameters
satisfy these restrictions are the ones of greatest physical interest. The first
restriction is a consequence of the conservation of angular momentum and the
second of parity conservation. We should nonetheless note that in view of the
desirability of being able to make analytic continuations of matrix elements in
the complex /-plane, one would ultimately like to have simple expressions for
this integral for arbitrary, complex values of 11, 12 and l.

There is an intimate connection between the spherical Bessel functions and
the spherical harmonics, and one might expect that simple expressions for such
integrals would exploit this connection. Indeed, in both our final expression for
(2) and throughout the proof this will be clear. We note an indication of this
connection in the expression for a particular case of(l)first noted by MacDonald 5]
(cited in 1, (4), p. 412])"

rc __bc sin A P;-"(cos A)(4) j,(at)j(bt)j(ct)t-" dt
a

in the case where a, b, c are the sides of a triangle, A is the angle between sides
b and c, and and v are complex numbers such that Re g > -, Re v > -. In (4)
we have rewritten the expression given in [1 in terms of the spherical Bessel func-
tions, where the definition (3) is taken to apply for arbitrary (noninteger) 1.

We now proceed to the evaluation of the integral

(5) I j(klr)j(k2r)j(k3r)r2 dr,

where 11, 12, 13 are nonnegative integers such that 11 + 12 + 13 L is even and
the triangularity condition 11 121 13 l + 12 is satisfied. (Our derivation
will make extensive use of the functions and techniques of angular momentum
algebra. The monograph by Edmonds 6] provides a thorough introduction to
the subject.) We start with the decomposition of a plane wave into spherical Bessel
functions and spherical harmonics"

(6) e’ 4 ilj(kr)Y?()m(?),
/=0 m=-l

where ? and are unit vectors specifying the angles of r and k. Multiplying both
sides of (6) by ,,() and integrating over the angles of we obtain

(7) j(kr) m(?) i-’ e m() rink,

whered sin Ok dOk d4. From (7) we may write

f j,l(klr)j,(k2r)j,3(k3r)r dr f lml()22()33()"t

(8)
(4n)

-(1+12+13) ei(kl+k +k3)’r

lml(1)22(2)3m3(3)dkl dk dk d3r.
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The integral over dot on the left-hand side of (8) may be evaluated in terms of
3-j symbols 6, (4.6.3), p. 63]:

19)

[(211+1)(212 +1)(213 +1)] 1/2 11 12 13 11 12 13).4r 0 0 0 m m2 m3

l 12 13We now multiply both sides of (8) by and sum over all m, m2, m3

ml m2 m3

Using the orthonormality property of the 3-j symbols 6, Eq. (3.7.8), p. 47

ml,m2,m3 m m2 m3 m m2 m3

where 6(/1, /2 /3) if la, 12, 13 satisfy the triangularity condition and is zero
otherwise, we now obtain

;o [j(kr)j(r)j(kr)r dr
(2/ + 1)(2/ + 1)(2/3 + 1

(11)

i- (l + 12 -F/3)

(4)3

(Ix
ml,m2,m3 m

Yll2m2(fC2)Yll3m3(fc3)d"k, d’)k2 d-k3 d3r.

We next perform the r-integration on the right-hand side of (11), which gives a
delta function:

f eik’r d3r (2:)36(3)(k).(12)

The remaining integral is then

(13) j f Yllml(fl)Yl2m2 (f2)Yl3m3(f3)t(3)(k .qt_ k2 + k3)d’-k d)k d’)k3.

We note that there are six integrals to be performed, two for each of the vectors
k l, k2, k3. Three of these integrations should be made so as to exploit the delta
function, which serves to fix the angles between k l, k2, k3 so that they form a
triangle: k d- k2 -k- k3 0. This implies that if the lengths kl, k2 and k3 are such
that they cannot form a triangle (either k3 < Ikl k2t or k3 > kl + k2), the
integral is zero provided that 11, 12, 13 satisfy the triangularity condition and that
L is an even integer. This conclusion does not hold if these last conditions are not
satisfied since (11) contains the ratio of two 3-j symbols, both of which would
then be zero. The remaining three integrations represent a rotation of the triangle
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as a whole. In particular, the orientation of a triangle in space may be defined by
the direction of one of its sides and an azimuthal angle about that direction (e.g.,
the angles 03, 43 of 3 and the azimuth (/)2 of 2)" The other three angles (01, 41
of 1 and the polar angle 02 of 2) will therefore be integrated over first and will
serve to determine the triangle.

For the purpose of the first three integrations, and with no loss of generality,
it is simplest to choose a coordinate system with z-axis in the direction 3 and
x-axis in the plane of fg2 and 3 with 4)2 0. In this system the angles of 1 are
013, 412 and the polar angle of ;2 is 023. The delta function can be written in this
set of Cartesian coordinates as

(3)(kl -+- k2 q- k3) 6(kl sin 013 COS (/)12 -1- k2 sin 023
(14)

"6(kl sin 013 sin b12)a(kl cos 013 + k2 cos 023 + k3).

The integrals involving the delta functions may all be evaluated by using

g(z)
(15) g(z)3(f(z)) dz

f’(z)l Z(z o"
Integrating first over 013 using 6(kl cos 01 + k2 cos 023 + k3) fixes the value of
03 at

(k2 COS 023 q-- k3)
(16) cos 013 k
and, from (15), introduces the factor 1/(kl sin 013). Integrating next over 412
using 6(kl sin 013 sin b12) fixes the value of q1 at

(17) sin q51 0

and introduces the factor 1/(kl sin 013 [cos qbll). We next integrate over 023
using 6(kl sin 013 cos b12 + k2 sin 023), recognizing that sin 013 is a function of
023 and that q51 rc since all other quantities in this last delta function are
positive. This determines 023 implicitly by the relation

(18) kl sin 013 k2 sin 023
and introduces the factor

kz sin 023 Icos 013/sin 013 + cos 023/sin 0231
Relations (16) and (18) may be combined to express 013 and 023 in terms of the
magnitudes of kl, k2 and k3 alone"

k k k k k k(19) cos 013 COS 0232klk3 2k2k3
The three integrations exhausting the delta functions have served to fix the angles
between the vectors kl, ke and k3 By using (17) and (19) to evaluate the factors,
the integral (13) becomes

(01, (/l)Y12m2 (02, (/)2)W/3m3(03,4)3) d2 df3(20) J
kxk2k ,I

Ym
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and thus

2 dr

(21)

4re 11/2 i-(l, -F/2+/3)

A 11 12 13
8klk2k3 ml,m2,m3 rn m2 rrl3

"f Ylm(O1, (l)Y/2m2(02, (/)2)Y/3m3(03, (/)3)d(/) 2 d"3

In (20) and (21) the arguments of each of the functions Y/m depend on the angles
q52, 03 and b3, but the relative angles between the vectors k, k2 and k3 are now
fixed. In (21) we define

1 if k l, k2, k3 form a nondegenerate triangle,

(22) A 1/2 if kl, k2, k3 form a degenerate triangle,

0 ifk, k2, k3 do not form a triangle.

The third of these conditions results from the delta function in (13) and has been
noted above. That we obtain a factor of 1/2 when ka, k2 and k3 form a degenerate
triangle may be shown rigorously if one writes the Bessel functions in terms of
sines and cosines and performs the integration directly, leading to an expression
in terms of the Appell function F4. The factor 1/2 results essentially from the fact
that the argument of the delta functions vanishes at the limits of integration.

We observe that the sum of functions Y/m entering into (21) is, apart from a
phase factor, the invariant triple product discussed by Fano and Racah [7, Chap. 5,
pp. 24, 25 and Chap. 10]. It is the generalization for arbitrary la,/2, 13 of the vector
triple product a x b.c, for which l 12 13 1. We define- 11 12 13 Ylltnl(01’ I)l)Y/2m2(02’ )2)Y/3m3(03, )3)S

ml,mz,m3 rrt m2 m3
(23)

=_ ytllJ(O Yt2J(0 21, (/)1)X (D2) X y[13](O3 (/)3)1 t0]

Its value depends only on the relative angles of the triangle; it is independent of
the overall orientation of the triangle as determined by q52,03 and b3. To see
this, we express the functions Y/m in an arbitrary fixed reference frame in terms of
Y/m in the coordinate system used for the first three integrations and the matrix
elements of the rotation (o9) which takes the fixed frame into the latter frame:

(24)

7(I)Yl,m,(O1, )1) 2 Y/,mi(O13 12]Zmlm,(O))’
ml

rx"7>(l 2) 0,)r/2m2(02, {/)2) 2 Y/2m(023, I3)U/Jm’2m2( )’
m5

Y/3m3(03, (/)3) Z Y/3m(0, i))U/Jm,3m3(t,’7>(/3) (_/)).
m
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The sum (23) can thus be written

(25)
2 r,(o, 4)r,(o, o)a(o, o)

ml ,m,m

’mlm,( m2m2( )mm( )"
,m ,m ttl ttl2 ttl3

As shown by Edmonds [6], the sum over ml, m2, ma can be performed:

(26) 11 12 13
m; m m

and is independent of (o)). Using the fact that

[213q- 1] 1/2

27) 3m310, O) [
we find the sum S becomes

213 -+- 1] 1/2

(28)
S L 4 m Y/’m(O13’ 12)Y/2-m(023’ O)

Thus we can see that the integrand in (21) is a function only of the relative angles
013, q512 and 023, whose values have been fixed by the delta function. It is clearly
independent of the angles b2, 03 and b3. The invariant triple product may thus
be removed from under the integral and evaluated by (28), or in any other con-
venient coordinate system. The remaining integral,

dd/)2 d3,

is now trivial and equal to 8re2.
Thus we obtain the final result

(k3r)r2 dr

(29)
7c2A 4rr ] 1/2 i-(, +/2+/3)

kzzk3 (211 q- 1)(212 q- 1)(213 + 1) 110120 1)
[Y[I’](O1, 1) X Y[l](02,2) X y[13](03, (/)3)] [0].

This result may be expressed as a sum of associated Legendre functions by
rewriting the invariant triple product with the aid of (28) and the definition of the
spherical harmonics

(30) Ylm(O, (/)) (__ 1)
21 + 1)(/- m)!. PT’(cos O) ei"4’.

4rc(l + m)!
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We then obtain

f jll(klr)Jl2(k2r)Jl3(k3r)r2 dr

(31) 4klk2k3 11 12 E (-- l)
!(12 d- 11 12 13

(0 0 1 + m) ’(lz m) m m 0

P(cos O13)Pm(cos 023).

Since the terms in this sum are nonzero only when Iml 11 and Iml 12, the
simplest expression in terms of associated Legendre functions will result when
13 is chosen to be the largest of 11, 12, 13. A recursive scheme for obtaining (29) in
terms of Legendre polynomials is described in the Appendix.

(34) eizcs i" ei"J,(z).

Now if we consider two 2-dimensional vectors, k (k, 0) and p (p, 0o), then
(34) gives the decomposition of a plane wave into cylindrical Bessel functions
(cf. (6))"

(35) eik’ inJn(kp) e-inOk einOo.

Multiplying both sides of (35) by e’ and integrating over 0, one obtains (cf. (7))

(36) J(kp) ei i-" ei’ ei dO2

From (36) we may write (cf. (8))

Jna(klP)Jn2(k2P)Jnz(k3p)p dp eina ein20 ein30 dOp
(371

(2)
dO dOdO dp.

we obtain, with ei,

2. Cylindrical Bessel functions. The essential elements of the derivation
given in the case of three dimensions may be followed with two dimensions,
resulting in the evaluation of the integral of the product of three cylindrical
Bessel functions"

(32) I Jn(kP)Jn2(kzP)Jn3(k3p)p dp.

The principal steps and comparison with the previous discussion follow.
Startin with the eneratin function for the cylindrical Bessel functions

[1, (1), p. 14]

(33) eZt, 1/t)/2 E t"J,(z)
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The integral over 0o on the left-hand side of (37) gives

(38) ei(nl + t2 + ?13)00 dOo 2r6,, +,2 + ’13,0

a far more restrictive condition on the order of the Bessel functions than that
obtained in (9) in the case of three dimensions. We next perform the p-integration
on the right-hand side of (37), which gives a two-dimensional delta function"

(39) eiko d2p (2:rc)26(2)(k).

The remaining integral is then

(40) j f ein’Ok’ cinzOk2 cin3Ok. 6(2)(kl + k3 + k3)dOk, dOk dOk3.

Here there are three integrations to be performed, one for each of the vectors k l,

k2, k Two of these integrations should be made so as to exploit the delta function,
which serves to fix the angles between kl, k2 and k3 so that they form a triangle:
kl + k2 + k3 0. This implies that if the lengths kl, k2 and k3 are such that
they cannot form a triangle, the integral (32) is zero provided that n l,/72, n3
satisfy the condition n + n2 + n3 0. This conclusion does not hold if this last
condition is not satisfied. The remaining integral represents a rotation of the
triangle as a whole. For the purpose of the first two integrations we choose a
coordinate system with x-axis in the direction of k3. Denoting the angles of
kl and k2 relative to k3 by 013 and 023, respectively, the delta function can be
written in this set of Cartesian coordinates as

(41) 6(2)(kl + k2 + k3) 6(kl cos013 + k2 COS023 -" k3)6(k1 sin 013 + k2 sin 023).

Again by following the procedure used in the three-dimensional case, integrating
first over 013 using 6(kl cos 013 + k2 COS 023 + k3) fixes the values of 013 at

(k2 COS 023 -t’- k3)
(42) cos 013 kl
and introduces the factor 1/(kllsinO3[). We next integrate over 023 using
6(kl sin 013 + k2 sin 023), which fixes the value of 023 at

kl sin 013(43) sin 023 ]{;2

and introduces the factor 1/Ikl cos013 + k2 COS0231 l/k3" (Note, from (42)
and (43), that d(sin 013)/d023 cos03. The overall factor introduced by the
first two integrations is thus

(44) (kl k3 sin 013)- (2A)- 1,

where A is the area of the triangle defined by kl + k2 nt- k3 0.
Now in order to perform the remaining integral over 0k3, we must express

0kl and 0k2 in (40) in terms of 0k3 (and kl, k2 and k3) using (42) and (43). However,
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these latter conditions define two distinct triangles, denoted by and II in Fig. 1,
and both must be included.

FIG. 1. The two triangles with sides k k2, k3formed by the deltafunction (2)(k -F k -F k3) in the
two-dimensional case. Note that these two triangles are not related by a rotation in two-dimensional space.

In I,

(45)

In II,

(46)

O1 Oil 03 -}- 0(2,

02 O 03 -[- 27z

01 0111 0 3 + 2re 0(2,

02 0 03 -J- 0(1,

the exterior angles 0(1,0(2,0(3 being given uniquely by the lengths of the sides
k k2, k The integral (40) may thus be written as

J 1/2A -1 einlo2+in2(2rc--l) ei(nx+n2+n3)O3d03
(47)

2r

"q- 1/2A- e.in(2n-o2)+in2o ei(nl +n2+n3)03 dO3
0

2re
t-cos (nl0(2 n20(1)

since n + n2 + n3 0. An evaluation of the integral (32) using group-theoretic
methods, leading to the result given by the right-hand side of (47), has been given
by Sharp [9]. Note, in particular, p. 305, Eq. (6.8). He relates this integral to a more

This point seems to have been overlooked in an alternative derivation given in [8], leading to

the complex expression given [8, (12), p. 2201. The correct result, given below in (48), is the real part
of that expression.
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general integral over the product of three matrix elements of irreducible unitary
group representations [9, (3.9), p. 89]. The expression (47) is in fact invariant under
the permutation of any two subscripts (nl n3 and CZl -c3, for example), as it
should be considering the original integral (32). This may be made manifest if we
note, in view of z + 2 -+- 3 2t and n + n2 @ n3 0, that

12 21 23 32 2n2
n3 nl3 + 2nl.

One may, therefore, write the integral (32) in the manifestly invariant form (with
A defined in (22)),

fo J,(kxp)J,(kep)Jna(k3p)p dp
(48)

A
[COS (nl2 n2l) + cos (n23 n32) + cos (n3 nl3),
6A

where n + n2 + n3 0.

3. Extension to other integrals. We may use the result of (29) in order to
evaluate integrals of the form

f jtl(klr)jl2(k2r)jt3(k3r)r2- M dr,

where M is an integer such that

0 M 11 + 12 + 13 21t,

lt max (11,12,13)"

These integrals may be expressed as linear combinations of integrals of the form
of (29) with the aid of the recurrence relation for spherical Bessel functions

Jl-l(kr) + Jl+ l(kr)
(2/ -t- 1)

kr
Jl(kr)

No similar extension may be made of the result (48) for cylindrical Bessel functions
due to the highly restrictive nature of the condition nl + n2 + n3 0.

The results of this paper may also be generalized by analogous derivations in
higher dimensional spaces. Consideration of the form of the expansion of a plane
wave in higher dimensional spaces [1, pp. 128-130, 363, 368; [10]-[12; [13,
Appendix IV, pp. 227-235]; [14, Chap. XI, pp. 232-263] suggests that such an
analysis will again lead to the product of three Bessel functions, of integer order
(for even dimensions) or half-integer order (for odd dimensions), with conditions
on the order of the Bessel functions less restrictive than those imposed in (29)
and (48).

Appendix. In our principal result (29), we have shown that the integral over
the product of three spherical Bessel functions may be expressed in terms of the
invariant triple product, which is a sum of products of three associated Legendre
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functions. We now show that one can in fact express the integral in (29) in terms of
products of three ordinary Legendre polynomials. We begin these considerations
by writing a single product of three Legendre polynomials, the arguments of
which are the cosines of the external angles of the triangle formed by kl ,k2 and k3,
as a sum over scalar triple products. We will then construct a recursive scheme
by which this sum may be inverted, thus expressing the single invariant triple
product which appears in (29) in terms of a sum of products of Legendre poly-
nomials.

We start with the addition theorem for Legendre polynomials [6, (4.6.6),
p. 63] written for each of the exterior angles of the triangle:

4r
P/I(CS 023)--

211 +
Y’{lml(2)Yllml([3)’

4r
(A.1) P2(cs 013)--

2/2 + Y?2m2(f3)Yll2m2(fl)’
m2

4re
P/3(COS 012)--

2/3 -]- E Y3m3(fl)Yl3m3(f2)"
/913

(The indices here, 11,12 and/3, are arbitrary;they are not necessarily the same as
those appearing in (29).)

Multiplying these three equations gives, on the right-hand side, products of
spherical harmonics which may be grouped in pairs having the same angles for
arguments. For these pairs we may use the expansion [6, (4.6.5), p. 63]

Y/lml()Y/2m2()-- El,m [(211+ l)(212 + l)(2Z +

(A.2) , , 1,()1m m2 0 0 0

In both (A.1) and (A.2) we may interchange the function Y/m and its complex
conjugate Y?m, using [6, (2.5.6), p. 21]

(A.3)

We then have

y(/}) (_ l)my/_m(]).

P/I(COS 023)P12(C0S O13)Pl3(COS 012) (47r)3/2
ml ,m2,m3
li ,l’,l’3

m’l ,m,m

(A.4)

[(2/’1 + 1)(2/ + 1)(2/ + 1)]

Ill 12 I’3
000

12 13 l’l
m2 m m’

12 13 /’1)000

13 11 1’
m3 m m2

l, 12 l’
m m2 m3

Ylli_m,l(fl)Yl,2_m.(f2)Yl,3_m,3(f3).
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We now make use of the symmetry properties of the 3-j coefficients [6, (3.7.4),
p. 46] and write

m2 m3 m’l m’ m2 m3
(A.5)

13 11 1 ll 12 1.s
m3 -ml m2 -ml m2 m3

In (A.4), the sum over ml, m2, m3 may now be performed, which gives a result
involving the 6-j coefficient [6, (6.2.8), p. 95]

E (__l)ml+mz+m3+ll+12+13 1’1 2 13 (11 l’2 13)11 12 1’3)
ml,m2,m3 m’l m2 --m3 -ml m’2 m3 ml -me m’3
(A.6)

’ ,, )’, }.m’ m2 m3 [I1 12 13
Substituting (A.6) in (A.4), we replace m’, m2, m3 by -ml, -m2,-m3 and

then use [6, (3.7.6), p. 47]

1’1 12 13 1’ 12 13(A.7) )-ii- ,- l
-m -m2 -m3 m m2 m3

We note further, in (A.4), that in view of the first three 3:1 coefficients appearing
there, we have that 1’1 + l + l is an even integer (see [6, (3.7.14), p. 49]); and in
view of the last three 3-j coefficients there, we have m’l + m + m 0. Thus
(A.4) can now be written in the form

P/I(COS 023)P12(C0S O13)Pl3(COS 012)

(47r’)3/2(--1)l’+12+13 E [(211 + 1)(211 + 1)(21; + 1)] /2
ti,11,l

(A.8) m’,mS,m’3

0 0 0 0 0 0 0 0 0 m’l mz m’3

11

The sum over m’l, m, m; gives the invariant triple product defined in (23).
In (A.8) we have expressed a single product of three Legendre polynomials as

a sum over invariant triple products. For the purpose of inverting this sum, it is
convenient to write it in the more compact form

(A.9) (Pvl P2 P3 E /1/2/3C)lV2v3[Y/1 ’2 Y/3]9
11,12,13

where

(A.10) (P,I Pv2
(A.11) [Y/1 Y/2

P3 Pvl(COS 023)Pv2(C0S O13)Pv3(COS 012),

Y/] [Yt’(fcl) x Y[/2](f2)x Y[/3](fc3)][]
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and

v, v23 (4rr)3/z(- 1)v’+’+3I(2/1 + 1)(2/z + 1)(2/3 + 1)

|ll V2 V 3
(A.12)

0 0 0 0 0 V2 V3

We now wish to invert (A.9), expressing a single term [Y,I Y,2 YL3 as a sum of
terms of the form appearing in (A.10) for L1, L2 and L3 which satisfy the triangu-

L21 L3 =< L + L2) and such that L1 + L2 + L3 is anlarity condition (ILl
even integer.

We define

/1 1/2(L2 + L3- L1),

/2 1/2(L3 + L1 L2),

23 1/2(L1 + L2 L3),

L L1 + L2 + L3

and 11 + 12 + /3 for any set of (/1,/2, 13) in the sum (A.9). We may then write,
in particular,

(A.14) (Px P22 P23) 111213 2 31223
l,12,13

In (A.14), the largest value that each of the summation indices ll, 12 and 13 can
attain is determined by the 6-j coefficient in (A.12), viz., by using (A.13),

ll 22 -t- 23 L

(A.15) 12 23 -1- /1 L2,

13 /1 -31- /2 L3;

and, since L1, L2, L3 satisfy the triangularity condition and L + L2 + L3 is
an even integer, the coefficient -Ii1213 is nonzero for these values of 11 12 and 13,, 122 t,3

For any other terms in the sum (A.14), at least one of the summation indices
11,/2, 13 is smaller than the values given in (A.15), and hence ll + 12 + 13 < L

L1 + L2 + L3 for all other terms in (A.14). Thus we may write (A.14) in the form

In (A.16) we have an integral equation for [YL, gg2 tg3 which we may solve
recursivelyandobtain[Y Y Y/.3asasumoftermsoftheform(P, P Pv3):
Each of the elements [Y/, Y, Y/3] on the right-hand side of (A.16) is of the same
character as the single term [YL, Yt2 Ya in that any set of indices ll,12,13
satisfies the triangularity condition (which follows from the 6-j coefficient in
(A.12)) and moreover ll + 12 + 13 is an even integer (which follows from the
three 3-j coefficients in (A.12)). Now the largest value of in the sum in (A.15)
is L- 2, and there are at most three terms for which L- 2:(/1 L1,
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12 L2,/3 L3 2),(11 Ll,12 L2 2,13 L3),and(/1 L1 2,/2 L2,
13 L3). If one or more of the indices L1, L2, L3 is zero, then there are clearly
fewer than three terms for which L 2. In either case, for each of the terms
for which L 2 we can again substitute (A.16), where now in place of (A.13)
we write

21 1/2(/2 + 13 /1),

(A.17) 22 1/2(13 + 11 12),

23 (l -+- 12 13)

for each of the set of indices 11,12,13. We are now left with a sum of the same form
as that in (A.16), except that now < L 4. This process may be continued until
we come to a term on the right-hand side for which one of the indices 11,12,13 is
zero. Then, since we have already seen that all sets of indices 11,12,13 in (A.16)
obey the triangularity condition, the other two indices must be equal, and from
(A.17) two of the 2’s are zero. In that case the sum in (A.16) has only one term, and
we have simply (taking, for example, 11 12,13 0),

t-O0l

The recursive process thus ends at this point; and when it has ended for each of
the terms on the right-hand side of (A.16) we have expressed [YL1 YI2 gg3]
completely in terms of the (Pvl Pv2 P3).

We note that in the course of the recursion process, whenever we express
[Y Y2 Y3] in terms of (P P2 PV3 and a sum, as written in (A.16), the
coefficient rtt213 appearing on the left-hand side is always "fully stretched,"
i.e., the indices satisfy the equations 1 22 + 23, /2 3 + , 13 + 2.
These coecients have a particularly simple form: From [6, (6.3.1), p. 973 and
[6, (3.7.17), p. 50,

(22) (222)(22)(22 + 222 + 22 + 1)
(a.19) (-1)2++) (22 + 222 + 1)(222 + 22 )(22 + 1)
and

(A.20) (21 22 21 + 22
0 0 0

and hence (A.12) becomes

122,3

(A.21)

(221)!(222)! ](2 - 2)!

(47)3/2( 1)l/211 !12 !13 ![(l + 1)!] 1/2

(2/1 + 1)!(2/2 + 1)!(2/3 + 1)!

[(2/1) !(2/],2) !(2/3) !3 3/2 [(211 -+- 1)(2/2 + 1)(2/3 + 1)] 1/2

[/1 !22 !23 !]2
where 11 -+- 12 q- 13, and 21,22,23 are given in terms of/1,12,13 by (A.17).
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Finally, it should be noted that the decomposition of a given [Y, Y/ Y/3"
intoasumoftermsoftheform(Pv, Pv2 P3)isntunique, theangles012,023,013
being related by 012 + 023 + 013 2ft. Thus, for example,

(A.22) 3(P1 P1 P1) (P2 Po Po) + (Po P2 Po) q- (Po Po P2)

so that, with 11 12 13 2, we have

J2(k r)j2(k2r)j2(k3r)r2 dr

(A.23)

8klk2k3
{-3PI(cos 023)P1(c0s 013)Pl(COS 012

(1 (x)[P2(cos 023 -aI- P2(cos 013 --I-- P2(cos 012)1 -- 1},
where is an arbitrary constant.
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SERIES EXPANSIONS OF SOLUTIONS OF
Ux + u + , u. u,*

CHI YEUNG LO

Abstract. In this paper, the properties of a set of polynomial solutions of the equation

Uxx --1- Uyy -At- .,,2 Ut Ut
are discussed, where is a parameter. As 0, this set of polynomials reduces to the corresponding
heat polynomials. Necessary and sufficient conditions are developed to enable any solution to be
expanded in series of this set of polynomials.

1. Introduction. In a recent paper [3], this author discussed the properties
of a set of polynomial solutions of the equation

(2U 82U (U
(1.1) 6X2 -Ji-- /32_ct2 8t

defined by

L,/2SI X zk 1 (k + rn 1)’ _t_meZm(1.2) U,(X, t, )= X" + n! = (n- 2k)!k! m=0 m!(k- m- 1)!

where e is a parameter. As e- 0, this set of polynomials reduces to the heat
polynomials whose properties were studied in a paper of Rosenbloom and
Widder [5]. The results obtained in [3] agree, in general, with those in [5] as

In this paper we shall consider the polynomial solutions {U,(x, y, t;e)} of
the equation

(1.3)
8x2 + t2 #t"

Our approach will be the same as in [3 except for one major difference.
In the two-dimensional case, the concept of conformal mapping is used, whereas
in this case, we have to use different methods. In 3, the generating function for
the set of polynomial functions {u,,,(x, y,t; e,)} is obtained by the application
of the uniqueness theorem (i.e., Theorem 3.1). Similarly, in 4, the uniqueness
theorem also provides a sufficient condition for the polynomial expansions of
any solution of (1.3). Our approach is general enough to be applied to the (n + 1)-
dimensional equation

n_ 02U (2U (U
1.4) /2 nt- 82-E 63t2 c3t’

as discussed briefly in 5.
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An interesting comparison is made throughout this paper with the series
developments of the solution of the heat equation

2u au
(.5)

in Widder’s paper [7] for n 2.

2. Integral representation, Let ez. Then (1.3) is transformed to

(2.1) fi + fi + fizz =-fiz,

where
Introduce a new function w(x, y, z) fi(x, y, z) e -/2. By elementary calcula-

tions, (2.1) is transformed to

I2W (2W (2W
(2.2) cx2 + + --- 22w O,

where 2 1/2e.
It can be shown that Green’s function of (2.2) for the upper half-space z > 0

is given by

(2.3) G(x, y, z , rl, )
e e

r r

where

and

r x/(x ) + (y ,/) + (z + )
(see [6, p. 472).

Let w(x, y, z) be a regular solution of (2.2). Then the Green’s representation
formula [6, pp. 470-472] yields

z f f e-’R()R+ 1)w((2.4) w(x, y, z) R3 rl, O) d drl,

where

Define

/ v/(x ) + ( ,/) + z.
H(x, y, t; e)

e2X2 @ e2y2 + 2

e2

-1 e2x2 -- e2y2 + t2 -3/2}e2

.exp N///2X2 @ e2y2 -+- t2)].
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Then the solution of (1.3) can be represented by

(2.6) u(x, y, z) H(x y rl, t; e,)u(, rl, O) d drl.

It is easily seen that

e x2/abt e Y2/4t

V/4- V/4rct
which agrees with the kernel in the Poisson representation of the two-dimensional
heat polynomial [7, p. 300.

In order to apply the integral representation (2.6), we have to impose an
additional condition on u(,r/, 0) such that the improper integral converges
absolutely. Set u(,r/, 0)=f(, r/)= exp(e + fir/) in (2.6), where e and fi are
parameters to be determined.

Then

I(x, y, t; , , fi) H(x , y rl, t; ) exp ( + fir/) d dr/

2t
--exp
7C8

fly

exp 0{-1t-" [J/- -N//g 2 .. ,g2/,,12 @

2 2 2 /2 d dr/+ + + + +
The improper integral will converge absolutely if

1 ./g22 g22o + fl < 2, +

Hence, one sufficient condition is

482

We state this as the following lemma.
LEMMA 2.1. The integt’al

I(x, y, e, , fi) H(x y rl t) e< +" d dl

converges absolutely if cz 2 + fi2 < 1/4e2.
For the existence of the solution of (1.3) in the upper half-space > 0, we

have the following theorem.
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THEOREM 2.2. Let f(x, y) be continuous and If(x, Y)I <= M exp (lxl + filyl)for
all x and y, where M, :z, fl are positive constants such that 2 + f12 < 1/4e2. Then

(2.8) u(x, y, t) L[f] H(x , y rl, t)f({, rl)d{ dtl

is a solution of(1.3) with

(2.9) u(x, y, O)= f(x, y),

where H(x, y, t) is defined by (2.5).
Proof. The existence of the integral (2.8) is assumed by Lemma 2.1. It is easily

verified that the function u(x, y, t) satisfies (1.3) since differentiation with respect
to x, y and is justified under the integral sign. By elementary calculations, we have

f f H(x , y l,t) d dl l.

To show (2.9), we need to establish that

lu(x, y, t) f(x, Y)I H(x , y rl, t)(f(, rl) f(x, y)) d dr

can be made as small as possible within a suitable neighborhood of the point
(x, y, 0). Since this approach is quite standard, the details are omitted.

3. Generalized Helmholtz polynomials. Let .f(, r/)= mr/", m + n => in
(2.8). Then

Umn(X y, t; ,) H(x , y rl, t)’rl" d drl

H(, tl, t)(x + )m(y + l)n d dr

(3.1)
x"-iy"-j H(, r/, t)irl d dr

i=0j=0

m n __2t exp (t/2e2)xm-iy-I,
=o = 2i

where

I= fo fo exp [-_(1/2e)2/_- i-/-23/2/’/2
__
t2/2

Fori+j_>_ 1, weset =rcos0, q r sin 0 in (3.2). Then

f/:z fo exp [(1/2e)x// +I cosi 0 sin 0 dO
(r + t/e2)/

./ + t/e + 1 r++



SOLUTIONS OF Uxx + Uyy -- ,2 Ut Ut 465

It is easily shown that

2 (2i) !(2j)!
I cos 2i sin2j 0 dO

22i+ 2j+ 1(i + j)!i!j!
n"

To evaluate

__gN//r .qt_ /-2/g2 _11_ /2i + 2j +1 dr,

we set r (t/e)sinh p.
Then by transformation and integration by parts, we obtain

Ia 2(i + j) exp -cosh p (sinh p);i+j-1 dp.

Using a formula on the modified Bessel function of the third kind of vth order

K(z), F(1/2 + v)K(z) /(z/2) exp(-z cosh t)(sinh t) dt (see [2, p. 82])

we obtain

(i + j(0+-/._/

Since K+ /(z) (/2z)/ e =o (n + 1/2, m)(2z) (see [2, p. 10), then

1/2

12 =--g(i + j)!(2t)i+j-1/2

Hence,

t/ee27z(2i !(2j)! (2e)
I 1112 e-

i!j! 2i+j+

and

i+j-1

e-t/22 2
k=O k!F(i + j- k) -i+j--1 (i + j + k- 1)!
k!(i +j- k- 1)k--O

u.(x, y, t; )
(3.3) [m/e][n/2] xm-eiyn-2j i+j-1 (i + j + k- 1)! ti+_%2k

i= j= (m--fiiji- 22 2j)ij = k(i +j- k- 11
(Here we adopt the convention that whenever + j < 0,

k’(i+j- k- 1)’k=0

Now
[m/2] In/2] X 2iyn- 2j

lim umn(X y e’) m !n o o-0 i= j= (m- 2i)!(n- 2j)[i!j!’

which are two-dimensional heat polynomials [7, p. 391] and, when n 0,

[m/22 xm-2i i1 (i+ k-1) ti_kg,2kUmo(X, y, t" ) m
"i= (m- 2-!i!,=ok!(i- k- 1)!

which are two-dimensional generalized Helmholtz polynomials [3].
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We shall call (3.3) the generalized Helmholtz polynomials of dimension 3.
The generating function for the generalized Helmholtz polynomials defined

by (1.2) was obtained in 3], i.e.,

for all values of z such that Izl < 1/2e. For the determination of the generating
function for the set {Um(X, y, t; e,)}, we observe first that the function

(3.5) F(x, y, , , /3) exp x + yfi +

satisfies (1.3) for all complex values of and fl, and can be expanded in a power
series in e and fl provided that e2+ fi2< 1/4e2. We have to show that the
coefficients of emil, are Um,(X, y, t; e)/m !n! for any positive integers m and n.

To this end, we want to establish the following uniqueness theorem.
THEOREM 3.1. If W(X, y, Z) is continuously differentiable in z > O, and satisfies

(3.6) Iw(x,y,O)l(p2 + 1) -1 exp(-2p)Ll(R2),

where p N/2 + y2,2e2 1, and if

(3.7) f f f, [w(x, y, z)lr
<r<a+

exp (-2r) dx dy dz ---, 0

as a o, where r (x2 + y2 _+_ z2)1/2, then w(x, y, z) is given by the Poisson

formula (2.4).
Proof Apply Green’s formula in the form

where f is the hemisphere R2 2 + ///2
__
2 (a -- 2)2, >= 0, P0 (x, y, z),

and G is Green’s function of (2.3), and a > r (x2 + y2 _+_ z2)1/2. Now take

v (1 )w,

where W is a function of class C2(f)such that

W=0 for R <a,
W=I for a+l<_R<a+2.

For example, we may take

u? h(s) ds,

where h(s) 30s2(! s) 2.
Then the left-hand side of (3.8) approaches the Poisson integral (2.4). The

integrand on the right vanishes outside the hemispherical shell fl" a =< R =< a + 1,
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> 0. The only slightly troublesome term is

f f f ,GV .VwaV=f f aV

=f fonlWGdA-f f fn, w(GVP + VG’V’t’) dV

f f fn w(GVtP+VG’VtP) dV’

since Gc?tP/c?n vanishes on cfl. Since both G and VG are O(R-1 exp (-2R)), the
integral approaches 0 as a -, .

The above uniqueness theorem applied to u 1 (w exp (-2z)) yields

[oo H(x , y rl, t) d dr 1,

and applied to the solution H(x x l, y y, + ) yields

(3.9) f_ f H(x , y- 17, "c)H( x,, 17 Y l, t)d dtl,

corresponding to the semigroup property of the integral transformation (2.6).
If we define

then we have

N(t, )(u) <= N(O, + r)(u)

so that the integral transformation (2.6) preserves the property (3.6).
Similarly, if w exp[xe + yfi- z(22- e2_ fi2)1/2], u exp[xe + yfi

+ 22t(2 (22 e2 fl2)/2)], then we find that the integral in Lemma 2.1 is given
by (3.5) for e2 + f12 < 22. The series for u(, q, 0) in powers of e and fl is dominated
by exp ( + ]fl] Iq]) which satisfies (3.6), so that term-by-term integration is
justified. It follows that (3.5) is indeed the generating function for the polynomials
Um,(X, , t; ) in (3.1).

Thus

exp[xa+yfi+(1-(1- 4a2(2 + fi2))1/2)
m[n[Um(X, y, t, ).
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Remark It is worthwhile to note that (3.11) can be obtained directly from (3.4)
without use of Theorem 3.1. If we set z z cos 0, fi z sin 0 in (3.5), we have

f(x, y, t; e, , fl) exp lxz cos O + yz sin O + (1- (1- 492z2)l/2)l
(3.12) xmzm ZCOS 0

u,(y sin 0, t; )i"
m=0 m. n=0

Applying (3.4) to the second series, and rearranging (3.12) in powers of e and
fi, we can show that the coefficients of emil, are Urn(X, y, t;e)/m !n!.

4. Polynomial expansions. In this section we shall establish necessary and
sufficient conditions for series expansions of any solution of (1.3) in terms of the
generalized Helmholtz polynomials, {Um,(X, y, t; e)}. To do this, we need to know
the asymptotic behavior of Um,(X, y, ;e) when m,n .

LFMMA 4.1. For0 < z < ,0 < 6 < o,n 1,2, ...,

(4.1)

Proof This is proved by computing the maximum off(z) e-a=z
Theorem 4.2. lft > 0, oo < x, y < oo, m,n 1, 2, ..., then

(4.2) [Umn(X y, t; e)[ < K(e)t exp 61lxl 4- 821yl -t-

where K(e) is a suitably chosen constant and 6 + 62 < 1/4e2.
Proof

[utah(x, y, t; )1 g(x , y rl, t)"rl d dr

f H(, , t)(x + )m(y .+_ tl)n d dr

__< 4 H(, n, t)(Ixl + )m(lyl + q)" d dq

4exp

H(, r/, t) exp [61 + 62q] de dr/

2t
exp 611xl-+-621yl +

0f0 [ 2 g]2]{ q-F] 2) q-- (2 -ff F]2) 3/2}exp N// AV (2 -1

exp [51 -’[- 62/I] d drl

K(e)texp 611xl+a21y +2-e2



SOLUTIONS OF Uxx + Uyy - ,2 Ut Ut

where

(4.3)

2 fo fo I 1 2 1{K(e)= exp 61 + 62r/-x/ -q2 (2 +q2)-

+( + q2)-/2 }d dq < .
LEMMA 4.3. If the series

amnUmn(X y,
m, 0

converges at (xo, Yo, to), Xo > O, Yo > O, o > O, then

(4.4)

469

(4.5) Um,(Xo, Yo, to e) >
(2p)!(2q)! (2p + 2q 2)! tog2P + 2q 2

p!q! (p + q 1)!

Using Stirling’s formula n! x/nn+I/2 e-" as n--, oo, and the fact that
amnUmn(XO, YO, to; ) -- 0 as m,n c, we obtain

or

THEOREM 4.4. If

(4.6) lim sup lamn mnn
m,/’/--

then the series

(4.7) am,Um,(X, y, t; e)

converges absolutely in the upper half-space >= O.
Proof For 0 < 0 < 1, the condition (4.6) is equivalent to [am,[mmn" <__ (eo/O) +",

m,n >= N, for a suitable N(O), or

(4.8)

Proof We consider only the case m 2p, n 2q; the other cases can be
treated similarly.

The coefficients in the expansion of Um,(X, y, t;e) are always positive. Hence
for Xo > 0, Yo > 0, to > 0, u,,(Xo, Yo, to e) is larger than any term of the expansion,
in particular, the term involving ezp+ 2q-2. Hence
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By (4.2) and (4.8), the series (4.7) is dominated by

(4.9) + +

for 61 + 622 < 1/42.

Choose 61, 62 such that r < 61,62 < 1/2x//e. Since a/6aO < 1, a/620 < 1
for 0 near 1, the series (4.9) converges. This implies (4.7) converges absolutely
for > 0.

For 0, un’,(x, y ;e) In’y". Then by Lemma 4.1,

By the same arguments, the absolute convergence of (4.7) can also be proved
for 0.

Remark. In the case ofheat polynomials, that is, e 0, Widder and Rosenbloom
have investigated their asymptotic behavior for the cases > 0 and < 0, and
shown that the series (4.7) n’,=o %,vn’,(x, y, t), where vn’,(x, y, t) un’,(x, y, t;0),
converges in a region of the type It] < p, where p is a constant which depends on
different growth condition on the coefficients an,, (see [5] and [7]). In our approach,
we consider the asymptotic behavior of the generalized Helmholtz polynomials
only for >= 0 (see Theorem 4.2 and Lemma 4.3). The condition for the convergence
of the series an’nUn’n(X, y, t;g) in the lower half-space is still under investigation.

DEFINITION. A function f(x, y) belongs to the class (1, a) if it is equal to a
double power series

(4.10) f(x, y) an’,xn’y"

whose coefficients satisfy the inequality

(4.11) lim sup
]an’n] mn"ll 1/(n" + n)

COROLLARY 4.5. Let f(x, y) belong to the class (1, a), where a < 1/2x/2.
Then

u(x, y, e)

is a solution of(1.3) in the upper half-space > 0 and u(x, y, 0;e) f(x, y).
Proof Let 0 < 0 < and

If(x, y) <= lan’,l Ix n’ly["

=< Z ae 1;1 epllxl +.2lyl m n

for m,n >= N(O). Choose Pl, P2 < O" < 1/2x//- and 0 near 1. Then

Me,llxl+o21yl

where M is a constant.
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Hence f(x, y) satisfies the hypothesis of Theorem 2.2 and our result follows
from the same theorem.

COROLLARY 4.6. The series

2 amnUmn(X’ Y’ t; ,)
m,rt 0

is a solution of(1.3) if its coefficients satisfy the condition (4.6).
Proof By Theorem 4.4 and Corollary 4.5.
THEOREM 4.7. Let u(x, y, t;e) be a solution of (1.3) in > 0 and be continuous

in O. Suppose

u(x, y, t;e) amnUmn(X y, t;e).

Then u(x, y, 0;e) belongs to the class (1, 1/2).
Proof Let X=Xo >0, y=yo >0, t= to >0. The series converges at

(Xo, Yo, to). By Lemma 4.3,

Now

where

u(x,y,0,e) y amnX Y
m,tt 0

limsup
]a,m ran"

2V/-"
Hence u(x, y, 0;e) belongs to the class (1, 1/2-).
THEOREM 4.8. Let u(x, y, t) be a solution of (1.3) in > 0 and be continuous in

>= O. Suppose u(x,y,O) belongs to the class (1, or), where a < 1/2x/ and
w(x, y, z) exp [- z/2e]u(x, y, t; ), ez, satisfies condition (3.7). Then

(4.12) u(x, y, t) am,Um,(X, y, t; e)
m,tl 0

converges absolutely in > O, and

(4.13) m!n!am,
#m + .u(x y, O)

(xmcqy

Proof Let u(x, y, O) w(x, y, O) f(x, y).
The computation in Corollary 4.5 shows that f(x, y) satisfies the hypothesis

of Theorem 2.2, and, in particular, the condition (3.6). Hence w(x, y, z) satisfies the
hypothesis of Theorem 3.1 and can be represented by the Poisson formula (2.4).
Equivalently, u(x, y, t) can be represented by the integral (2.6).

Let u(x, y, O)= m,n=oamnxmy in (2.6), where amn is given by (4.13). The
series (4.12) is then obtained by termwise integration of the series u(x, y, 0) which
is permissible.
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5. Generalization. The polynomial expansions of any solution of the equa-
tion

@ 2u 2
i=l’a -- e2---u U

(5.1)
c3t2 ct

can be obtained in the same way as for n 2. Equation (5.1) can be transformed
into

(5.2) ,1 (2W

= cx{
22w 0,

where 2 1/2e, x,+ t/e and

w(x, x,, x,+ ) u(x x,, t)exp

The fundamental solution w(r), where r x//ET=+ x2, can be obtained from

(2W ///
(5.3) 6r2 r cr 22W 0.

As is easily verified, the function

p(r)
cw

satisfies the same equation as w(r) with n replaced by n + 2, that is,

2p n + 2
(5.4) c3r2 r cr ,2p 0.

The fundamental solution for (5.3) for any n can be obtained by recursion from
n and n 2. Then, by method of images, Green’s function G(xl,..., x,+l,

1, "’", ,+ 1) in the upper half-space can be obtained. The Poisson representation
formula is given as

The generalized Helmholtz polynomials Uml,...,m" (Xl,...,x,,t)= et/22

w(xl,...,x,,t/e), where W(Xl,’’’,X,,Xn+I) is generated by (5.5) with
w(l, "’", ,, 0) ],1, ,, and their generating function F(xl, "’", x,,

2", 1, "’", ,) can be shown as exp [1xl + + ,x, + t/22] for 2 + + ,
< 1/4e2. However, it should be pointed out that since the kernel cG/c,+ in
(5.5) involves both exponential functions and Bessel functions of different orders,
it is impossible to give an explicit formula for any arbitrary n. If we are interested
in obtaining the set of polynomials for a fixed n, say n 3 or 4, the Poisson formula
(5.5) can be given in closed form and the generalized Helmholtz polynomials are
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given through detailed calculations as

2il mn 2in[mx/2] [mn/2]
X1 Xnml!...m.! Z (m Z/x)’ ..(m.- 2i.)’i 1’il =0 in=O

/+"’+i,-1 (i + + i. + k- 1)!
k(i + + i.- k- 1) til+i2+’’’+i"-k’zkk-O

for a fixed n. All the theorems in this paper can be extended to the general case
with obvious modifications.
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VERTICAL ASYMPTOTES AND BOUNDS FOR CERTAIN SOLUTIONS
OF A CLASS OF SECOND ORDER DIFFERENTIAL EQUATIONS*

S. B. ELIASON

Abstract. In papers ofWong and Hille results appear concerning the existence ofvertical asymptotes
of certain solutions of second order nonlinear differential equations. Specifically, Hille considers the
Thomas-Fermi equation. Results here, which in part involve methods of these authors, provide upper
and lower bounds for solutions of the initial value problem

y"= p(x)y, y(a) > 0, y’(a) 0,

as well as bounds for the first vertical asymptote b > a of such solutions. The coefficient function p
is positive and continuous on an appropriate interval under consideration and 7 >_- 1. The bounds
are given in terms of integral functionals involving the coefficient function p and solutions, computable
in terms of the incomplete beta-function, of a similar initial value problem where the coefficient function
is constant. The results are applicable in their most complete form when the coefficient function is
either monotone increasing or monotone decreasing. Specific results are obtained for certain special
equations including the Thomas-Fermi equation.

1. Introduction. We consider here certain real-valued solutions of the second
order differential equation

(1.1) y" p(x)y

where throughout most of our discussion we assume the following hypothesis:
(H1) the real-valued function p is continuous on Ia, b) and positive on (a, b),

where a < b are real numbers (or b + ), and 7 is a real number.
The author 33 provides a result which may be applied to (1.1). It states that

if a solution y of (1.1) satisfies

(1.2) y(a) > O, y’(a) 0

and

(1.3) lim y(x)= +,
xb

where 7 > 1 and b < +, then

(1.4) 7[2/(7 1)32 =< (b a)y(a)]-1 p dx.

It is clear that this result can be extended to apply if negative-valued solutions
are considered. For this, in (1.1), y needs to be changed to (sgn y)[yl and absolute
values need to be inserted in appropriate places in (1.2), (1.3) and (1.4). For ease
of notation we shall not take this extension into consideration in this paper.

We see that (1.4) places a lower bound on a functional involving the initial
value y(a), the coefficient function p and the distance from a to a vertical asymptote
b of y, where b > a. The sharpness of this result is shown by the author 3 for

* Received by the editors June 24, 1971.

" Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069. This research
was supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United
States Air Force, under Grant AFOSR-71-2069.
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the case of 7 3, i.e., the constant on the left in (1.4) cannot be increased without
making (1.4) invalid for some coefficient function p and corresponding solution y
of (1.1), (1.2) and (1.3).

Wong [9] has a short section on the existence of vertical asymptotes of certain
solutions of equations more general than (1.1). Hille [6 considers the same
question for the Thomas-Fermi equation

(1.5) y" X- 1/2y3/2,
which is a special case of(1.1) under (Ha) when 0 < a. Both Wong and Hille show,
in the setting of their equations, that there are solutions possessing vertical
asymptotes in an interval. They do not restrict themselves to the initial conditions
as in (1.2), but allow the initial slope to vary. The main result of 4 of Hille [6 is
the following theorem.

THEOREM 1.1 (Hille). Let y be a solution of (1.5) defined by initial conditions

of theform
(1.6) y(a) co, y’(a) c

O <__ co O <= ct, co + c > O.

Then there exists a number a < b < + and y(x) + o as x b-. Furtherfor
b x small,

(1.7) y(x) < 400b(b x) -4.

If in particular

(1.8) Sc 4a-1/ZCo/2,
then

(1.9) b < [a3/ -+- (3/2)51/2b- 1/414/3
and (1.7) holds for all a < x < b.

In the proof of the above theorem Hille also establishes a lower bound on
the solution which, unlike the bound in (1.7), does not depend on a previous
knowledge of the value of the vertical asymptote b.

The purpose of this paper is to use solutions of special equations having
constant coefficients to provide both upper and lower bounds for solutions of
(1.1) and (1.2), provided the coefficient function p satisfies certain properties to
be described, and these bounds will be independent of a previous knowledge of
the value of a vertical asymptote. Also we shall obtain upper and lower bounds
on the value of the vertical asymptote (possibly + ).

We shall use certain methods found in Wong [9 and Hille [6] as well as
others motivated by results in Nehari [7], Barnes [2] and the author [41, [5, in
which differential equations of a different type are considered, but which do
consider integral functionals similar to those we consider here.

2. The constant coefficient equation. For comparison purposes let u
solution of the initial value problem

be the

(2.1) u" =u, u(0)= 1, u’(0)=0,

where 7 > 1.
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Clearly for 7 1 we have uT(x cosh x. Thus u has no finite vertical
asymptote, or we may say it has a vertical asymptote at z(1) + .

When 7 > 1, uT(x may be expressed in terms of the incomplete beta function.
In fact, by multiplying both sides of the differential equation in (2.1) by u’ and
integrating we obtain

7+ 1(0)].u(x)- E2/(; / 1)Eu + I(X)- U

Then by taking square roots, dividing, noting that the improper integral exists
for x > 0 as long as u is continuous on IO, xl, we have for all such x that

(2.2) x [(7 + 1)/2] 1/2 (u7+1 1)-1/2 du.
,1

Now clearly u is increasing on [0, x] as long as it is continuous and since the
improper integral

1

(UT+ 1)-1/2 du

converges there is a least positive real z(7), called the first vertical asymptote of u7,

has an inverse on the interval 0, z(7))such that uT(x + as x z(7)-. Thus u7
and its values may be computed as

(2.3)

U I(X)--" [() -- 1)/2 1/2 (U?+1 1) 1/2 du

[2(7 + 1)- 1/2 U- +(;- 1)/2(7+ 1)(1 U)- + 1/2 dv
-(+ )

2(7 + 1)j-1/ZB_-(+ )(1/2, (7 1)/2( + 1)),

under the substitution u v- 1/(+ 1). Now B(z, w) is the incomplete beta function
as defined by Abramowitz and Stegun lJ and Pearson 8 and its values may
also be obtained from these sources for various x, z and w. Also from Abramowitz
and Stegun [1] it follows that Bl(Z, w) is the complete beta function which in
standard notation is given by

B(z, w)= F(z)F(w)/F(z + w),

where F is the complete gamma function. Thus z(7), 7 > 1, may be computed by
using (2.3), letting x , as

(2.4) z(7) 2(7 + 1)j-1/zF(1/2)F((7 1)/2(7 + 1))/F((1/2)+ (7 1)/2(7 + 1)).

3. The first comparison of solutions and asymptotes. To begin, we introduce
some notation which will allow us to modify methods used by Wong I9.

Assume p satisfies (H 1) and define p, and p* on a, b) by

p,(x) inf {p(t)’t Ia, x]}
(3.1) and

p*(x) sup {p(t)" [a, xl}
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Now with y being a solution of (1.1) and (1.2), as long as y is continuous on
a, x], a < x < b, we may multiply (1.1) by y’ and integrate to obtain

(3.2) y’2(x) 2 p(t)y(t)y’(t) dt.

Now since y(t) > 0 and y’(t) > 0 on (a, x) we have

(3.3)
2/(7 + 1)]p,(x)y+ l(x)- y+ l(a) < y’2(x)

=< 2/(7 + 1)]p*(x)y+ I(X) y)’+ l(a)],
where the inequalities are both strict unless p(t) =_ p(a) on [a, x3. We may now take
square roots, divide by [2/(7 + 1)]l/2[y+l(x)- y+l(a)]l/2 and integrate. By
making use of the fact that

(3.4)

I(7 + 1)/2] 1/2 y,(t)y+ l(f) y+ l(a)]-1/2 dt

y(x)/y(a)

I(7 + 1)/2]x/ZY(a)] -(- 1)/2 (U+1 1)-1/2 rib/
’1

y(a)]-(-1)/2 u7 l(y(x)/y(a))

(see 2 and note that (3.4) is valid for all 7 _>- 1), it follows from (3.3), (3.4) and
the remarks between that

[y(a)](-1)/2 ,-,n1/2 dt =< u l(y(x)/y(a))

<= [y(a)(,- 1)/a p,1/2 dr.

As in (3.3), the inequalities in (3.5) are strict unless p(t)=_ p(a) on a,x. Now
since u is increasing we may apply it to all quantities in (3.5). This yields a lower
bound on y(x) on a, b) for as long as y is continuous on [a, x. It yields an upper
bound on y(x) as long as

(3.6) [y(a)](-l)/2 p,1/2 dt < z(7), a < x < b.

From (3.5) it also follows that if b > a is the first vertical asymptote of y, then

(3.7) [y(a)](,-1)/2 ,,r1/2 dt =< z(;) =< [y(a)l(,- 1)/2 p,1/2 dr,

where (3.7) is valid even in the extended sense of b + c and also in the case of
7 where z(1) + oo, which is of little interest since all solutions of (1.1) and
(1.2) extend throughout a, b). Now for 7 > the inequalities in (3.7) are both
strict unless

p(x) =_ z2(2)/(b a)Z[y(a)]-1 on a, b).

For the special cases when p is monotone increasing (decreasing), on [a, xl,
a < x < b, then p*(t) p(t) (p,(t) =_ p(t)) and p,(t) p(a) (p*(t) =- p(a)) for
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e [a, x). Respective of these cases the second and first inequalities of (3.5) become

(3.9) y(x) <= y(a)tl, [y(a)](- 1)/2 pl/2 dt

provided (3.6) holds with p* p, and

(3.9’) y(a)u, [y(a)(-/ p/ dt y(x).

Also, respective of the cases of p being monotone increasing (decreasing) on
[a, b), (3.7) yields

(.0 z( [(a(’-/; p/,

which implies by the Schwarz inequality that

(3.10) z(7) <__ (b a)[y(a)l- p dr,

and

(3.10’) [y(a)- 1)/2 pl/2 dt z()).

Here we pause to notice that when 7 > 1, (3.102) places a lower bound on the
functional which appeared in (1.4). Thus when p is monotone increasing on
[a,b), since z2(7)> 712/(7 -1)2, (3.102) sharpens (1.4). Due to the Schwarz
inequality, unless p is identically constant, (3.10) is sharper than (3.102) for each
fixed p.

We summarize the above results in the following theorem.
THEOREM 3.1. Let p satisfy (H1) and y be a solution of(1.1) and (1.2). Then as

long as y is continuous on [a, x], a < x < b, (3.5) holds, where the inequalities
are strict unless p(t) =- p(a) on a, x. Also (3.7) becomes a necessary condition jbr
y to have its first vertical asymptote at b > a, where when 7 > these inequalities
are strict unless (3.8) holds. In the special case of p being monotone increasing on
[a, x], a < x < b, (3.5) yields (3.9) provided (3.6) holds where p* p; and in turn

(3.10) and (3.102) are validfrom (3.7) ifp is monotone increasing on a, b). Finally the
case of p being monotone decreasing on [a, x, a < x < b, and a, b) respectively
yields (3.9’) and (3.10’)from (3.5) and (3.7).

4. The second comparison of solutions and asymptotes. We again begin by
introducing notation related to a concept used by Barnes 2 and the author 4
and 5. From this, for certain classes of coefficient functions, we shall be able to
obtain inequalities going in reverse directions from those in 3. The new inequali-
ties here involve the coefficient function by an averaging process. We shall be able
to apply the inequalities of both sections if, for example, the coefficient function is
either monotone increasing or monotone decreasing.

DEFINITION 4.1. Let p satisfy (H 1) and define Pa on [a, b) by

(4.1) Pa(x)
(x- a)- pdt if a < x < b,

p(a) if x a.
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Then p is said to be monotone increasing (decreasing) on the average from a on
(a, b) if Pa is monotone increasing (decreasing) on (a, b).

Remark. Even in the case of the Thomas-Fermi equation when a 0 where
p(x) x- 1/2 it follows that the corresponding Po exists on (0, ). Due to later use,
we also point out that in this case p/2 is integrable on [0, x] for each x > 0.

It is interesting to note that p satisfying (H1) and being monotone increasing
(decreasing) on (a, b) implies the same of Pa. On the other hand, let p be defined
by p(x) x(4 x). Then p is not monotone increasing on (0, 3) whereas the corre-
sponding P0 is.

Now let y be a solution of (1.1) and (1.2) where (H1) is assumed to hold. We
may continue from (3.2) to establish for a < x < b, as long as y is continuous on
[a,x],

(4.2)

y’2(x) 2 pds y(t)y’(t) dt

2y(x)y’(x) p ds 2 (t a)- p ds (t a)[y(t)y’(t)] dt,

by an integration by parts and division and multiplication of the one integrand
by (t a).

We have y(t)y’(t)3’ > 0 on (a, x) as long as y is continuous on a, x, a < x < b.
Thus respective of whether P, as given in (4.1), is monotone increasing or mono-
tone decreasing on (a, x), we have

(4.3) 2P,(x) (t a)Ey(t)y’(t)] dt < 2 P,(t)(t a)Ey(t)y’(t)l dt

and

(4.3’) 2 P(t)(t a)[yv(t)y’(t)] dt >= 2P,,(x) (t a)[y(t)y’(t)] dt.

By an integration by parts we have

t ’t(4.4) (t -a)[y ()y()] dt (x a)y’(x)y’(x) (7 + 1) 1Ey,+ l(x y,+ l(a)

Placing (4.4) in (4.3) and (4.3’) and in turn (4.2) yields

(4.5)

and

y’2(x) > [2/(7 + 1)]P,(x)[y+ I(X)- YT+ l(a)-]

(4.5’) y’2(x) _<_ [-2/(7 + 1)]P(x)Ey

respectively of whether P is monotone increasing or monotone decreasing on
(a, x) as long as y is continuous on [a, x, a < x < b.
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Clearly (4.5) and (4.5’) correspond to the first and second inequalities of (3.3)
respectively. Thus the results of 3 from (3.3) and following may all be repeated,
with p, exchanged for Pa when P, is monotone increasing on the appropriate
interval, and p* exchanged for P, when P, is monotone decreasing. According to
previous usage we shall use unprimed and primed numbers to label displays
respective of these conditions. Thus (3.5) yields respectively

(4.6) [y(a)j(,-1)/2 p1./2 dt u l(y(x)/y(a))

and

Uv l(y(x)/y(a)) [y(a)(-1)/2 p.1/2 dr,

provided y is continuous on Ia, x, a < x < b.
We pause to notice that the inequalities (4.3) and (4.3’) are strict in their respec-

tive situations unless P,(t) P,(a) p(a) on a, x. Now this is the case if and only
if p(t)= p(a) on a, x. Thus, as in 3, we have (4.6) and (4.6’) strict unless
p(t) =_ p(a) on Ia, x].

Again applying u to (4.6) and (4.6’) yields

(4.7) y(a)u [y(a)](- )/2 p.1/2 dt

as long as y is continuous on Ia, xJ, a < x < b; and

y(x) <= y(a)u [y(a)](- 1)/2 p1./2 dt

as long as

(4.8) [y(a)](-1)/2 p.i/2 dt < z(7),

Also as in 3, if b > a is the first vertical asymptote of y, then

(4.9) Vy(a)](,-1)/2 p,1/2 dt <= z(?)

and

2(7) <= [y(a)](y-1)/2 p1./2 dr,

a<x<b.

respective of the unprimed and primed conditions. Furthermore by previous
remarks concerning strictness, when 7 > 1 the inequalities (4.9) and (4.9’) are strict
in their respective cases unless (3.8) holds.

We summarize these results in the following theorem.
THEOREM 4.1. Let p satisfy (H1), y be a solution of (1.1) and (1.2) and P, be

defined as in (4.1). Then as long as y is continuous on a, xJ, a < x < b, and respective

of whether P, is monotone increasing or monotone decreasing on Ia, x, we have that
(4.5) and (4.5’) must hold. These in turn yield respectively (4.6), (4.7) and (4.6’),
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(4.7’), where (4.8) restricts x in (4.7’). The inequalities (4.5), (4.5’), (4.6), (4.6’), (4.7)
and (4.7’) are all strict unless p(t)-- p(a) on a, x. Also (4.9) and (4.9’) become
necessary conditions for y to have its first vertical asymptote at b > a, where when

7 > 1 these inequalities are strict unless (3.8) holds.

5. Applications. As remarked earlier, we may apply the results of both 3
and 4 if for example the coefficient function in (1.1) is either monotone increasing
or monotone decreasing. We first compare our results with those of Theorem 1.1
(Hille).

For the Thomas-Fermi equation (1.5) we have p(x) x -1/2 and by direct
computation it follows that

f pl/2 dt (4/3)(x3/4 a3/4),

(5.1) P, (x)= 2(x 1/2 + al/2) -1,

f p]/2 dt (4/3)21/2I(xl/2 + al/Z)l/Z(x1/2 2a 1/2) + (2al/Z)1/Za1/2.

Clearly p is decreasing and satisfies (H1) on [a, ) if a > 0. Thus (3.9’) places a
lower bound on y(x), where y is a solution of (1.5) and (1.2) with a > 0, and (4.7’)
places an upper bound on y(x) as long as (4.8) holds with 7 3/2. These bounds
are computable in terms of the incomplete beta function, as earlier remarked, and
are not dependent on a previous knowledge of the value of the vertical asymptote.

Also (3.10’) and (4.9’) may be applied. Here we see that if b > a is the first
vertical asymptote, then

(4/3)(b3/4 a3/4)y(a)l/2 < z(3/2)
(5.2)

< (4/3)21/2[(bl/2 + al/Z)1/Z(b 1/2 2al/2) + (2al/Z)1/Za1/Z][y(a)l 1/2

Now the first inequality in (5.2) may be easily solved for b and this yields

(5.3) b < [a3/4 + (3/4)z(3/2)[y(a)-1/434/3.

We may compare this directly with (1.9). Since

(5.4) z(3/2) F(1/10)F(1/2)/51/ZF(3/5),
from (2.4), we may use approximate values from Abramowitz and Stegun I1] to
show that

(5.5) (3/4)z(3/2) > (3/2)51/2,
but these numbers are quite close to each other. In fact the ratio of the two is
approximately 1.13. Thus Hille’s bound, if it would apply (note (1.8)), would be
slightly better.

We see that (5.2) yields a lower bound on b as well. This inequality is too
difficult to solve algebraically unless a 0.

Remark. The results of 3 and 4 may be applied to handle the Thomas-Fermi
1/2 is integrableequation even when a 0. In this case and in 3, p, p and p,

(properly or improperly) on compact subintervals of [0, oe). Thus the first in-
equalities in (3.5) and (3.7) can still be shown to be valid. Also (3.9’) and (3.10’) extend
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in this case. Concerning 4, the remark following Definition 4.1 and an inspection
of the results show there is no problem in making our application here.

Thus for the case of a 0, mentioned above, we solve the second inequality
in (5.2) to obtain

(5.6) b > {[(3/4)z(3/2)l’[2y(O)] -2}/.
Our results above for the Thomas-Fermi equation obviously extend to cover

the equation

(5.7) y"= xy,
when2<0and7 > 1, provideda>0when2=< -1,anda_>_0when-1 <2<0.
This includes, for example, the Emden-Fowler equation where 7 > and 2 7.
We choose not to go through the computations in these cases. We do mention
here, however, that with p(x) x, a > 0 and 2 < -2 we have

p x/2 dx < + ct) and Pla/2 dx +

so that the bounds from (3.9’) and (4.7’) etc. are not as precise as is the case with the
Thomas-Fermi equation.

As a further example we do wish to provide computations for the equation
(5.7) in the case of 2 > 0, 7 ->- and a 0. Here with p(x) x we have

/31/2 dt 2/(2 + 2)x’+ 2)/2,

PO(X) (t, + 1)-lx2,

lCP/2 dt- 2/(2 / 2)(2 + 1)-1/2x(2+2)/2.

Thus from (3.9) and (4.7) we have

[y(O)u(2/(2 + 2)(2 + 1)- l/2x(2+2)/2[y(O)(Y-1)/2) < y(x)
(5.9)

< y(O)u(2/(2 + 2)Ix + 2)/2[y(0)]- )/2).

We notice here that both upper and lower bounds on y(x) are of the same order of
growth, only different constants appear as coefficients in these expressions. When
7 we have from 2 that u(x) cosh x, and so (5.9) provides fairly accurate
bounds for y on [0, ).

Also for 7 > l, from (3.10) and (4.9), if b > a is the first vertical asymptote of
a solution y of (5.7) and (1.2), where a 0 and 2 0, we have

(5.10)
(2 + 2)2z2(7)/4y-(O)/z+2)< b

< (2 + 2)2(2 + 1)z2(7)/4y-(O)/+),

which provides fairly sharp bounds since these bounds differ by a multiplicative
factor of(2 + 1) 1/(’+2). We note here also that this factor expression in/l tends to
as/l becomes very large. Thus (5.10) becomes more precise as 2 becomes very large.
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6. Concluding comments. The methods of this paper are quite dependent
on the fact that the solution of (1.1) satisfy the initial conditions (1.2). There are
places, however, where initial slopes, other than zero, may be considered. The
first inequalities in (3.3), (3.4) and (3.7) are still valid if y’(a) > 0 and y(a) > O.
Consequently in this case and when p is monotone decreasing, (3.9’) and (3.10’)
are valid. Due to the methods of our proofs we are not able to draw many con-
clusions for the case of y’(a) < 0 nor for the boundary conditions

(6.1) y(a) O, y’(a) > O.

The boundary conditions (6.1) are certainly of interest and hopefully methods will
be obtained to handle them.

As a brief comment we note that the roles of a and b may be interchanged and
in so doing the functional Pa in (4.1) needs changing to

Pb(x)
(b X)-1 p dt if a < x < b,

p(b) if x b,

with corresponding changes made in (H 1) and the various results.
Next, the result (1.4) of the author I31 is valid for equations more general

than (1.1). The results of 3 and 4 will also apply to certain solutions of the
equation

(6.2) y" p(x)f(y)

provided (H1) is satisfied (the statement 7 > 1 does not apply), f :[M, c) --+ R is
differentiable with f(y) > 0 and f’(y) > 0 on (M, oo) for some constant M > 0,
and provided the results of 2 run through for a certain computable solution of a
specific initial value problem having a constant coefficient differential equation.

As an example, y(x) sec x yields y a solution of

(6.3) y"= y(2y2- 1), y(0)= 1, y’(0)= 0.

In this case the computations of 2 may be repeated and (2.3) becomes

(6.4) arc sec x u- 1(//2 1)- 1/2 db/.

Thus in 3 we may consider solutions of (6.2) and (1.2) where f(y) y(2y2 1),
p satisfies (H 1) and where, due to later restrictions, we must consider y(a) > M.
In this case (3.2) becomes

(6.5) y’Z(x) 2 p(t)[y(t)(2y2(t) 1)]y’(t)dr,

(3.3) becomes

{6.6) p,(x)Ey4(x)- yZ(x)] =< y’Z(x) __< p*(x)[y4(x)- yZ(x)l

(3.4) becomes

(6.7) [y(t)(y2(t) 1)1/21- ly’(t) dt arc sec y(x) arc sec y(a)
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and finally, from (6.6) and (6.7), (3.5) becomes

(6.8) + arc sec y(a) arc sec y(x) p,1/2 dt + arc sec y(a)

for as long as y is continuous on [a, x], a < x < b.
Similarly by direct inspection and some computation, with y as given above,

where we also note [f(y(t))y’(t)’> 0 on (a, x), the results (4.2) through (4.5’)
and others of 4 all extend to cover our present example. Thus the results of 5
can also be modified to handle this situation.
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FUNCTIONS WHOSE FOURIER TRANSFORMS DECAY AT INFINITY"
AN EXTENSION OF THE RIEMANN-LEBESGUE LEMMA*

N. BLEISTEIN’, R. A. HANDELSMAN: AND J. S. LEW

Abstract. An extension of the Riemann-Lebesgue lemma is stated and proved. We define the
space LL of all complex-valued locally integrable functions on [0, + ), and the space RL of all
functions f in LL such that

F(co) lim exp (icot)f(t) dt

exists for all sufficiently large co and such that lim F(co) 0. First we consider all functions f
in LL with asymptotic expansions, as + oe, of the form

N(m)

f(t) exp [iTtl Cm.t-r(m)(log t)n.
m=0 n=0

Here 7 and are real, N(m) is finite for each m and 0 < Re (r(0)) < Re (r(1)) < It is shown that
RL contains all such functions except in the anomalous case 7 < 0 < < < 2, Re (r(0)) + v/2 < 1.
Then we show that RL contains all functions in LL whose amplitude and phase satisfy any of three
qualitative sets of assumptions. These later results collectively generalize the previous assertion.

1. Introduction. Ill(t) belongs to the class L110, + c), then, as is well known,
its Fourier transform

F(co) exp (icot)f(t) dt

exists for all real co and, by the Riemann-Lebesgue lemma (see Titchmarsh (1948,
p. 11)), satisfies

(1.2) lim F(co) O.
+

On the other hand, it is also known that F(co) may exist and satisfy (1.2) even
when f(t) is not in LI[0, + o). In particular, (1.2) holds whenever (1.1) converges
uniformly in co for all sufficiently large co (see Doetsch (1950, p. 171)). The class
of functions for which this is true includes LI[0, + c) but, in fact, is much broader.
For example, it includes the function f(t) for 0 < r < 1, which is not in
LI[0, oo).

Unfortunately this more powerful criterion is not always easy to apply.
For example, it would be rather difficult to test the uniform convergence of (1.1)
for a function such asf(t) t- 1/4 exp (- it3/2). Thus, motivated by our examples,
we shall introduce a space RL consisting essentially of all functions which satisfy
(1.2) and shall seek to describe a wider class of functions than LI[0, + ) which
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belong to RL. Within this wider class we shall seek in particular to include functions
which are integrable over finite intervals but which lie outside LI[0, + oo) because
they decay too slowly near + oo. Indeed, in the sections below we obtain a family
which we believe is large enough to include most functions arising in practice.
In doing this we find that, in general, the resulting transforms (1.1) are improper
Lebesgue-Stieltjes integrals and that these integrals need not converge for all
real oo. We shall prove, however, for this family that (1.1) exists for all sufficiently
large co, so that (1.2) can hold nevertheless.

In 2 we define the space RL more precisely, recall some useful inequalities
for functions of bounded variation, and prove the convergence as stated of the
relevant improper integrals. In 3, we consider the class of functions locally
integrable over finite intervals and having, as -+ + oo, the asymptotic form

N(m)

(1.3) f(t)
m=On=O

By independent arguments we establish (1.2) for this class except for the range of
parameters 7 < 0 < 1 < v < 2, Re (r(0)) + v/2 1. We observe here as a special
case that the Airy function Ai(-t) has an expansion of the form (1.3) with v
and r(0)= . Hence this function satisfies Re (r(0))+ v/2 1, and its Fourier
transform, 2- cos (ma/3), neither grows nor decays at m. In other cases, as we
shall show, F(m) can even increase as m + m. Finally, in 4 we obtain additional
theorems which extend the preceding result to more qualitatively described
functions. Moreover, the results of } 4 include functions not precisely of the form
(1.3) while those of } 3 include most functions of practical importance and yield
sharper estimates, when they apply, of F(m) as

2. Preliminary results. In this section we shall obtain results, some of them
well known, which will be useful in our later discussions. Throughout, we let R
denote the real numbers and let C denote the complex numbers. Thus if a is in R,
then R"’+) and C"’+) are respectively the sets of all functions from a, +
into R and C. For any f in R’+) we let fT or f+ denote respectively that f is
nondecreasing and nonincreasing. Moreover, we callfmonotone if eitherfy off+.

For anyfin C’+ ) we write

(2.1) f(+ m) lim f(t)

when this limit, finite or infinite, is well-defined. Indeed, we note that f(+
exists wheneverf is monotone on some b, + m). This in turn implies thatf(+
exists whenever .( is a sum of monotone functions, at most one of which is un-
bounded, and hence whenever f has bounded variation on some [b, + m) since
any such f is the difference of two bounded nondecreasing functions (see Widder
(1941, p. 6)).

For anyf in C’+) and any a in [0, + m) we let s(f) be the supremum of
If] on a, + m) and we let v,(f) be the variation of f on a, + m), that is, the
supremum of

(2.2) ]f(t) f(t_ )l
i=1
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for all increasing sequences (to,..., t,) in Ea, + ). We permit s,(f) and
to assume the value + o, so that both are defined for all f. Relevant properties
of v,,o(f) are reviewed in the following lemma.

LEMMA 1. For any a, b, in E0, +oo), c in C,f, g in

(2.3)

(i) s.(f) <= If(a)
(ii) va, oo(c O,

(iii) v,,oo(cf)=
(iv) v.,(f + g) v.,(f) + Va,(g),
(V) V.,(fg) s.(f)vo,(g) + V.,(f)s.(g),
(vi) iff is nonnegative and monotone on a, + ), then Va,(f) s.(f),
(vii) if O < b fon a, + ), then v,(1/f) v.,(f)/b2,
(viii) 0 f and g gx + g2 with 0 < b g T and 0 g2, then

v,,oo(f/g) < b- if(a){ + b-’Es,(g2) + Va,oo(g2)}.

Proof Properties (i)-(vii) are obvious from our definitions and indeed are
well known. To prove (viii) we note that 0 =< ge/gl and hence that

(2.4) v,,oo[(1 + g2/gl) -1] -< Va, oo(g2/g 1) Va, oo(1/gl)Sa(g2)--k Sa(1/gl)Va, o(g2)

=< b-l[Sa(g2) + Va,oo(g2)]
by properties (iv)-(vii). Thus the identity

(2.5) )C/g (f/g1)(1 + g2/g1)-1
yields (2.3) by property (v).

We shall be concerned primarily with functions on [0, + c) and, since this
interval is understood throughout, we let LL denote the set of all functions in
Ct’+) which are locally integrable and let L denote the set of all functions in
LL which are absolutely integrable. Moreover, we let B denote the set ofall functions
in LL with f(+ )= lim,.+o f(t)= 0 and with v,oo(f) < + o for some non-
negative a. Then B, L and LL are complex vector spaces, and B has a useful
decomposition property, established in the following lemma.

LF,MMA 2. Iff is in B, then f /4=o cifi, where fo is in L, Co,..., c4 are in C
and fl, ,J’ are nonnegative nonincreasing functions with fi( + ) O.

Proof If we choose a >= 0 so that v,o(f) < + m and let

if(t) on [0, a),
(2.6)

0 on [a, +c),

then Re (f fo) and Im (f -fo) have bounded variation on [0, oo) so that

(2.7) Re(f-fo) =gl g2, Im(f-fo)=
where gl, ,g4 are nonnegative and nondecreasing (Widder (1941, p. 6)).
Moreover, gi(t) 0 on [0, a) by construction and gi( + o) is finite for 1, 2, 3, 4,
while gl(+ ) g2(+ ) and g3(+ ) g4( + oo) by our assumptions on f
Thusfhas the desired form with f g(+ o) gg for 1, ..., 4.

For anyfin LL we now define

(2.8) f(co) lim exp (icot)f(t)dt
-t-
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when this limit exists. Motivated by the Riemann-Lebesgue lemma we let RL be
the set of all fin LL such that F(co) exists for sufficiently large co and vanishes as
co -+ + c. Clearly L is a subspace of RL and RL is a subspace of LL. We note
that if g is in RL andf is in LL with f a translate of g by some real a, then f is in
RL since F(co) exp (icoa)G(co). Also if g is in RL and f is in LL with f different
from g only on some [0, a), then fis in RL sincef- g is in L.

To discuss the behavior of F(co) near -oo we need only observe that
lim,__ F(co)= 0 if and only if RL contains the complex conjugate of f. To
discuss the behavior of

(2.9) exp (icot)g(O dt exp (- icot)g(- t) dt

near + o, where g is locally integrable on (-c, 0, we need only determine
whether or not RL contains f(t) g(-t) and its complex conjugate. Finally to
discuss the asymptotic behavior of Fourier sine and cosine transforms we need
only combine these remarks suitably, so that our problem is simply to find criteria
under which functions f lie in RL.

We begin with a preliminary result which includes the example f(t) -.
We then establish the existence of F(co) for sufficiently large co and for a class of
functions including all of those treated hereafter.

THEOREM 1. Iff is in B + L, the vector sum of B and L, then F(co) exists for
all co = 0 and vanishes as co -+ +__ c, so that B + L c RL.

Proof Iff is in L, then this statement is the ordinary Riemann-Lebesgue
lemma, so that without loss of generality we may suppose that f is in B. Thus
Lemma 2 implies that we may suppose 0 __< f+ and f(+ v) 0. If co 4= 0, then
such anf satisfies

(2.10) exp (icot)f(t) dt= (ico)-l[exp (icou)f(u) f(O) exp (icot) df(t)]

through Riemann-Stieltjes integration by parts (Widder (1941, p. 7)). Thus

(2.11) [F(co)[ =< co-’If(0)+ Vo,(f) O(co-1)
as co -+

Tno 2. Let f(t) g(t)exp (ip(t)) with g in B and p Po + P + P2. Let
Po, Pl, P2 be functions in R’+) with Po and P’2 in B, p’ in LL and eventually
monotone. Then F(co) exists for sufficiently large co.

Proof If we choose a so that v,,oo(g) and v,,oo(po)< + c, then we find
by computation that v,oo(exp(ipo))< +c, and hence by Lemma 1.5 that
v,,oo[g exp (ipo)] < + oo. Also we note that exp (ipo) is bounded and measurable
on [0, a), so that g exp (ipo) is absolutely integrable on [0, a). Thus we may assume

Po 0, since g exp (ipo) is in B, and we may assume 0 < g+, g(+ c) 0 through
the decomposition afforded by Lemma 2. We now choose a so that p’ is monotone
on a, + ), va, oo(p’2) < + oo, and remark that by hypothesis p](+ c), p(+ c)
are well-defined.

If P’I( + c) is finite, then va,oo(P’) is finite, and if

(2.12) co >__ b + p’l(-+-oO)-+- s,[p’-- p’(+ oO)], b > 0,
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then va,[g/(09 + p’)] O(b -1) by Lemma 1.8. If p’l(+) is infinite, then for
each 09 there exists a(b, 09) such that 09 + p’ has one sign and

(2.13) I09 + P’ >= b + Sa(b,o)(p), b > O,

on [a(b, 09) + ), whence ta(b,o),[g/(09 -k- p’)] O(b-1) by Lemma 1.8. In either
case for each 09 >= some 090 there exists u(09) such that v,,[g/(09 + p’)] < + ;
and for any v >= u,

exp (iot)f(t) dt [exp (i09t + ip(t))g(t)/(i09 + ip’(t))],

(2.14)
exp (i09t + ip(t))d[g(t)/(i09 + ip’(t))]

through Riemann-Stieltjes integration by parts. Since g(+ 0) 0 this shows the
convergence of

(2.15) F(09) lim + exp (i09t)f(t) dt, 09 >= 090.

3. Asymptotic RL criteria. In this section we study the behavior of trans-
forms F(09) for functions f(t) with asymptotic form (1.3), and we prove a theorem
which not only motivates our later results but also includes many practical cases.
To facilitate the presentation of this theorem we first treat the Fourier transform
of a single term in (1.3). That is, we consider the special class of integrals

(3.1) J"(a, r, 09) f exp [i09t + iTt]t-r(log t)" dt,

where n is a nonnegative integer, a is a nonnegative real number, r is a suitable
complex number, 7 and v are arbitrary real numbers. If a is positive, then these
transforms exist by Theorem 2 for - < v < + , 0 < Re(r); but if a 0,
then they may not exist unless 0 =< v, 0 < Re (r) < 1. We must therefore distinguish
these cases in the following analysis, which obtains order estimates near + for
the transforms (3.1) and thereby includes most of the argument for the main
theorem of this section.

We might point out that the function defined by (3.1) is related to an integral
originally studied by Fax6n (1921), and subsequently encountered by various
authors (Abramowitz and Stegun (1964, p. 1002)). This integral may be written
in the normalized form

Fi(e, x) exp (- + xt)t dr.

Indeed, the integral (3.1) with a 0 is essentially (c3/c3fl)mFi(,fl;x) for some
complex x. Furthermore, we note that (3.1) is related to the stable density functions
of probability theory (Feller (1966, p. 548)).

LEMMA 3. Let a and Re (r) be positive and define

f09-"- if a= 1,
(3.2) J(a 09) 09-1 if 0<a- 1.
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(3.3)

(3.4)

Case (i)" If(?,, v) is not in (- o, 0) x (1, + o), then, as co + o,

J"(a, r, co) O[J(a, co)].

Case (ii)" If (7, v) is in (- o, 0) x (1, + ), then, as co

J"(a, r, co) O[J(a, co) + (log co),co(1-Re(r)-/Z)/(v-

Proof. In Case (i) we integrate (3.1) by parts, taking some care about the
upper limit of integration, that is,

J"(a, r, co) lim [exp (icot + irtv)
a- ico + iv7t i t-r (log

(
L

exp (icot + iTt lifo
dr.

Here we may let A oe in the first line and obtain an estimate O(co- 1). By carrying
out the explicit differentiation in the second line we then obtain co-1 multiplying
the Fourier transform of an Ll-function. Thus the estimate O(co-1) holds in this
case. For a 1, we must integrate by parts n times before obtaining an explicit
nonzero amplitude from the endpoint a. Hence, we have the result (3.3).

From the explicit result (3.5) we see that this method fails in the range of
Case (ii), because for any positive a and large enough co the exponent icot + iTt
has a stationary point in the domain of integration and hence the denominator
ico + ivTt vanishes on this domain. We would like here to obtain our estimate
by the method of stationary phase, but that method in rigorous form requires an
L amplitude, which we do not have at hand. Therefore, we must essentially
rederive and extend the method to include the present case, in which (3.1)con-
verges only conditionally.

To approximate (3.1) when (7, v) is in (-, 0) x (1, + oe) we set

(3.6) q(t) cot -’ tv, fl ( 1) -1

and use the method of steepest descent (see Erddlyi (1956, pp. 39-41)). Under the
assumptions for (3.4) the function q’(t) dq/dt has simple zeros at

(3.7) t,, Ico/yv] t exp (2ri[3m), m O, +_ 1, +_- 2,

so that exp (iq(t)) has simple saddle points at these t,. Since a is fixed, o increases
with increasing co, and since we are concerned with the limit co - + , we can
without loss of generality assume that a < o.

A path C of steepest descent leaves any a in [0, to) with the direction
arg re/2, and ends at oe with the direction arg 37r/2v. Two paths of steepest
descent C+ and C_ leave the saddle point with the respective directions arg 3rc/4
and arg -re/4 and end at with the respective directions arg 3z/2v and
arg t- -r/2v. The original contour may now be deformed into the path C
from a to exp (37ri/2v), the path C + from exp (3i/2v) to o and the path C_
from o to oe exp (-/2v).

We find by Watson’s lemma that the integral along C is O[J(a, co)] as
co + . To discuss the integrals along the contours C we introduce a new
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variable of integration u on the contour C_ C+, defined by

(3.8)

so that we can write

(3.9) J"(a, r, co) O[J(a, co)] + co(1-r) u exp icoV(u + 7uV)l
,c -c_

(log u + fl log co)" du.

The mapping (3.8) carries the saddle point o into u0 17vl - which, we note,
is independent of co. Moreover, the general description of the image contour
C*_ C*+ is otherwise unaltered from that of C_ C+. We then find by the
method of steepest descent that the integral in (3.9) yields the second term of (3.4).

Remark. If we let a 0 < Re (r)< and repeat the preceding argument,
then we can recover (3.3) and (3.4) with J(a, co) co-1(log co)", but we shall not
need this result hereafter.

If we let
0 on [0, a),

(3.10) f(t)=
exp(iTt)t_(logt) on [a, +o),

with 7, v, a, r, n, as in Lemma 3, then we have f in RL by this last lemma unless

(3.11) 7 <0< < v and Re(r)+ v/2<= 1.

Furthermore we cannot achieve (3.11) unless < v < 2, since we have assumed
0 < Re(r) in Lemma 3. These last remarks now yield the following theorem,
which give criteria for RL sufficient in most practical cases.

THEOREM 3. Letfbe in LL and, as

N(m)

(3.12) f(t)- g(t)
m=O n=0

for some g in B + L. Here N(m) isfinitefor each m, 7 and v are arbitrary real numbers,
the %, are arbitrary complex numbers, and the r(m) are complex numbers such that
0 < Re (r(m))T + as m . Thenf is in RL unless

(3.13) 7 <0< <v <2 and Re if(0))+ v/2<= 1.

Proof Iff2 f- f, where

O on [-O,l),
N(m)(3.14) fl(t)

exp(iTt) Cmnt-(m)(log t) on 1, + ),
O<Re(r(m))_<l n=0

thenf2 is in B + L and fl is a finite sum. A typical term of this sum has the form
(3.10) so that its Fourier transform has the form Cm,J"(1, r(m); co). Thus fl is in
RL unless Re(r(m)) + v/2 __< 1 for some m, which implies (3.13) since Re(r(m))
increases with m.

To understand both Theorem 3 and the anomaly (3.13) we return to Lemma 3
and observe that the term O[J(a, co), which decays as co -, , is the contribution
from the critical point a, while the second term in (3.4), which yields the
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anomaly, is the contribution from the critical point + oo. The magnitude of
this second contribution is governed by two opposing mechanisms. Near + oo we
have that on the one hand the rapid oscillation in (3.1) of the factor exp [icot + iTt]
tends to decrease this contribution through cancellation effects, while on the other
hand the dependence on r of the factor t-r(log t)" tends to increase this contribution
as Re (r) decreases. The phase q(t) of the oscillation is given by (3.6) and the resulting
cancellation in (3.1) is itself diminished near any real point where q(t) is stationary,
that is, where q’(t) O.

No such stationary point exists when v 1, but otherwise a stationary
point occurs on [0, + oo) if and only if ?,v < 0, and is then given by

(3.15) o -Ico/vl, (v 1) -1.

If v < 1, then o 0 as co oo, so that o does not affect the contribution from
+ oo but if v > 1, then o oo as co oo so that the contribution from the

saddle point o tends to increase the contribution from oo. If v _>_ 2, then
the oscillation of exp (iq(t)) again becomes rapid enough near + oo to cause decay
of the total contribution from oo. However, if 1 < v < 2, then the oscillation
is not rapid enough, when Re (r) is small, to cause decay. Indeed Lemma 3, which
is correct in all cases, shows that this contribution is O(1) when Re (r) + v/2
and even grows when Re (r) + v/2 < 1.

4. Qualitative RL criteria. In the preceding section we have extended the
Riemann-Lebesgue lemma to a class of functions in LL with a given asymptotic
form near + oo. As we have emphasized, this result should suffice for most applica-
tions but nevertheless can be further extended in various ways. Indeed, on the
one hand, we might give up the demand that f be absolutely integrable near 0 +
and allowf to have, as 0 +, an asymptotic form given by

(4.1) f(t)

with 0 < v and r < min (2, 1 + v/2). Naturally, under assumption (4.1) the contri-
bution to F(co) from the critical point at 0 will no longer be O[co 1(log co)"] as
noted after Lemma 3, but will be derived again by arguments like those ofLemma 3,
involving Watson’s lemma and the method of steepest descent.

On the other hand, one might generalize the expansion (3.12) near + oo and
allowf to have an asymptotic form

(4.2) f(t)exp i7t blt-l Cmnt-(m)(logt)s(n)

/=0 m,n=O

as oo. Here 6 > 0, b0 1, all b are real and s(n) may take nonintegral or
even negative values, while the other parameters are still restricted as in the form
(3.12). Some results of this type may also be proved similarly to Theorem 3, but
these may also be subsumed under a further extension in which f obeys only
qualitative assumptions near oo. This extension includes Lemma 3 for all values
of (7, v, a, r, n) but requires different hypotheses in different ranges of these para-
meters so that it will now be presented as three theorems. For example, the first
of these theorems treats functions with behavior somewhat similar to (3.12) but
with (7, v) not in (-o, O) x (1, ).
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TI-IWORZM 4. Let f(t) g(t) exp [ip(t)] with g in B and p Po + P + P2. Let
Po, Pl and P2 be functions in Rt’+) with Po, P’2 in B, P’I in LL and eventually non-
decreasing. Thenf is in RL.

Proof As in Theorem 2, we can absorb Po, decompose g, and assume

Po 0, 0 <_ g+ and g(+ ) 0 without loss of generality. Also through Theorem 2,
we know that F(co) exists as an improper integral for sufficiently large co. By the
remarks following (2.8) we need only show that for some fixed a >= 0,

(4.3) exp (icot)f(t) dt 0

as 09 - + o. We can choose a so that Va, o(p2) < -F t3, Pl T on [a, -+-t3), and we
can choose 091 (J)2 so that 0 __< 091 + Pl, (-/)2 -]- P2 on [a,-F t3). If b > 0 and
co b + 091 + o92, then by Lemma 1.8, v,,o[g/(co + p’)] O(b-1), and through
Riemann-Stieltjes integration by parts (see Widder (1941, p. 7)),

exp (icot)f(t) dt (icoa + ip’(a))g(a)/(co + p’(a))

(4.4)
exp (icot + ip’(t))d[g/(co + p’(t))] O(b-)

as co + oe. This yields (4.3) since O(b- 1) O(co- 1).
We now obtain qualitative criteria which correspond to (3.4) and in particular

to the part of Lemma 3 for which we invoked the method of steepest descent.
First we generalize in Theorem 5 the more amenable case within (3.4) in which

7 < 0 < 2 < v, and then we generalize in Theorem 6 the anomalous case in which

7 < 0 < < v __< 2. These results use, and thus follow, a basic lemma ofTitchmarsh
(1948, p. 22) which in turn extends an earlier theorem of Landau (1927, p. 413).
The proofs are suggested by, but are apparently not contained in, the work of
Titchmarsh.

LEMMA 4. On any interval [a, b let f, g, h be real-valued functions with 0 <= f,
g/h’ monotone, h absolutely continuous. Then

(4.5) f(t)g(t) exp [ih(t)] dt <_ 2x/f(a max {Ig(t)/h’(t)l a < <__ b}.

Proof This result is obtained by Titchmarsh (1948, p. 22) with sin h or cos h
in place of exp (ih) on the left side and 2 in place of 2xf on the right side.

THEOREM 5. Let f(t) g(t)exp [iPo(t iq(t)] with g in B, Po in B R’+)

and q in LL f) Rt’+). Let q be in C2 on some [a, + o) with q"(t)T and q"( +
+ o. Then f is in RL.
Proof As in Theorem 2, we know that F(co) exists for sufficiently large co.

We can choose a so large that 0 < q(t), q’(t), q"(t) on [a, + o) and then we can
assume a 0 by the remarks following (2.8). Thus on [0, + o) after this reduction,
c/’(t) is continuous and strictly increasing with q’(+ o)= + so that for all
sufficiently large co, the equation q’(t) co has a unique solution t(co) with t(co)l"
and t( + ) + . Hence we note that, as co ---, + ,

ft(o)+ ft(co)+(4.6) exp (icot)f(t) at g(t) exp [icot iq(t)] dt <= 2g[t(co) 1] -, 0.
t(co) t()
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If h(t) cot q(t) so that h’(t) co q’(t), then 0 < l/fiT on [0, t(co) 1)
and 0 < -1/h’J, on It(co) + 1, + oo). If r/denotes a number in (0, 1) which need
not be the same at each appearance, then by Lemma 4 and the mean value theorem,

(4.7)

(’)-

q(t)exp [ih(t)l dt g(O)O(1/h’[t(co)- 1])

O(q’[t(co)] q’[t(co)- 1]) -1

O(1/q’[t(co) r/I)= O(1/q’[t(co) 1])- 0
as co + . Also,

(4.8)

g(t) exp [ih(t)] dt
(o9) +

gEt(co)+ 1]0(-l/frEt(co)+ 1])

O(q’Et(co)+ 1] q’Et(co)]) -1

O(1/q"Et(co)+ r/I)

O(1/q"Et(co)]) 0

as co - + o. We obtain the desired result by combining (4.6)-(4.8).
THFOREM 6. Let f(t)= g(t)exp [--iq(t)l with g and q in LL. Then f is in RL

whenever the following hold on some [a, o) (i) g is nonincreasing with g(+ o) 0;
(ii) q is C2 with 0 < q’, q" (iii) q"(t)$ but tq"(t)T with limit + o (iv) there exists in
(0, 1) for which gz(bt)/q"(t)+ with limit O.

Proof We can choose a so large that 0 < q(t) also on [a, + o), and then
we can assume a 0 by the remarks following (2.8). We verify by Theorem 2
that F(co) exists for sufficiently large co; we define, as in Theorem 5, a function t(co)
such that q’[t(co)] co; and we show as before that t(co)l’ with t(+ oo)= + oo.
This last assertion follows from q’(+oo)= + oo, which in turn follows from
tq’(t)t.

If d(co) q"(t(co))- 1/2, then by assumptions (iii) and (iv):

a(o)gE6t(o)+0,
(4.9)

d(co)/t(co) Et-1/2(tq"(t))- -l/=t(CO) 0

as co --, + , so that 6t(co) < t(co) d(co) for sufficiently large co. Hence we note
that

t(co) + d(o)

(4.10) g(t) exp [icot iq(t)l dt <= 2d(co)gEt(co) d(co)]
t(o) d(co)

<= 2d(co)gE6t(co) 0
as co -+ +o0.

If h(t) cot q(t), so that h’(t) co q’(t), then 0 < 1/fiT on EO, t(co) d(co))
and 0 < -1/h’, on Et(co)/ d(co), + oo). If r/ denotes a number in (0, 1) which
need not be the same at each appearance, then by Lemma 4 and the mean value
theorem,

(4.11)

6’’)

g(t) exp [ih(t)] dt O(q(O)/h’E6t(co)])= O(q’Et(co)] q’E6t(co)]) -1

O(1/t(co)q"[(6 + rl

O(1/t(co)q"Et(co)]) --* O,
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(4.12)

g(t) exp [ih(t) dt O(g[bt(o)l/h’[t(og)- d(og))

g[at(co)lO(q’[t(og)] q’[t(og)- d(co)) -1

O(g[cSt(co)]/d(oo)q"[t(og)- d(og)l)

O(g[bt(og)]d(og)) O,

(4.13)

(o) +
g(t) exp [ih(t) dt O(g[t(o)+ d(og)]/h’[t(o9) + d(co))

O(g[t(co)+ d(oo)l/d(og)q"[t(og)+ rld(o)

F(t(oo)q"t(og))’/2gt(og) + d()]]

j 0
q"[t()+ rid(o)] ’/

O(g[at(m)+ 6d(m)]/q"[t(m)+ d()] ’/2) 0

as o2 - + m. We obtain the desired result by combining (4.10)-(4.13).
The stationary point (3.15) which we discussed in 3 satisfies q’(t) 0 for the

given phase q(t), so that it corresponds to the point t(o0) in the proof of Theorems 5
and 6. The domain (3.13) which we proscribed in the anomalous case relates the
amplitude and phase of the givenf(t), so that it corresponds to assumption (iv)
in the statement of Theorem 6. Thus an assumption like (iv) is clearly needed in
Theorem 6, so that a function Po in B cannot always be added to the phase and
then absorbed as in Theorem 5. However, if g exp ipl is in RL for some g and real-
valued p in LL, where g is eventually bounded, then (g + Ag)exp [i(p + Ap)] is
in RL for any Ag and real-valued Ap in L, since the difference Af can be shown
to lie in L. Through this remark we can construct still more general functionsf
in RL, whose amplitude and phase need not be continuous, or have bounded
variation.
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REMARKS ON THE EXISTENCE THEORY FOR MULTIPLE
SOLUTIONS OF A SINGULAR PERTURBATION PROBLEM*

SEYMOUR V. PARTER’

Abstract. The existence and nonexistence of solutions of ey" + y’= g(x, y), y’(0) ay(O) A,
y’(1) + by(l) B is discussed. Iterative methods may be used to obtain "every other" solution.

1. Introduction. Consider the singular perturbation problem

(1.1) Ly] =_ y" + y’= g(x, y), 0 < x < 1,

(1.2) y’(O) ay(O) A, a >_ O,

(1.3) y’(1) + by(l)-- B, b > 0.

In 2 D. S. Cohen showed that this problem can have several distinct "asymp-
totic solutions" for all sufficiently small > 0. An asymptotic solution is a function
y(x) which satisfies (1.1), (1.2) but only satisfies (1.3) to within O(e).

In I81 H. B. Keller extended Cohen’s results by weakening the conditions
on g(x, y) and considering more general boundary conditions

(1.3a) f(u’(1), u(1)) 0

in place of (1.3). Moreover, under some additional conditions Keller showed the
existence of exact solutions of (1.1), (1.2), (1.3a) near the asymptotic solutions
discussed by Cohen.

The results of Cohen 2 and Keller 8 are based on the "shooting method".
Our analysis is based on the theory of the modified boundary value problem in
which the boundary condition (1.3) is replaced by

(.3’) y() ,
where is a specified real number.

In this way we provide further insights into the structure of these problems.
Moreover, Theorems 3.2, 3.3 and 3.4 deal with cases not treated by Keller 8].
In particular, Theorem 3.4 is concerned with a case in which there are asymptotic
solutions and there is no exact solution nearby.

Finally, in 4 we discuss iterative methods for obtaining "every other"
solution. This iteration scheme is particularly interesting because each iterate
V,(x), except Vo(x), is the solution of a linear boundary value problem, but Vo(x
is the solution of a nonlinear boundary value problem (1.1), (1.2), (1.3’).

While we shall restrict ourselves to the original boundary conditions (1.3)
the extension to boundary conditions of the more general form (1.3a) is relatively
easy.
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However, let us first reformulate our hypotheses:

(HI) g(x, y) C{[O, I]

(H2) Ig(x, Y)I <- M, (x, y)e {[0, 1] x ,1}.
Let

(H3) H() g(1, )+ be- B

have exactly J roots , a, ...,
2. Preliminary results. In this section we collect some basic facts about

quasi-linear boundary value problems (1.1), (1.2), (1.3’) and (1.1), (1.2), (1.3). Many
of these results are well known, if not readily accessible in the literature. Most of
these results are based on the maximum principle (see [1], [4], [5, [9, [10]). Our
first result is a basic a priori estimate.

LEMMA 2.1. Let e > 0 be fixed. Let p(x) C2[0, 1] satisfy

(2.2) ’(0)- a(0)= A,

(2.4)

(2.5)

(2.6a)

(2.6b)

where

Then

Iqo(x)l =< Il + 2M + 2e[(1 + a)M + IAI + Ila] Kl(00,

Io’(x)l-_< aKa(oO + IAI + M K2().

Proof Let Vo(x, e, ) and Uo(x, , o) be given by

Vo(x, e, o)= K + Ko e -x/ + Mx,

Uo(x, e, oO K1 + K2 e -x/ Mx,

[(1 + a)M -(A + oca)]
K + ea(1 e -1/)
K (o M) e-1/Ko,

-el(1 + a)M + (A + a)]
1 + ea(1 e -1/)

K (0 + M) e-1/eK2.

Then a direct calculation shows that Uo(x, e, o) and Vo(x, e, o) satisfy

LUo -M,

LVo =M,

U’o(O aUo(O A V’o(O aVo(O),

Uo(1 o Vo(1).

O=<x=<l,

O__<x__<l,
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And, as an immediate consequence of the maximum principle we obtain

l/o(X, , ) <-_ q)(x) <= Uo(x, , ),

and (2.4) follows at once.
We rewrite the basic differential equation as

After one integration we have

M fl x)/Iq)’(x)l =< Io’(0) e -x/ +- e(s- ds.

Since
I0’(0)1 =< alKl(OOI / IZl

we obtain (2.5).
THEOREM 2.1. Let > 0 be fixed. For every o 1 there exists a solution

Z(x, e,, ) of(1.1), (1.2) and (1.3’). Indeed there is a maximal solution M(x, , oO and a
minimal solution re(x, , cz) in the sense that: ifZ(x, , ) is any solution, then

(2.7) m(x, , ) <= Z(x, e, o0 <_ M(x, e, ).

Moreover, M(x, , oO is monotone nondecreasing in o and continuous from the
right, m(x, , o) is monotone nonincreasing in o and continuous from the left. Finally,
M’(x, , oO is continuous from the right while m’(x, , oO is continuous from the left.

Proof The existence of m(x, , oO and M(x, e, oO (which may or may not be
equal) follows exactly as in [11, [4], [91, [10]. We now sketch this proof. Using
the basic a priori estimate (2.4) of Lemma 2.1 we may modify g(x, y) for large y
(see [7]) so that g(x, y) may be assumed to satisfy a uniform Lipschitz condition
with constant 6. Let Vo(x, e, oO and Uo(x, e, oO be the functions given by (2.6a) and
(2.6b) respectively. Let U,(x, e, o0, v,(x, , o) satisfy

LeUn+ 1SUn+ g(x, Un) (3Un,

Lv, + c3v, + g(X, l)n) (l)n,

U, +1(0) a U. +1(0) A /)I +1(0) av, +1(0),

Un+ l(1) o t)n+ l(1).

A straightforward argument shows that

U.(x, , ) \ M(x, e, ),

v,(x, e,, ) /’ m(x, e,, ).

The monotonicity of M(x, , oO and m(x, e, oO (in e) follows from the same argument
as the proof of the similar Theorem 2.1 of [9]. As in 93, the one-sided continuity
of M(x, e, oO and m(x, e, o) follows from the definition of maximal and minimal
solutions.

Finally, the one-sided continuity of M’(x, , oO and m’(x, e, oO follows from the
Green’s function representation of L- and the one-sided continuity of M(x, , o)
and m(x, , oO respectively.
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LEMMA 2.2. Let a be a bound for Igr(x, y), i.e., a is a Lipschitz constant for
g(x, y) as in Theorem 2.1. Let

(2.8)
4a"

Then, for all , 0 < <__ ,
(2.9) M(x, e, oO m(x, e,,

and M’(x, , oO m’(x, , ) is a continuous function of.
Proof Let

Let

W(x, , oO M(x, , o) m(x, e,

Q(x, , oO ex/ze W(x, e,,,

Then W(x, e, ) satisfies the equation

w" + W’ g(x, ’)W 0.

And Q(x, e, ) satisfies the equation

+ g.(x, ) (2 o,

Q’(O) t_a + 2,_J
(2(0) O,

Q() 0.

Using (2.8) and the maximum principle we see that Q(x, e, ) 0 and (2.9) follows
at once. The continuity of M’(x, , ) follows from the one-sided continuity of
Theorem 2.1.

LEMMA 2.3. Let q(x) e C2[0, 1] satisfy

Then there is a constant K
on a, such that

(2.11)

L[o] g(x, q)), 0 __< x =< ,
Io(1)l < Mo,
q,’(0)- ao(0)= A.

K3(M, Mo, ]AI) depending on M, Mo, ]A], but not

K3qo"(x)l --, 0 < x 1.

Proof Let v(x) q’(x). Then

Lv gx(X, q)) + g,.(x, q))o’.

Applying Lemma 2.1 we see that the right-hand side of this equation is bounded
by a constant depending only on M, Mo, IA. Similarly, Iv(0), Iv(l) is bounded.
Thus, we may apply Theorem 2.7 of I51.
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THEOREM 2.2. Let be a root of
U() O.

Then all solutions (1.1), (1.2), (1.3’) with

o--

are asymptotic solutions of(1.1), (1.2) and (1.3)in the sense of[2.
Proof We need merely check (1.3). We have

Z’(1, , j) + bZ(1, e, ) H(j) + B eZ"(1, , );
hence,

]Z’(1, , j) / bZ(1, ,, ) B[ <= K3
,.

THEOREM 2.3. Let be fixed. There exists a unique function W(x, ) which
satisfies
(2.12a)

(2.12b)

(2.12c)

W’ g(x, W), 0 < x < 1,

W(1, ) ,
W(x, 0)I = Kl(O).

Moreover, let Z(x, , ) be any solution of(1.1), (1.2) and (1.3’). Then

(2.13) max {IZ(x,e,) W(x,e)];0 =< x =< 1} --+0 as e--}O+.

And, for any 6 (0, 1),

max{IZ’(x,e,e)- W’(x, e)l 6 =< x <__ 1}0 as 0+
(2.14)

max {]Z"(x, e, e) W"(x, )1 6 <= x <= --, 0 as --, 0 +.

Proof Using Lemma 2.1 we may again modify g(x, y) for large lY[ so that
g(x, y) satisfies a uniform Lipschitz condition. Hence the solutions of (2.12a),
(2.12b), (2.12c) are unique. The theorem follows along the lines of the proof of
Theorem 4.1 of [5] based on Lemma 2.1. The functions {Z(x,e,, e)} are equicon-
tinuous and uniformly bounded. Thus a subsequence converges to a weak solu-
tion W(x, ) of (2.12a), (2.12b), (2.12c). However, using a theorem of Friedrichs [6]
we see that W(x, ) is a genuine solution. The unicity of the limit function allows
us to dispense with the subsequence. Finally, (2.14) is proven by using an argument
of Coddington and Levinson [3] (see [5] also).

COROLLARY. Suppose g(x, y)e C2{[0, 1] x 9}. Then,for every rl > 0 and every
Mo > 0 there exists an o > 0 such that 0 < e <= eo implies

(2.15) [Z"(1, e, ) [g,(1, ) + gy(1, )g(1, )]1 < q

for all solutions Z(x, , ) of(1.1), (1.2), (1.3’) with

ll _<- Mo.
Proof. For each fixed a the corollary is true without assuming the additional

smoothness of g(x, y). An application of Theorem 2.7 of [5] as in Lemma 2.2 gives
the uniform result under this additional hypothesis.
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Remark. It is of interest to observe that the functions Z(x, e, ) exhibit no
"boundary layer" behavior near x 0 while the derivatives Z’(x, 5, ) may do so.

3. Existence of solutions. In this section we are concerned with the existence
of solutions of (1.1), (1.2) and (1.3) for small e > 0. Our first result shows that if
e > 0 is small enough and u(x, ) is a solution, then u(1, 5) must be near a zero of
H().

LEMMA 3.1. Suppose [xo, x 1] is a finite interval such that

(3.1) IH()I Ho > 0, xo =< z =< xl.

Then there is an eo > 0 such that 0 < e <= eo implies that there is no solution u(x, 5)
of(1.1), (1.2) and (1.3) such that

u(1, e) cz e [Xo, x].

Proof Let eo be so small that (using Lemma 2.2) any solution y(x, e) of (1.1),
(1.2) and (1.3’) with

satisfies

Then

e[Xo,X], O<e_<eo

leoY"(1,e)l < 1/2Ho.

y’(1, ) + by(l, e) B + H(u(1, e)) eu"(1, a)

-B.
Thus, the lemma is proved.

Our first existence theorem is a new proof of a result of Keller [83.
THEOREM 3.1. Let j be a zero ofH() 0 and suppose is a nodal zero. That

is, there is a 6 > 0 such that, for all 6, 0 < 6 <= 6o,

(3.2) H(aj + 6). H(j- 6) < O.

Then there is an o > 0 such that

0<<-o
implies that there is at least one solution u(x, .) of (1.1), (1.2) and (1.3) which also

satisfies
(3.3) -6o <=u(1,e)=<+6o.

Proof Let Z(x, e, + 6o) and Z(x, e, 6o) be solutions of (1.1), (1.2) and
(1.3’) with

=+6o.
Then, applying Lemma 2.3 we see that" if e is small enough, then

[Z’(1, e, j + 6o) + bZ(1, e, j + 6o) B] Z’(1, e, ,j 60)

(3.4) + bZ(1, e, 60) B] H(j + 6o) eZ"(1, , + 60)
X [H(oj 60) eZ"(1,5, (Zj (0)] < O.



502 SEYMOUR V. PARTER

Moreover, using Lemma 2.2, if c is small enough Z(x, c, ) is unique and

Z’(1, c, e) + bZ(1, c, o)

is a continuous function of e as ranges over [%- 6o, % + o. The theorem
follows at once.

THEOREM 3.2. Suppose is a zero of H() 0 and there is a 5o > 0 such that

H(oj +/- () > O, 0 < ( <= 60,(3.5)

and

(3.6) gx(1, j) + gy(1, %)g(1, %) > 0.

Then, there exists an % > 0 such that, for every c, 0 < c <= eo, there is at least one
solution u(x, c) of(1.1), (1.2) and (1.3) which also satisfies
(3.7a) % =< u(1,c) =< % + 6o

and at least one solution u(x, c) of(1.1), (1.2), (1.3) which also satisfies
(3.7b) j ,5

0 < u(1, c) __< j.

Proof The proof is based on the same argument as in Theorem 3.1. We merely
observe that if c > 0 is small enough, then

Z’(1, c, j- o) + bZ(1, c, j (5o) B > O,

Z’(1, c, %) + bZ’(1, c, ) B cZ"(1, c, ) < O,

Z’(1,c, % + 60) + bZ’(1,c, + 6o) B > O.

In a completely analogous way we obtain the next result.
THORWM 3.3. Suppose aj is a zero of H(a) 0 and there is a o > 0 such that

H(oj ! () < O, 0 <

and

(3.9) gx(1,0) + gy(1, %)g(1,0j) < 0.

Then there is an co > 0 such that,for every c, 0 < c <__ co, there is at least one solution
u(x, c) of(1.1), (1.2), (1.3) which also satisfies
(3.10a) =< u(1, c) =< j + 60

andat least one solution u(x, c) of(1.1), (1.2), (1.3) which also satisfies
(3.10b) 6o u(1, c) _<_ .

Of equal interest are nonexistence theorems.
THEOREM 3.4. Suppose % is a zero of H(oO 0 and there is a 6o > 0 such that

(3.11) H(oj + () >= O, 0 < 6 <= 60
Suppose g(x, y) e C2{[0, 1] x } and

(3.12) g(1, ) + g,(1, j). g(1, ej) < 0.

Then, there exist an co and a c5 such that, for all Z(x, c, ) with 0 < c <= co and
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(3.13) Z’(1, e, ) + bZ(1, e, ) > B.

Proofi Applying the corollary to Theorem 2.3 there exist an eo and a 61
such that

Z"(1, , ) < 0

for all e, 0 < =< o and all cz e [ej 61, (j nt- 611. Thus
(3.14) Z’(1, , cz) + bZ(1, , o) B + H() eZ"(1, , ) > B,

and the theorem is proved.
In the same way we obtain a nonexistence theorem when the inequalities

(3.11) and (3.12) are reversed.

4. Iterative methods. The shooting methods of [2], [8] can be used to obtain
iterative methods in which the successive iterates are solutions of certain initial
value problems. In this section we discuss iterative methods in which the successive
iterates are solutions of certain boundary value problems.

LEMMA 4.1. Let a > 0 be a constant. Suppose q)(x) C2[0, 1] and

L[o] ao >__ 0, 0 __< x < 1,

(4.1) qo’(0) ao(0) >= 0,

o’(1) + bqg(1) =< 0.
Then

(4.2) q)(x) =< 0.

Proof Applying the maximum principle we see that q0(x) cannot possess an
interior positive maximum. Suppose o(x) assumes a positive maximum at x 0.
Then o’(0) < 0 which contradicts the boundary condition at x 0. On the other
hand, if o(x) assumes a positive maximum at x 1, we have qo’(1) > 0 which
contradicts the boundary condition at x 1. In either case,

max o(x) < 0.

LEMMA 4.2. Suppose g(x, y) satisfies a uniform Lipschitz condition with constant

a. Let V(x) satisfy

(4.3)

Let U(x) satisfy

(4.4a)

and

(4.4b)

L[V] >= g(x, V),

V’(O) a V(O) >= A,

V’(1) + bY(l) =< B.

v(x) <__ u(x),

L[U] <= g(x, U),

U’(O) aU(O) <= A,

O<=x<=,

0<x<l,

U’(1) + bU(1) B.
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Let V be the unique solution ofthe linear boundary value problem

(L a)V g(t, V) aV,

(4.5) V’, (0) aV1(0) A,

V’,(1) 4- bY1(1)= B.
Then

O__<x__<l,

(4.7) V(x) _< Vl(X _<_ U(x), 0 <_ x <= 1.

Proof Let

q)(X)--" V(x)- Vl(X

Then we may apply Lemma 4.1 to obtain

(4.8) V(x) <= V(x), o <= x <= 1.

And

LV g(t, V1) + [g(t, V) g(t, V1) o’(V- V1).
Since a is a Lipschitz constant for g(x, y) and (4.8) holds, we obtain (4.6). Finally, if

(/9(X)-- Vl(X U(x),
we have

L[q] acp >= g(t, V)- aV- g(x, U) + aU,

and using (4.4a) and the definition of a we see that we may apply Lemma 4.1
together with (4.8) and obtain (4.7).

THEOREM 4.1. Suppose 1 < 2 are two values such that

(4.9) H() < H(2),

and 0 < e <_ o implies that

Z’(1, e, 1) + bZ(1, e, 1) < B,
(4.10)

Z’(1, e, 2) + bZ(1, e, 2) > B.

Let a be a uniform Lipschitz constant for g(x, y). Let Z(x, , 1) be any solution
of(1.1), (1.2) and (1.3’) with a 1. For example, let

(4.11) Vo(X M(x, e, 1) or Vo(X re(x, , 1).

Let V,(x) be defined by the linear boundary value problem

LV,+, V,+, g(x, Vo) V,,

(4.12) V,+ 1(0) aV,+ 1(0) A,

V’,+ 1(1) + bV,+,(1) B.

Then the functions V(x)}, increase to a function Z(x, e, ) which satisfies (1.1),

(4.6) LV >= g(x, V1), 0 __< x __< 1,

and
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(1.2), (1.3) and

(4.13) a - 0 - (2"

Proof Let

U(x) m(x, e, 2)"

Applying Lemma 4.2 we see that

(4.14) Vn(X <__ V,+ l(x) <__ U(x), 0 <= x <= 1.

Remark 1. Glancing back at Theorems 3.2, 3.3 we see that "every other"
solution of (1.1), (1.2), (1.3) can be obtained via these iterative methods.

Remark 2. If g(x, y) does not satisfy a uniform Lipschitz condition we may
modify g(x, y) for y out of the region of interest, that is, we modify g(x, y) for

y <- m(x, e, 1)

and

M(x, e, 2) -< Y’

Remark 3. Clearly one may find an approximant to Z(x, , 1) by the use of
Theorem 2.1. This approximant will be a perfectly good first guess in the iteration
described by (4.12).

Remark 4. Using another first iterate (see Theorem 2.1) we can construct a
decreasing sequence which would also provide a solution Z(x, e, ) of (1.1), (1.2),
(4.13). Moreover, Z(x, r., ) and Z(x, e, c) would be minimal and maximal solu-
tions of (1.1), (1.2), (1.3) which also satisfy (4.13).
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A CAUCHY PROBLEM FOR THE NAVIER-STOKES
EQUATIONS IN R"*

GEORGE H. KNIGHTLY?

Abstract. A classical approach to the Cauchy problem for the Navier-Stokes equations in R"
leads directly to a global, smooth solution for small initial data in a class that is defined independently
of n. The result supplements recent efforts in related abstract problems and extends earlier work of
the author for n 3. Estimates for the solution are obtained, showing that uniform solutions are
pointwise asymptotically stable for small disturbances in the class of initial data considered.

1. Introduction. We are concerned with the Cauchy problem for the Navier-
Stokes equations"

(1) u- Au + u. Vu + Vp=O, V.u=O,

(2) lim u(x, t) g(x),
t0

where u u(x, t) is an n-dimensional vector field and p p(x, t) is a scalar field
defined for > 0 and x in n-dimensional Euclidean space, R". The vector field g(x)
is divergence free and constitutes the given initial data for the problem. The
viscosity coefficient, which often multiplies the term Au in (1), has been set equal to
unity. In this paper we construct a solution of (1), (2) on R" x (0, oo) when g
satisfies

(3) [g(x)[ =< A min [1, Ix]-1-s-]
for some s >__ 0, A > 0, A sufficiently small.

In discussing the question of finding weak solutions of the initial boundary
value problem for (1) having more regularity than the Hopf solutions, Serrin [9]
points out the failure, when n >__ 5, of methods relying upon standard energy
estimates and mentions [9, p. 77] that it is of "greatest interest" to know whether
the dimensional restriction is a consequence of the method or an actual property of
the equations. Our results support recent evidence [2], [3] indicating, at least for
initial value problems without boundary, that the dimensional barrier to solution
can be avoided, perhaps being replaced by dimensionally dependent limitations
on the data.

When the flow region is a compact n-manifold without boundary, Ebin and
Marsden [2] prove, using methods of global analysis and infinite-dimensional
geometry, that a unique solution exists for short time (but on an interval inde-
pendent of viscosity), corresponding to initial data having j square-integrable
derivatives, j > n/2 + 5. The solution also has j space derivatives in L2 and is C
as a function of (x, t). In [3] Fabes, Jones and Rivi6re begin with the same represen-
tation (9) that we use but seek weak solutions of the Cauchy problem in R" for
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initial data in LP(Rn). Using the theory of singular integrals they obtain, when
p > n, a unique weak solution existing for short time. If the data also lie in Lq(R"),
q < n, and have small LV(R") and Lq(R") norms, then the solution is global in time.
The regularity of the solution increases with p.

Our observation is that, with entirely classical techniques, a solution of
(1)-(3) can be constructed exhibiting some features not apparent in solutions
obtained in other ways. The assumptions on the initial data are different (in some
respects milder) than those in [2] and [3 and lead to explicit information on the
asymptotic behavior of the solution. The solution is global in time for small A
and analytic in all variables. The dimension n acts as a restriction only in deter-
mining the "smallness" required of A.

Before stating the main theorem we introduce a relevant class of pairs (v, q),
where v is an n-dimensional vector function and q is a scalar function. Specifically,
the vector, scalar pair (v, q) lies in the class A if there are a constant vector v and
a T > 0 such that v, vt, Vv, Av, q and Vq are all continuous on R" x (0, T) and

Iv(x, t) voo[ o(1), [Vv(x, t) o([x), [q(x, t)[ o([x[) as]x[ -, oo,

locally uniformly in t.
TIqFORFM 1. Let g(x) be a continuous, divergence-free, n-dimensional vectorfield

defined on R" and satisfying (3)for some A > O, s >__ O. If A is sufficiently small,
depending on s and n, then there exists a solution of the initial value problem (1);
(2) on R" x (0, oo), such that

[u(x, t)[ _< C min [1, [XI -l-s, -(1 +s)/2

(4) [Vu(x, t)[ Ct- 1/2 min [1, Ix[- l-s, /-(1 +s)/2

Ip(x,t)} <= Ct-*/Z min [1,lxl-l-2,t-(+2)/2

if O<s<n- 1,

if O<=s <n- 1,

/f 0 <s <(n-2)/2,

with constants C depending only upon s and n. This solution is unique in the class A
and is analytic in all variables.

The proof of Theorem will be sketched in the next section and is patterned
after work in [1] and [63, where the case n 3 is treated: Additional details are
included in [7].

Theorem may be interpreted as demonstrating the stability of the identically
vanishing solution of (1) under small disturbances in the class (3). The following
change of variables shows that any uniform solution (voo, 0), voo a constant n-
dimensional vector, is similarly stable. If (u, p) is a solution coming from Theorem 1,
then (v, q),

v(x, t)’= v + u(x tvoo, t), q(x, t)"= p(x tVoo, t),

is a solution of(l) with initial value V + g(x). Also, relations (4) yield

Iv(x, t) Vool <= C min [1, Ix tVoo[- -, -(1 +s)/2

together with corresponding estimates for Vv and q. Finn [4] has shown that the
uniform solutions are the only time-independent solutions of (1) in all of R3 having
a "physically reasonable" behavior at infinity. This Liouville-type theorem extends
to n > 3 so that it is natural to investigate stability of the class of uniform solutions
in connection with the Cauchy problem in R". Finally, we note that in contrast
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with some approaches to stability, in which it would be shown that v --+ V in some
mean sense, the estimates (4) imply that v --+ v Vv --+ 0 and q --+ 0 uniformly on
Rn as t--- c.

2. Constretion of the solution. Theorem follows easily from the results
of this section; existence is a direct consequence of Theorem 2 and Lemma 3
while uniqueness and analyticity are contained in the corollaries to Theorem 3.
The principal ideas are given, except for the proofs of Lemmas 1, 2 and 3. The
proofs of these lemmas involve tedious estimation of a fundamental solution
(given below) and related integrals, but the demonstrations are largely formal
generalizations of those presented for the case n 3 in [1 and [6 and are not
repeated here (however, see [7]).

Our study of the system (1) is based upon an integral representation for the
solution velocity in terms of a fundamental solution E- (E), i,j- 1,..-, n,
of the Stokes equations

(5) u-Au+Vp=0, V.u=0.

E is the n-dimensional analogue of a tensor introduced by Oseen [8] in the case
n 3 and its components are defined by the following relations:

r/(24’)

(6) b(r, t) 2 -"r "+ 2 a"- 3 e da,
-’0

c32b([ X Yl, t- r)
(7) Eij(x y, t- z)= -AqS(lx y[, t- r)6ij + 8xSx

If Ej denotes thejth column of E, then, when z > 0, the pair (u, p):= (Ej, 0)
satisfies (5) in the (x, t)-variables and satisfies the adjoint system

(8) u+Au+Vp=0, V.u=0

in the (y, z)-variables. In addition, E becomes singular at (y, z) (x, t) in such a
way that if (u, p) is a solution of (1), (2) in the class A, then integration by parts
over R" x (0, t) of the identity

u.(E + AE) + E. (u- Au + Vp)= -E. (u.Vu)

leads to the representation

(9)

where

u H[g] + N[u, u],

(10) H[g](x, t)"= fR- Ab(x y, t)g(y)dy

and

(11) N[u, u](x, t)"= u(y, r). [(u(y, r). V)E(x y, :)1 dy dr.

This representation suggests that we find a solution vector u of the initial value
problem for (1) by solving (9).
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We shall present two existence theorems for (9), the first of which yields a
solution global in time. For s _>_ 0 define

Qs(x, t)’= min [-1, (x/) -s-1 Ixl
THEOREM 2. Let g(x) be a continuous, n-dimensional vector function satisfying

Ig(x)! _-< Z min [1, Ixl- x-q on R"for some s, 0 <= s < n 1. IfA is sufficiently small,
depending only on s and n, then there exists a solution u(x, t) of(9) such that lu(x, t)l
<__ CQs(x, t), with constant C depending only on A, s and n.

Theorem 2 follows from the next two lemmas.
LEMMA 1. If g(x) is an n-dimensional vector function satisfying Ig(x)l -<_ A min

[1, Ixl-X-s], 0 <_ s < n 1, then

]g[g](x, t)l <= ACQs(x, t),

with constant C depending only on s and n.
LEMMA 2. If u(X, t) and v(x, t) are smooth, n-dimensional vector functions

satisfying lu(x, t)l =< UQ(x, t), Iv(x, t)l _-< VQ(x, t) with 0 <= s < n/2, then

IN[u, v](x, t)l CUVQ2(x, t)

with constant C depending only on s and n.
To construct the u required for the proof of Theorem 2 we insert a parameter

2 in front of N in (9) and seek a solution of the form

(12) u=
m=O

valid for/t 1. The recursion relations

uo H[g], him N[uo, Urn- 1] "t- N[ua, Urn- 2] - -- N[u,,_ 1’ blo?
result. If we denote by c and fl the smallest values of the constants C in Lemmas
1 and 2, respectively, then these lemmas show that

[Uo(X, t)l <- oAQ(x, t) UoQ(x, t) <= UoQ/2(x, t),
m-1

]u,.(x, t)l <- Q(x, t) UjU,._ _j U,.Q(x, t)
j=O

<= UQ/2(x, t).

/],m U,,. FromIt follows that the series (12) is majorized by the series Q(x, t) ,,=o
the definition of the U,, we find that the series

m=0

defines for the quadratic equation U Uo + 2flU2 a solution that is analytic
in 2 near 2 0, provided that the discriminant is positive. Thus the series (12)
converges for 2 1, uniformly for (x, t) R" (0, o), if A < (4fla)- 1. Hence (12)
defines the solution of (9) specified in Theorem 2.

A similar construction yields a bounded solution of (9) that exists locally in
time, if g(x) is only bounded.



510 GEORGE H. KNIGHTLY

THEOREM 3. Let g(x) be a continuous, n-dimensional vector function satisfying
]g(x) <= A on R". If T is sufficiently small, depending only on A and n, then there
exists a bounded solution, u(x, t) of (9) on R" x (0, T) such that

(13) lim u(x, t) g(x).
tO

Moreover, u is unique in the class of bounded solutions of(9) satisfying (13) and u is

analytic in t.
The proof of existence follows that given above for Theorem 2, with estimates

(4) IHIg(x, t) <= CA,

corresponding to Lemma and, if ]u(x, t)l < M1 and Iv(x, t)l < m2, then

(15) IN[u, v(x, t)l =< CmlMzltl 1/2,

corresponding to Lemma 2. The inequalities (14) and (15) are valid for in a com-
plex neighborhood of (0, T) and the terms of the series (12) are analytic in t. By
uniform convergence the solution is analytic in t.

If --+ 0 in (9), then (15) shows that the nonlinear term makes no contribution
in the limit while limt_ o Hg(x, t)= g(x), according to well-known results for
the heat equation. This proves (13).

Finally, to establish uniqueness let u and v be bounded solutions of (9) with
the same initial data g. Then

(16) u- v= N[u- v,u] + N[v,u- v]

with ]u], Iv and ]u v bounded, say by M, on R" x 0, T. From (15) it follows that

[U(X, t) V(X, t)[ 2CM2x/o
if 0 < =< o Iteration of this estimate in (16) yields lu(x, t) v(x, t)l =< m(2cmxo)
if 0 < _<_ o. The choice 0 < to < (2CM)- 2 reveals that u(x, t) v(x, t) on R" x (0, to)
since m is arbitrary. Repetition of this argument with successive initial instants
o, 2t0, gives the result on R" x (0, T).

The uniqueness and time analyticity statements in Theorem 3 carry over
directly to corresponding statements about solutions of (1) in the class A since such
solutions admit the representation (9). In fact, since the class A lies within a wider
class of solutions for which Kahane [5] has proved spatial analyticity, we may state
the following as corollaries to Theorem 3.

COROLLARY 1. There is at most one solution (u, p) in the class A for the initial
value problem (1), (2).

COROLLARY 2. Every solution of (1) in the class A is analytic in all variables.
If the initial data are divergence free, then the following lemma shows that

the solutions of (9) in Theorem 2 are, with suitable scalars p, solutions of(l).
LEMMA 3. Suppose that g satisfies the hypotheses of Theorem 2 and V.g 0.

If u is the resulting solution of (9) and p is defined by

p(x, t)= lu(y, t). Vu(y, t)l. v(o lx yl 2-") ay,

where co, is the surface area of the unit sphere in Rn, then (u, p) lies in the class A
and satisfies (1). In addition Vu and p obey the estimates in (4).
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In conclusion we remark that the solutions of (9) in Theorem 3 are also
solution vectors of (1), if g is divergence free (see [7]). However, these solutions
are not known to lie in any class for which uniqueness holds for (1), (2).

Acknowledgment. The author is grateful to a referee for some constructive
suggestions which led to the present form of this paper.
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SECOND ORDER DIFFERENTIAL EQUATIONS WITH GENERAL
BOUNDARY CONDITIONS*

G. J. ETGEN AND S. C. TEFTELLERf

Abstract. This article is concerned with second order lineardifferential systems involving a param-
eter together with integral boundary conditions. The objective is to establish the existence of eigen-
values for the boundary problems and to determine the oscillatory behavior of the associated solutions.
The methods employed in the paper are derived primarily from the work of W. M. Whyburn, and the
results presented here represent an extension of some of his work on similar boundary problems.

1. Introduction. In [4], W. M. Whyburn studied the second order differential
system"

dy
k(x, )z,

dx
(1)

dz
dx

g(x

where k(x, ) and g(x, ) are real-valued functions on X’a _< x _< b, L"* di < 2
< 2" + di, - < a < b < o, 0 < i _< , together with boundary conditions
of the form

(2a) (2)y(a, 2) fl(2)z(a, 2) O,

(2b) A(x, 2)y(x, 2) dx O,
or

(2c) B(x, 2)z(x, 2) dx O.

By comparing the boundary problems (1), (2a), (2b) and (1), (2a), (2c) with simpler
two-point boundary problems,Whyburn proved that eigenvalues for each of the
problems exist and he established the oscillatory behavior of the associated
solutions.

The purpose of this paper is to extend some ofWhyburn’s work by considering
the differential system (1) under somewhat less restrictive hypotheses on the
functions k(x, 2) and g(x, 2) than those imposed by Whyburn, and by studying
(1) together with boundary conditions which are more general than (2a), (2b) and
(2a), (2c). In particular, we shall consider (1) with each of the boundary conditions"

(3a)

(3b)

(4a)

(4b)

a(2)y(a, 2) fl(2)z(a, 2) 0,

y,().)y(a, 2)+ 61(2)z(a,2 y2(2)y(b,2) + 62(2)z(b,2) + H(b; 2),

a(2)y(a, 2) fl(2)z(a, 2) 0,

yl(2)y(a, 2) + 6(2)z(a,2) ),2y(b,2) + ,52z(b,2) + J(b, 2),

* Received by the editors April 19, 1971, and in revised form September 27, 1971.
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where H(x, 2) I h(t, 2)z(t, 2) dt and J(x, 2) j(t, 2)y(t, 2) dt. The methods
employed in the paper are analogous to those used in [2] and are different from
those developed by Whyburn.

The following hypotheses on the coefficients involved in (1), (3a), (3b) and
(4a), (4b) will be assumed throughout:

(H) For each x e X, each of k(x, 2), g(x, 2), h(x, 2) and j(x, 2) is continuous
onL.

(H2) For each 2 on L, each of k(x, 2), g(x, 2), h(x, 2) and j(x, 2) is measurable
on X.

(H3) There exists a Lebesgue integrable function M(x) on X such that
[k(x, X)l -<_ M(x), [g(x, R)[ =< M(x), [h(x, R)l -< M(x) and Ij(x, 2)1 =< M(x) on XL.

(H4) k(x, 2) > 0 on XL.
(Hs) Each of the functions a(2), fl(2), i(2), dii(2), 1, 2, is continuous on L.
(H6) 2(),) + f12(),) > 0 on L. In particular, without loss of generality, we

assume
2(2)+fl2(2)= 1 on L.

(HT) fl(2) __> 0 on L.

2. Existence of eigenvalues. We establish the existence of values of 2 on L for
which there corresponds a nontrivial solution of (1) satisfying (3a), (3b) or satisfying
(4a), (4b). Such values of 2 are called eigenvalues of the respective boundary
problems. By a nontrivial solution of (1) we mean a solution pair {y(x, 2), z(x, 2)}
of (1)such that yZ(x, 2) + Z2(X, J) > 0 on XL.

Hypotheses H1-H3 allow the application of fundamental existence and
uniqueness theorems [1, Chap. 2] for differential systems to obtain the existence
of a unique solution pair {y(x, 2), z(x, 2)} of (1) on XL such that

(5) y(a, 2) fl(2), z(a, 2) z(2)

onL.
Applying the polar coordinate transformation to the solution pair {y(x, 2),

z(x, 2)} of (1), (5) (for example, see [5]), we obtain

(6)
y(x, 2) r(x, 2) sin v(x, 2),

z(x, 2) r(x, 2) cos v(x, 2),

where r(x, 2) and v(x, 2) are the solution of

(7)

satisfying

k(x, 2) cos2 v g(x, 2) sin2 v,

dr
dx

r. [k(x 2) + g(x 2)] sin v. cos v

r(a, 2) 1,
(8)

sin v(a, 2) fl(2), cos v(a, 2) (2), 0 <= v(a, 2) < 2re.

In fact, since fl(2) => 0 on L, v(a, 2) may be assumed to satisfy 0 __< v(a, 2) <= z on L.
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For each 2 on L, y2(x, 2) -t- Z2(X, 2) r2(x, 2) on X and since r(x, 2) is a solution
of a first order linear differential equation and is positive at x a, we conclude
yZ(x, 2) + zZ(x, 2) > 0 on XL and the solution pair {y(x, 2), z(x, 2)} is nontrivial.

THEOREM 1. Let {y(x, 2), z(x, 2)} be the solution of (1), (5) and let v(x, )0 and
r(x, 2) be defined by (7) and (8). Then v(b, 2) _>_ 0 on L. In addition to H1-H7, let
the following conditions hold"

(i) h(x, 2)/k(x, 2) is integrable, nonnegative and nondecreasing on X for each
2onL;

(ii) 0 < 7(2) + 32(2) =< 1 and 72(/].) on L;
(iii) r(b, 2) _> 1 on L and r(b, 2) >= r(x, 2) on X for each 2 on L.

If rn is the least nonnegative integer such that infx, v(b, 2) < (2m + 1)re/2, n is an
integer such that supxL v(b, 2) > (2n + 1)r/2, and if n >= rn + 1, then there exist at
least p, p n m, nonempty sets ofeigenvalues To, TI, Tp_ for the boundary
problem (1), (3a), (3b). Moreover, the number of distinct eigenvalues for (1), (3a), (3b)
is at least p/2 if p is even and at least (p + 1)/2 if p is odd.

Proof. The continuity conditions on the coefficients of the boundary problem
imply v(x, 2) is continuous on XL. Fix any 2 on L. Since v(a, 2) > 0 and since
v’(x, 2) > 0 whenever y(x, 2) 0, we conclude v(x, 2) >= 0 on X. In particular,
v(b, 2) > 0 and it follows that v(b, 2) >= 0 on L.

Let m and n be the integers with the properties described in the hypothesis.
Using the continuity of v(b, 2), there is a value of 2, say 2o, such that v(b, 2o)

(2m + 1)re/2 and a value of , say 2p, such that v(b, 2)= (2n + 1)r/2. Of
course 2o # 2, so we assume, without loss of generality, 2o < 2p.

Using the polar representation of {y(x, 2), z(x, 2)}, boundary condition (3b)
becomes

(9) [72(2) + 62(2)] ’/2 sin Iv(a, ) + 0(2)] r(b, 2)f(b, 2) + H(b, 2),

where

(10)

sin 0(2)= [72(7 + 6(2)]/2,
cos o()

f(b, 2) 72(/) sin v(b, 2) + a2(/ COS v(b, 2).

Define Q(2) by

(11) Q(2) r(b, 2)f(b, 2) + H(b, 2).

Fix 2 on L and consider

H(b, 2) f[ h(t, 2)z(t, 2) dt
k(t,

y’(t, 2) dt.

Condition (i) allows the application of a mean value theorem for integrals [3,
Theorem 244, p. 164] to obtain

(12)
h(b, 2) f h(b 2) ffmax y’(t 2) dr.min y’(t, 2) dt < H(b, 2) <

k(b, 2) xXk(b, 2) xx
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Let ff and x* be the values of x on X such that

and

We now have

min y’(t, 2) dt y’(t, 2) dt,
xX

max y’(t, 2) dt y’(t, 2) dr.
xeX

r(b, 2) f(b, 2) + k(bi2) sin v(b, 2)
r(b )

sin v(2, 2

(13)
h(b, 2)

sin v(b 2) sin v(x*, 2)=< Q(2) N r(b, 2) f(b, 2) + k(b, 2) r(b, 2)

Since n m + p, p 1, and since v(b, 2) is continuous in 2, there are p
values of 2,2,...,2p_ on (2o,2) such that v(b, 2)= [2(m+j)+ 1]/2,
j= 1,2,...,p- 1. Moreover, we may assume 2 <2 <... <2p_. Now,
choose any integer j, 0 N j N p- 1, and, without loss of generality, assume
sin v(b, 2) + 1. Then sin v(b, 2+ ) 1. From (13), we have

h(b, 2i) 1 sin v( 2j) > 1Q(j) r(b, j) 2(j) +
k(b, 2j)L )

(j+ 1) r(b, 2j+ 1) 2(j+ 1) + k(b 2+ ; sin v(x*,

N-l,

using conditions (ii) and (iii). Thus, as 2 increases from 2j to 2j+l, Q(2) changes
continuously in value from not less than + to not more than 1 (or vice versa)
forj 0,1,...,p- 1.

Now, using condition (ii) and the continuity of sin Iv(a, ) + 0(2)] in 2, we have

[(2) + 6(2)]/21 sin Iv(a, 2) + 0(2)][ N 1.

Thus there will exist at least one value of 2 on [2j, 2j + 1] with the property that (3b)
is satisfied. Let {2 e [2j, 2j+ 1][ (3b) is satisfied},j 0, 1, .--, p 1.

Our work above establishes that the continuous curves S(2)=
+ 6(2)] /2 sin Iv(a, 2) + 0(2)] and Q(2) must intersect at least once on each of the
intervals [2j, 2j+], j 0, 1,..., p- 1. Of course, it could happen that they
intersect only at alternate endpoints, that is, at 2, 23, with 22j+ ,j 0, 1, ..-,
serving as the eigenvalue for both [22j 22j + 1] and [22j + a, 22j + 2]- We find therefore
that there will be at least p/2 or + 1)/2 distinct eigenvalues for (1), (3a), (3b)
depending on whether p is even or odd. This completes the proof of the theorem.

Concerning the eigenvalues for the boundary problem (1), (3a), (3b), we note
that there may exist additional eigenvalues outside the interval [20, 2p]. We note,
also, that each of the nonempty sets of eigenvalues , j 0, 1, ..., p- 1, can
be finite, countable or uncountable. Finally, and + may have an eigenvalue
in common, namely, 2j + a.
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We remark that condition (iii) of the hypothesis concerns the amplitudes of
the solution pair {y(x, 2), z(x, 2)}. This condition can be verified by solving (7) to
obtain

r(x, 2) exp [k(t, 2) + g(t, 2)] sin v(t, 2) cos v(t, 2) dt,

and noting, for example, that if

and

(k + g) sin v cos v >- (k + g) sin v cos v,

fi’ (k + g) sin v cos v _>_ O onL,

xX,

then (iii) is satisfied. The case of system (1) with g(x, 2) -k(x, 2) provides a
simple example of a system in which condition (iii) is satisfied.

COROLLARY 1. Under the hypotheses of the theorem, if the integer n can be
chosen arbitrarily large, then there exist infinitely many nonempty sets ofeigenvalues
To, T1,.’. for the boundary problem (1), (3a), (3b). Moreover, in this case, there
are infinitely many distinct eigenvalues for the boundary problem.

COROLLARY 2. Under the hypotheses of the theorem, there exist p nonempty
sets of eigenvalues Jo, J1, Jp- for the boundary problem (1), (3a), (3b) such
that, if p J, j 0, 1, ..., p 1, then v(b, p) >_ [2(m + j) + 1Ire/2. Moreover,
if pj Jj, then the corresponding solution {y(x, pj), z(x, p)} has the property that
y(x, pj) has at least m + j 1 zeros on X, assumingj has the property m + j 1 > O.

Proof Let {y(x, 2), z(x, 2)} be the solution of(l), (5) and define v(x, 2) by (7), (8).
Since v(b, 2) is continuous in 2 and since v(b, 2) ranges in value from less than
(2m + 1)r/2 to more than (2n + 1)re/2 on L, we select 2o and 2p as in the proof of
the theorem. If 2o < 2p, then, using the continuity of v(b, 2), select 21,22, -’-, 2p_
such that 20 < 2 < 22 < < /p_ < /p and v(b, 2) _> v(b, 2) for 2 >__ 2,
j 0, 1,..., p 1. If 2o > 2p, then select 21,22,"’, 2p_1 such that 2p < 2p_1
< < 21 < 2o and v(b, 2) >__ v(b, 2j) for 2 N 2. Let Jj be the set of all 2 on the
closed interval with endpoints 2 and 2j / such that (3b) is satisfied. As in the proof
of the theorem, each Jj is nonempty.

Now fix 2 on L. From the polar representation of y(x, 2), y(x, 2) has at least
q zeros on X if and only if v(x, 2) 0 (mod rt) at least q times. This will occur if
v(b, 2)- v(a, 2) >_ q rt.

Now, choose any integer j, 0 =< j __< p 1, and let pj e J. Then

v(b p)- v(a pj) >
[2(m + j) + -t>(m+j- 1)re.

Assuming j has the property m + j 1 >= 0, y(x, pj) has at least m + j 1 zeros
on X.
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In Theorem 1, we required 0 < 2 + 62 _<_ 1 and >__ 1 on L. We may use
the proof of Theorem 1, however, to establish the existence of eigenvalues for the
boundary problem consisting of (1), (3a) and

(3b’) H(b, 2) h(t, 2)z(t, 2) dt O,

obtaining a result which is analogous to Whyburn’s work in [4].
THEOREM 2. Let {y(x, ).), z(x, 2)} be the solution of (1), (5). Then v(b, ) >__ 0

on L, v(x, 2) defined by (7) and (8). Let the following conditions hold"
(i) For each 2 on L, h(x, 2)/k(x, 2) is integrable, nonnegative and nondecreasing

on X.
(ii) For each ) on L, r(b, ) >_ r(x, .) on X.

If m, m >= O, is the least nonnegative integer such that inf v(b, 2) < (2m + 1)zt/2,
n is an integer such that sup v(b, 2) > (2n + 1)re/2, and if n >_ m + 1, then there
exist at least p, p n m, nonempty sets of eigenvalues To, T1, T_ for the
boundary problem (1), (3a), (3b’).

Proof. This proof is a simplification of the proof of Theorem 1. Using the
statements and notations of that theorem, inequality (13) becomes

(14)

r(X, ,),h(b,2)
sinv(b 2)-sinv( 2) <H(b )r(b, ,t)k(b, 2) r(b, 2)

h(b, 2)1- r(X*,r(b, 2----2)<= r(b,Z)k(b 2iLsln v(b, 2) sin v(x*, 2)

Defining 2o, 21, ..., 2p_ 1,2p as in the proof of Theorem 1, we have, from (14),
that H(b, ).j) and H(b, 2j+ 1) have opposite sign. We conclude, therefore, that (3b’)
is satisfied for at least one value of 2 on the closed interval with endpoints 2j and
2j+ 1, j 0, 1, p 1. Let T be the nonempty set of eigenvalues on the closed
interval with endpoints 2j and 2+1, j 0, 1, ..-, p 1.

It is clear that corollaries analogous to those of Theorem 1 can be stated for
Theorem 2.

We now adapt the proof of Theorem 1 to prove the following theorem
establishing the existence of eigenvalues for the boundary problem (1), (4a), (4b).

THEOREM 3. Let {y(x, )0, z(x, 2)} be the solution pair of (1), (5). Then v(b, 2) > 0
on L, v(x, 2) defined by (7) and (8). Let the following conditions hold"

(i) g(x, 2) is not identically zero on any subinterval ofXfor each 2 on L and is
not identically zero on any subinterval of L for each x on X.

(ii) j(x, 2) is afunction such thatj(x, 2)/g(x, 2) is defined, integrable, nonnegative
and nondecreasing on X for each 2 on L.

(iii) 0 < z(2) + di2(2) _<_ 1 and 62(2) >= 1 on L.
(iv) r(b, 2) __> 1 on L and r(b, 2) __> r(x, 2) on X for each 2 on L.

Ifm is the least nonnegative integer such that inf v(b, 2) < mrc, n is an integer such
that sup v(b, 2) > nrt, and ifn >_ m + 1, then there exist at least p, p n m, non-
empty sets ofeigenvalues To, T1, Tp_ for the boundary problem (1), (4a), (4b).
Moreover, the number of distinct eigenvalues for (1), (4a), (4b) is at least p/2 if p
is even, or at least (p + 1)/2 if p is odd.
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Proof. Using the polar representation of the solution pair {y(x, 2), z(x, 2)},
boundary condition (4b) becomes

(15) [721(2) + 521(2)] 1/2 sin Iv(a, 2) + 0(2)] r(b, 2)f(b, 2) + J(b, 2),

where 0(2) and f(b, 2) are defined by (10). Define R(2) by

(16) R(2) r(b, 2)f(b, 2) + J(b, 2).

Fixing 2 on L and using condition (ii) together with the mean value theorem
employed in the proof of Theorem 1, we have

(17)
j(b, 2)
g(b, 2)

min z’(t, 2) dt < J(b, ) < j(b, 2)
max z’(t, )0 dt.

xx g(b, 2) xx

Defining ff and x* by

min z’(t, 2) dt z’(t, 2) dr,
xX

we have

max z’(t, 2) dt z’(t, 2) dr,
xX

r(b, 2){f(b, 2) +
j(b 2)[g(b, 2)

cos v(b, 2)
r(ff, 2)
r(b, 2)
cos v(, 2)1t __< R().)

<= r(b, )0 {f(b, )0 + g(b, 2)
cos v(b, 2)

r(b,2cos v(x*, 2)

Now paraphrasing the proof of Theorem 1, choose 2o, 21,’", 2p such that
v(b, 2j) (m + j)rc, j 0,..., p. The continuity of v(b, 2) in 2 together with
conditions (iii) and (iv) implies R(2) varies continuously from a value less than or
equal to 1 to a value greater than or equal to + 1 (or vice versa) on the closed
interval with endpoints 2j and 2j+1, j 0, ..., p 1. The proof is now com-
pleted exactly as in Theorem 1.

The following corollaries are the analogues of those given for Theorem 1.
COROLLARY 1. Under the hypotheses of the theorem, if the integer n can be

chosen arbitrarily large, then there exist infinitely many nonempty sets of eigen-
values To, T1, for the boundary problem (1), (4a), (4b). Moreover, in this case,
there are infinitely many distinct eigenvalues for the boundary problem.

COROILaR 2. Under the hypotheses of the theorem, there exist p nonempty
sets of eigenvalues, Jo,J1, ..., Jp_, for the boundary problem (1), (4a), (4b)
such that if pje Jj, 0 <= j <= p 1, then v(b, pj) >= (m + j)rc. Moreover, if pj Jj,

then the corresponding solution {y(x, pj),z(x, pj)} has the property that y(x, pj)
has at least rn + j zeros on X, assuming m + j >= O.

We conclude with an extension ofTheorem 2 which is suggested by Whyburn’s
work [4]. Consider the differential system (1) together with the boundary con-
ditions

(18)
a(2)y(a, 2) fl(2)z(a, 2) 0,

M(b, 2) 0,
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where M(x, 2) I p(t, 2)[a(2)y(t, 2) z(2)z(t, 2)3 dt and a(2)z(2) fl(2)a(2) 1
on L. Define the functions q(x, 2) and t(x, 2) by

(19)

Then

(20)

o(x, ,) (,)y(x, 2) fl(2)z(x, ),

(x, 2.) (2.)y(x, 2.) .(2.)z(x, 2,).

q)’ [aak- flg]q) + [fl2g_ 2k],

ll’-- [a2k z2g](p + [flg-

Define , W, K, G and co by

6= q) e -’, e’, K [p2g_ aZk]e-
(21)

G [ak zg] e, co [eek zg] dr.

In terms of these functions, the boundary problem (1), (21) is transformed into

=/(x, 2)v,
(22)

v’ G(x, ),,

(23)
(a, 2) 0,

W(b, 2) 0,

where W(x, 2) p(t, 2) e-’tt’z)tP(t, 2) dt. Imposing the same conditions on
K, G and p(x, 2) e -’tx’z) that were assigned to k, g and h, respectively, in Theorem 2,
we obtain the existence of eigenvalues for the boundary problem (22), (23). Of
course, the existence ofeigenvalues for (22), (23) can be translated into the existence
of eigenvalues for (1), (18).
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SINGULAR PERTURBATIONS OF A GENERAL BOUNDARY VALUE
PROBLEM*

K. W. CHANG

Abstract. This paper treats the boundary problem

y’= A(t)y + B(t)z,

ez’= C(t)y + D(t)z,

The main difference of our approach and that of earlier writers is that we are able to reduce the system
to a purely diagonalized form under even less stringent assumptions.

1. Introduction. Consider the boundary value problem consisting of m + n
equations

y’= A(t)y + B(t)z,
(1)

ez’ C(t)y + D(t)z,

and m + n boundary conditions

(2) M() (Y(0’ e)) + N(e)
z(0, )

y(1, e))z(1, e)

on the interval 0 =< =< 1. Here y, c and z, c2 are respectively real m-dimensional
and n-dimensional vectors and A, B, C, D, M, N are square matrices of appropriate
orders. We assume that A, B, C, D are continuous functions for 0 __< =< 1 and
M() M(0) + 0(), N(e)= N(0) + 0(0, Ci(,)-- ci(O) "3c" 0(,), i= 1, 2, where 0(e)
is a standard order symbol referring to e --, 0 +.

Harris [4], [5] and, more recently, O’Malley [6] have analyzed similar bound-
ary value problems involving powers of e. Their approach is to reduce (1) to a
simpler form"

v’ (A BD-1C -- O(l,))u +
ew’ O(e)v + (Q-IDQ + 0(t))w,

by means of the transformation

with
I eBD-

U(t,e)
-QD-1C Q

* Received by the editors September 8, 1971, and in revised form November 17, 1971.
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and Q such that
Q- DQ diag [D_, D + ],

where the eigenvalues of the matrices D_ and D + have, respectively, negative and
positive real parts for 0 --< =< 1. To carry out this transformation, Harris and
O’Malley assume that U(t, e) and hence BD-, D-C and Q are continuously
differentiable. Such a Q definitely exists if D is assumed continuously differentiable
and its eigenvalues have nonzero real parts for 0 =< =< (cf. [2]). However, as
shown by the counterexample in [2], such a Q may not exist if D is continuous but
not continuously differentiable.

The main purpose of this paper is to weaken the assumptions of Harris and
O’Malley to"

(I) A, B, C, D are continuous and all eigenvalues of D have nonzero real part
for0< t< 1.

We shall show in the next section that under assumption (I) we can reduce (1)
to a purely diagonalized form

v’ (A BT)v,

ew’= (D + eTB)w,

by using the transformation

v)
in place of the transformation indicated above, where T, S are bounded solutions
of

T’ e- IDT TA + TBT e- IC,
S’= [A BT]S- e-S[D + eTB] e-B,

respectively.
The main result is given in the end as a theorem.

2. Reduction into block diagonalization. From our assumption on D(t) it
follows that D(t) is invertible and has the constant number p, 0 =< p _<_ n, of eigen-
values with negative real part for 0 =< __< 1. Moreover, since the interval [0, 1]
is compact, there exists/ > 0 such that the real part of every eigenvalue of D(t)
has absolute value >= 2/. Therefore, by Lemma 1 in [2], the linear equation

(3) ez’= D(t)z

has a fundamental matrix Z(t) Z(t, ) satisfying the inequalities

IZ(t)PZ-(s)l-< L exp (-/(t- s)/e) for 1 >_ >_ s >= 0,
(4)

IZ(t)(I,- P)Z-:(s)l =< L exp (-/(s- t)/e) for >= s >= >= 0,

where L is a positive constant independent of e and P is the projection

I O)P=
0 0

where I is the unit p p matrix.
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Since A(t) is continuous and therefore bounded on [0, 1], there exists a > 0
such that the norm A(t)l <= and the equation

(5) y’= A(t)y

has a fundamental matrix Y(t) such that

(6) Y(t)Y-(s)l exp(crlt-sl) for 0<t,s 1.

Then we have the following result.
LEMMA. There exists eo > 0 such that the equations

(7) T’ e-’D(t)T TA(t) + TB(t)T e- C(t),

(8) S’= [A(t)- B(t)T(t,e)]S- e-lS[D(t) + eT(t,e)B(t)]- e-’B(t),

have respectively solutions T T(t, e), S S(t, e) which are uniformly bounded for
O< <= and O < <= Co.

Moreover, jbr 0 < < l, T(t, 0)= lim_o T(t, )= D-l(t)C(t) and S(t, O)
lim_ o S(t, e) B(t)D- (t).
Furthermore, the change of variables

(9) w= z + T(t,e)y, v= y + S(t,e)w

transforms (1) into the block diagonal form"

(lO)
v’= [A(t)- B(t)T(t, e)]v,

ew’ [D(t)+ eT(t, e)B(t)]w.

Proof. The existence of a bounded solution T(t, e) of (7) follows from the
theorem in [1]. Clearly, lim_ 0 T(t, e) D- l(t)C for 0 < < 1.

To obtain a bounded solution of (8), let V(t, e) be a fundamental matrix of
the first equation of (10). Since [0, 1] is compact, there exists # > 0 such that
IlA(t) B(t)T(t, )ll =< which implies

IV(t, OV- I(S, 01 exp (0It sl) for 0 t, s 1.

Also, by Theorem 2 in [3], the second equation of(10) has, for all sufficiently small
e > 0, a fundamental matrix W(t, e) such that

IW(t,OPW-l(s, OI Jexp(-/(t- s)/2e) for 1 >= >= s > 0,
(4’)

W(t,e,)(I,-P)W-(s,e)l_-<gexp(-#(s-O/20 for i>=s>t>__0,

where f, is a positive constant independent of e.
It can easily be verified by differentiation that

S(t, ) V(t, )V- (s, e)[- e- B(s)] W(s, )(I. P)W- x(t, e) ds

V(t,)V-l(s,e,)[-e,-1B(s)]W(s,e,)PW-’(t,e,)ds
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is a solution of (8), and for 0 < e </(2#,

IIS(t, )ll =< e-1 ]B]] exp [((- #/2e)(t- s)] ds

.1

exp }+ [, [(# p/2e)(s t)] ds

_<_ 2Ell B (# 2e6)- 1.

Thus S(t, e) is bounded, and moreover, limo S(t, e) B(t)D- l(t) for 0 < < 1.
Consequently, the change of variables (9) transforms the system (1) into (10).

3. Theorem and proof. Applying (9) now to the boundary conditions (2), we
obtain

(11) _r(e)

where

and

u(O, )1\ + g()
w(0, ) w(1, )

M(e) M()H(O, e), N(e) N()H(1, )

H(t, e)
T(t, e)

eS(t, e,) I.
I, + e T(t, e)S(t, e)

Clearly, H(t, e) is nonsingular for all small e for which S(t, e) and T(t, ) exist.
We have now transformed the original problem (1), (2) into a more tractable

problem (10), (11), which we treat in the same way as O’Malley, except for a
modification due to D(t) not having block diagonal form. One can readily verify
by differentiation that the functions

w(t, ) 0 W(t, e)PW- 1(0, e) + W(t, )(I. P)W-1(1,
are a solution of (10), where 1,02 are arbitrary constant vectors. It only remains
to choose 1,02 to satisfy the boundary conditions (11). Substitution into (11)
yields

A()
() c_()

where

(13)
A(e) h(e) diag IV(0, e), W(0, e)PW- 1(0, ) -- W(0, e)(I, P)W- 1(1, e)]

+ (e) diag V(1, e), W(1, e)PW- 1(0, e) + W(1, e)(I, P)W- 1(1, e)].

If the inverse A- l(e) exists, then

1()/ A-I(E) (1()()t c()
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and

(14)

v(t, ))w(t,5)

v(t,e)

0

o
W(t, 5)PW- 1(0, 5) + W(t, 5)(I. P)W- 1(1,5)

is a solution of the boundary value problem (10), (11).
Let us analyze A(5). Since W(1, 5)PW- 1(0, 5) 0(5) and

W(O, 5)(I, P)W- 1(1,5) 0(5)

as 5 --+ 0, we can express (13) as

A(5) r(O) diag V(O), W(O)PW- 1(0)]
+/(0) diag IV(l), W(1)(I. P)W-1(1)] + 0(5),

where

V(0) lim V(0, 5), W(0) lim W(0, 5), etc.
e--*O

This is equivalent to

A(5) (/l(O)V(O) + Il(O)V(1)’ff42(O)W(O)PW-1(O)
+/2(0)W(1)(I, P)W-1(1)) + 0(5)

if we partition h,/’7 as

/() (()’()), S() (,()’2()),
such that hr -1 and V have the same number m of columns, and/2,/2 and
W have the same number n of columns. Therefore, for all sufficiently small e, the
inverse A- l(e) exists if we make the following assumption"

(II) The matrix

A(0) =/r(0) diag IV(0), W(O)PW- 1(0)] +/(0) diag IV(l), W(1)(I, P)W- 1(1)]
(/I(O)V(O) + II(O)V(1)’I2(O)W(O)PW-1(0)

+/2(O)W(1) (I, P)W- 1(1))
is nonsingular.

We note that A(0) may be checked immediately since it depends only on the
leading coefficients of the problem (1), (2). However, if it were singular, then a
higher order analysis of A(5) would be necessary to see if it could be nonsingular.

We next analyze the form of the solution within [0, 1] as 5 -+ 0. In view of (4’)
it follows from (12) that for 0 < < 1,

v(t, ))w(t, 5)
-+olim V(t, e) 0)(11(0)10 0 02(0)]

li-+mo V(t, e) 11(0))0



SINGULAR PERTURBATIONS OF BOUNDARY PROBLEM 525

that is, x(t) satisfies the degenerate system of (10)"

xi [A(t)- B(t)T(t, 0)Ix [A(t)- B(t)D-i(t)C(t)]x,
0 D(t)x2

c,(0)
Also, x(t) satisfies the first m boundary conditions of A-(0) c(O)]"

In fact, on

partitioning (0),/q(O), A(O), A- (0) after the first m rows and columns as

M M1

2 22]’

(o)

A(O)

N(0)=

A-(o) dll
d21

]12
]22]’

dE
we find that the first m rows of A- (0)/r(0)x(0) + A- (0)/(0)x(1) are

[d,,(/t, V(0) +/,, V(1)) + d,2(r2, V(0) +/E, V(1))]a,(0)

(d11;11 + d12(12)1(0) 01(0),

,,,lc,(O)lthat is, they are the first m rows of A- I,o)[,c2(0]...,
To sum up, we have proved the following theorem.
THEOREM. Let assumptions (I), (II) hold. Then for all sufficiently small the

boundary value problem (10), (11) has the solution

w(t e) 0 W(t e)PW- (O, e) + W(t e)(I. P)W (1,e) A-l(e) Cl(/)/
c()l

for 0 <__ <= 1, where A(e) is given by (13).
Moreover, as e 0 this solution (v(t, e), w(t, e)) (xi(t), x2(t)) for 0 < < 1,

where (x(t), x2(t)) is the solution of the degenerate system

x’ [A(t)- B(t)O-’(t)C(t)]x,,
0 D(t)xz,

and the first m equations of

A-’(O)/(O) x’(O)/ x’(1)/ A-’(0), c’(O)/
x2(0)/

+ A-’(0)(0)
x2(1)/ c(O)]"

Returning to the original variables, for all sufficiently small the boundary value
problem (1), (2) has the solution

z(t, e) r(t, ) I. + r(t, e)S(t, e.) w(t, )

for 0 <- <__ 1. Moreover, for 0 < < 1, this solution tends, as O, to the solution
(y(t), (t)) of the degenerate boundary value problem consisting of

y’= A(t)y + B(t),

0 C(t)y + D(t)
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and the first m equations of

A-’(O)M(O) Y(O)/ + A-I(O)N(O) A- ’(0)
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EXISTENCE AND REPRESENTATION THEOREMS FOR A
SEMILINEAR SOBOLEV EQUATION IN BANACH SPACE*

R. E. SHOWALTER"

Abstract. An existence theory is developed for a semilinear evolution equation in Banach space
which is modeled on boundary value problems for partial differential equations of Sobolev type. The

operators are assumed to be measurable and to satisfy coercive estimates which are not necessarily
uniform in their time dependence, and to satisfy Lipschitz conditions on the nonlinear term. Applications
are briefly indicated.

1. Introduction. We shall consider the abstract Cauchy problem for the
nonlinear evolution equation

////(t)u’(t) + (t)u(t) f(t, u(t))

in a separable and reflexive Banach space. The linear operators /(t) are assumed
to be weakly measurable in and to satisfy nonuniform coercive estimates over
the Banach space which permit them to degenerate for certain values of t. The
family of linear operators &(t) are assumed to be weakly measurable in t. The
nonlinear term f(t, u) is measurable in and Lipschitz in u.

Three types of solution are considered weak, mild, and strong. A mild solution
is (essentially) a weak solution which permits a certain integral representation, and
we shall prove that these two notions differ by a measurability assumption. A
strong solution is a weak solution for which each term in the equation belongs to
a specified Hilbert space for almost every t.

The plan of the paper is as follows. Section 2 contains some technical results
and notation we shall use. These include measurability of vector- and operator-
valued functions, Gronwall’s inequality, and an elementary fixed-point theorem
for Banach space-valued functions.

The weak solution is defined in 3, where we obtain results on uniqueness,
local existence and global existence under various hypotheses. These results are
used in 4 to construct the linear propagator (which resolves the linear equation
with f 0) and thereby to introduce the notion of a mild solution. We prove that
mild solutions (local and global) exist with the same hypotheses as used for existence
of weak solutions.

Strong solutions are introduced in 5. We give sufficient conditions for a
mild solution to be strong; these conditions are essentially that the operators
///(t) dominate the operators &(t). Finally we obtain independently a sufficient
condition for the existence (and uniqueness) of a strong solution; this condition
requires that the function f be dominated by the operators /(t).

2. Preliminaries. For notation and standard material in functional analysis
except as noted below, we shall refer to [11]. The space of continuous linear
operators from the normed linear space X to the normed linear space Y will be

* Received by the editors June 24, 1971, and in revised form November 18,1971.
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denoted by L(X, Y), and L(X) means L(X, X). The space L(X, Y) with the uniform,
strong and weak operator topologies is indicated by Lu(X, Y), Ls(X, Y) and
Lw(X, Y), respectively. Absolutely continuous (strongly, weakly) is abbreviated
by AC (respectively, SAC, WAC). An operator-valued function h "[0, 1] --. L(X, Y)
is called SAC from [0, 1] to Ls(X, Y) if for each x e X the map h(t)x is SAC
from [0, 1] to Y, and h is SAC from [0, 1] to L,(X, Y) if it is SAC from [0, 1] to the
normed linear space Lu(X, Y) (see [11, pp. 40-41, 52-53]).

All linear spaces will be over the field C of complex numbers. Each of our
results will hold if the spaces are over the real field R and if conjugate-linearity is
replaced by linearity. The modifications will be obvious.

The antidual of the normed linear space X is the Banach space X’ ofconjugate-
linear continuous maps from X to C. If x e X, the map tk d?(x)’X’ C is
continuous and conjugate-linear and hence determines an element Jxe X".
Thisdefinesalinearisometry J" X X"bytheidentity (Jx, cD)x,,-x, (d?, X)x,_ x.
We say X is reflexive if J is onto, and we identify each Jx X" with x e X (see
[11, pp. 32-33]).

We shall need to discuss the adjoint of a map Te L(X, X’). If x e X, the map
y (Ty, x)x,_x’X --. C is continuous and linear, so this determines a T’x X’
for which (T’x,y)x,-x (Ty, x)x,-x for all y eX. This defines the map
T’e L(X, X’). The adjoint of the map Te L(X, X’) is the map T*e L(X", X’)
defined by (T’y, X)x,_ x (y, Tx)x,,_ x, for y X", x X. Comparing this with
the above, we have for x, ye X,(T* Jy, x)x,_ x (Jy, Tx)x,,_ x, (Tx, Y)x,-x

(T’y,X)x,_x. This shows that T* J T’, so when we identify X and J(X)
we see that T* is an extension of T’. When X is reflexive, we have T* T’ under
the indicated identification, and this will simplify many of the duality arguments
to follow (see [11, pp. 42-43]).

For strongly measurable functions x(t) from the real interval I to the
Banach space X we shall use exclusively the Bochner integral with respect to
Lebesgue measure on I. If 1 <_ p < oe, L(I, X) is the Banach space of strongly
measurable functions x(. )’1 X for which

tlxllx) Ix(t)l dt

and IlxllLX) is the norm. Similarly, L(I, X) is the Banach space of strongly
measurable functions x(. ):I X for which the norm Ilxll(x) ess sup
e 1} is finite (see [11, pp. 71-89]).

When the Banach space X is separable, the notions of weak measurability
and strong measurability of X-valued functions are equivalent. The following
similar result for operator-valued functions will be useful.

PROPOSITION 2.1. Let X and Y be separable Banach spaces and h:[0, 1]
L(X, Y) a bounded function. Then h is measurable (in the strong operator

topology) if and only if there is a sequence ofcountably-valued measurable functions
h, :[0, 1] h([0, 1])

___
L(X, Y) such that h,(t) h(t) in L(X, Y), uniformly in

t [0, 1].
LEMMA 2.2. Let X and Y be separable Banach spaces and {T a A}

_
L(X, Y).

There is a countable subset { T. n >= 1} which is strongly dense in T a A}
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Proof. By considering subsets of the form {T,’n <= IIT, IILtx, r) < n}, we
may assume the T, are uniformly bounded. Consider the space 11 (Y) {(y,)-y. Y
and ,oo= ly,lr < }. Since Y is separable there is a sequence {r/,} dense in Y;
those sequences in l(Y) of the form (r/,,, r/,2, ..., r/,k, 0, 0, -..) are dense in l(Y),
so la(Y) is separable.

Let the sequence {,} be dense in X and define a map ck’L(X, Y) l(Y) by
ok(T) (T(k)/lklx2k’k >= 1) for TeL(X, Y). Since {4)(T)’ A} is a subset of
the separable l(Y), it is separable, and hence has a dense subset of the form
{ff(T.)" n >_ 1}. Thus for any T0, fie A, there is a sequence ((Tm)’T,, {T.})such
that if(T,,) b(T0)in l(Y). Then T,,(k)--’ T0(k)in Y for every k _>_ 1. But {k}
dense in X and T} bounded imply that T To in Ls(X, Y).

Proof of Proposition 2.1. Let {T,’n _>_ be a strongly dense subset of the
range h([0, 1]). Since h([0, 1]) is bounded, the topology induced on it by Ls(X, Y)
is metrizable, and the metric is given by p(T, U)= j=I(T-U)xlr/
(1 + [(T- U)xlr)2, where {x:j >__ 1} is dense in the unit sphere of X. If h is
measurable in L(X, Y), then each of the maps [(h(t) T,)x[y is measurable
[11, p. 72] and so then is p(h(t), T,) Forany e > 0, each ofthe sets E, {t [0, 1]"
p(h(t), T,) < e} is measurable with U{E,’n >_ 1} [0, 1]. The function defined on
[0, 1] by h(t) T. for E, U {E" 1 _< j < n) is measurable, countably-valued
in h([0, 1]) and p(h(t), h(t)) < e on [0, 1]. The converse is clear.

Finally we cite an elementary inequality and corresponding fixed-point
theorem [4], [9].

LEMMA 2.3. Let Z(. ) L([0, 1], R) satisfy for some >= 0 the inequality

(2.1) 0 <= Z(t) <__ + K()Z(v) dz

for [0, 1], where K(. ) L([O, 1], R), K(t) >= O. Then

(2.2) Z(t) <= exp K(z) dz

for [0, 1].
LEMMA 2.4. Let X be a Banach space and F a map of the closed and bounded

subset M of L([0, 1], X) into itself satisfying

I(Fu)(t) (fv)(t)lx <= g(z)lu()- v(z)lx dr

for t[0,1], where K(.)L([O, 1],R) and each K(t)>_O. Then there exists
exactly one solution in M of the equation F(u) u.

3. The weak solution. Let V be a reflexive and separable Banach space; the
norm is given by Ivlv and the V’ V antiduality by (q, v). Let a > 0 and assume
that for each I, [0, a] we are given a continuous sesquilinear form re(t;.,
on V. This defines a family of operators //(t) L(V, V’) by the identity

(3.1) m(t; x, y) (g(t)x, y), x, y V.

Let b > 0, Xo e V and Bdxo) {x e V "Ix Xolv <-_ b}. Assume that we are given
a functionf:la x Bb(xo)--* V’.
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DEFINITION. A function X’I -- V is a weak solution of the Cauchy problem

(3.2) #(t)x’(t) f(t, x(t)), x(O) xo

if it is SAC with range in Bb(xo) weakly differentiable a.e. on 1, and (3.2) is satisfied
for a.e.

Remark. It follows [11, p. 88] that x’ LI(I,, V) is a strong derivative a.e.
with x(t) x(s) x’(z)&. It suffices to require that x be WAC and a.e. have a
weak derivative x’ LI(I,, V).

The results of this section on weak solutions of (3.2) are obtained from
combinations of the following assumptions listed here for reference.

(I) There is a measurable function k’I,--, (0, ) such that [m(t; x,x)[
>= k(t)lx] for x V, a.e. on I,.

(II) There is a measurable function Q’I, [1, ) such that If(t, x) f(t, Y)]v,
=< Q(t)lx ylv for x, y e B(xo) a.e. on I,, and Q/k e LI(I,, R).

(III) For each pair, x, y e V, the function --. re(t; x, y)’I, C is measurable.
(IV) For each x e Bb(xo), the function --, f(t, x) I, --, V’ is (weakly) measur-

able. For a.e. e I,, the function x --, f(t, x) is continuous from B(xo)
with the norm topology to V’ with the weak (= weak*) topology.

Suppose (I) holds; then for a.e. te I, the operator #(t)’V V’ is an iso-
morphism with ]1///-l(t)]]L(V,,V) <--_ k(t)-1. To see this, note from (3.1) and (I) that
k(t)[x[Zv <= [#(t)[v,[Xlv, and hence k(t)[Xlv <= [A(t)X[v,. This shows that /{(t)is
injective with closed range in V’. Hence the range of (t) is the annihilator in V’
of the null space of the adjoint (t)’ [4, pp. 180-181 ], 11, p. 44]. But /{(t)’ satisfies
the same conditions as (t), so it has a trivial null space. Thus (t) is onto V’
and the result follows from the inequalities above.

Let xl and x2 be weak solutions of (3.2) on I, and assume (I) holds. Then we
obtain the estimate

IX’l(t) x’2(t)lv <= k(t)- llf(t xl(t)) f(t, x2(t))lv,.

Since Xl x’I, - V is SAC with summable derivative, we have

(3.3) xl(t)- x2(t XI(0 X2(0 -- (XI(S) X(S))ds

on I,. If we also assume (II), then we obtain the estimate

(3.4) Ixl(t)- x2(t)l v <= Ix1(0 x2(0)l v + k(s)-lQ(s)lxl(s)- x2(s)lvds.

This yields the following.
THEOREM 1. Assume (I) and (II). Then there is at most one weak solution of

(3.2) on I,. If {x,(.)} is a sequence of weak solutions of the equation (3.2) with
initial conditions x,(O), n >= O, then x,(O) Xo(0 in V implies that x,(t) Xo(t in
V, uniformly on

Proof. These results follow from the preceding inequality (3.4) and Lemma 2.3
with Z(t)= [xl(t -x2(t)[ v. That this function is bounded follows from (3.3),
since x’, x e LI(I,, V).

We consider next the existence of solutions.
LEMMA 3.1. Assume (I) and (III). Then the operator-valued map --,

Ls(V’, V) is measurable.
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Proof. Since k(t)> 0 on I and k is measurable, the sets defined by
J, {tI,’k(t)>= 1/n},n >_ 1, aremeasurableand (J{J,’n >= 1} I

The function ////’Ia---} Lw(V, V’) is measurable by (III) and V"= V; hence
it is measurable I, --} (V, V’) since V’ is separable [11, pp. 34, 74-75]. Let m >__
the restriction of //{ to J,, is strongly measurable, so by Proposition 2.1 there is a
sequence of countably-valued measurable functions k" Jm - //(J,,) Ls(V, V’)
such that, for J,, #k(t) --} (t) in Ls(V, V’) as k - . Since each //t(t) //(J,,),
we have II////[ l(t) L(v’,v) -< k(t)- m, so for b e V’, I; l(t) - l(t)b[v

I#[ l(t)[(//(t)x //(t)X]]v <= ml#(t)x /(t)Xlv 0 as k . Hence
#-’J,, Ls(V’, V) is measurable for every m._>_ 1, and this yields the desired
result.

LEMMA 3.2. Assume (I), (III) and (IV). If .x’I Bb(xo) is measurable, I - V,
then the function ---} - (t) f(t, x(t))" I V is measurable.

Proof. For every b e V’ we have

(el), //- l(t)f(t, x(t))) (f(t, x(t)),- l(t)’b),
where /-(t)" V’--} V is the adjoint of -(t), so it suffices to show that
f(t, x(t))and -(t)’b are measurable in V’ and V, respectively.

By Lemma 3.1, /-l(t) is measurable, so the identity
(q,/f/-l(t)qt) for in V’ implies that -l(t)’b is weakly (hence strongly)

measurable.
Since V’ is separable and V is reflexive, the measurability of f(t, x(t)) will

follow from that of - (f(t, x(t)), v) for every v V. Suppose first that x’Io --} V
is a countably-valued function assuming the value xj on Gj, where {Gj:j >= 1} is
a measurable partition of Ia. Let b(t) be the characteristic function of Gj. Then
we have f(t, x(t)) {f(t, xj)dpj(t):j _>_ on I,; each term is measurable by (IV),
so f(t,x(t)) is measurable when x(t) is countably-valued. But any measurable
function is a strong limit of countably-valued functions, so the result follows from
the continuity requirement in (IV).

THEOREM 2. Assume (I), (II), (III) and (IV). Let Xo V be such that
f(t, Xo)]v, <= Q(t)bo on lc, where c 6 I is chosen so thatf Q(t)k(t) dt <= b(bo + b) -1.
Then there exists a (unique) weak solution of (3.2) on I.

Proof. Define M to be those continuous functions x L(Ic, V) for which
x(t) Bb(XO) on 1. For any x m the function /l- x(t)f(t, x(t)) is measurable
I V by Lemma 3.2, and we have the estimate IX-(t)f(t, x(t))]v < k(t)-Q(t)
(bo + b) on 1. Hence the function is integrable, and we can define on I the
function

(3.5) [Fx] (t) x0 -+- i(- l(s)f(s, x(s)) ds.

It follows that I[Fx](t) Xolv <= b, so F maps M into itself. Finally we have from
(II) that I[Fx](t) [Fy](t)lv <= ’o Q(s)k(s)-llx(s y(S)lvds, so Lemma 2.4 asserts
that there is a unique x M for which

(3.6) x(t) Xo -+- #- l(s)f(s, X(S)) ds

on lc. But this is equivalent to being a weak solution of (3.2) (see [11, p. 88]), so
the result follows.
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THEOREM 3. Assume (I), (II), (III), (IV) and Bb(Xo) V. Let Xo V be such that
If(t, xo)lv, =< Q(t)bo on Ia. Then there exists a unique weak solution of (3.2) on I.

Proof. Let u(t)= bo exp k(s)-1Q(s)ds and define M to be the continuous
functions in L(I, V) for which Ix(t) xolv <= u(t) bo for all I. For any
x M we have

(3.7) Ig-’(s)f(s,x(s))lv <= k(s)-’Q(s)(Ix(s)- Xolv + bo),

so the boundedness of x implies that we can define Fx L(I, V) by (3.5). Also
we have from (3.7) the estimate

I[Fx] (t) Xol v <_ k(s)- Q(s)u(s) ds u(t) bo

so Fx M. Lemma 2.4 applies again to give the result.
Remark. The estimate (3.7) is a growth condition on the second term in

f(t, x) and results from the Lipschitz condition in (II) and the above estimate on
f(t, Xo). This combination of hypotheses has advantages in applications. (See,
for example, the discussion following (6.9).) In particular, it applies directly to
linear equations.

4. The mild solution. In addition to the forms {m(t;., ): e I,}, the function
f, and the space V as in 3, suppose we are given a second family {l(t;., ):t e Ia}
of continuous sesquilinear forms on V. As before each of these determines an
operator 2’(t)e L(V, V’) by the identity

l(t; x, y) (’(t)x, y), x, y V.

We shall consider weak solutions of’the equation

(4.1) [(t)x’(t) + q(t)x(t) f(t, x(t))

and its linear homogeneous counterpart

(4.2) ///(t)x’(t) + q(t)x(t) 0

under assumptions like the following.
() For each pair x, y V, the function l(t; x, y)’I C is measurable,

and there is a measurable function K’I- R such that II(t;x,y)l
<- K(t)lxlvlYlv, x, y V a.e. on I,, and K/k LX(I,, R).

Our purpose in considering (4.1) is to separate the nonlinear term and char-
acterize those weak solutions which have an integral representation sharper than
(3.6). With the assumption (V), the equation (4.1) is certainly no more general
than (3.2), since the assumptions (II) and (IV) hold for f(t, x) (t)x whenever
they hold for f(t, x). Hence the results of 3 apply to (4.1) when we assume (V).

Consider the linear equation (4.2). Ifwe assume (I), (III)and (V), then Theorem 3
asserts that for each Xo V and s 1, there is a unique weak solution x(t) of (4.2)
which satisfies x(s) xo. This solution is characterized by the integral equation

(4.3) x(t) xo /l- ()&t’()x() d, e I,.
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From Lemma 2.3 it follows that

(4.4) Ix(t)lv <= Ixolv exp (K()/k()) d

For each I,, we see from Theorem 1 that the dependence of x(t) on Xo is linear
and from (4.4) that it is continuous from V to V. Hence, for each t, s I, there is a
unique G(t, s) e L(V) defined by G(t,s)xo x(t), where x(t) is given by (4.3).
We summarize this construction as the following result.

PROPOSITION 4.1. Assume (I), (III) and (V). Then there is a function
G" I, x I -- L(V) for which"

(i) for each xo e V the function x(t) G(t, S)Xo is the unique solution of(4.3)
(ii) G is a linear propagator [5]" G(t, s) G(t, )G(, s), G(t, t) Ifor t, s, e I,;

(iii) [IG(t, S)llL(V) <= exp II (K()/k()) dl;
(iv) for each s I G(., s)’Ia Ls(V is SAC;
(v) for each Ia, G(t, )" I -- Ls(V is continuous.
COROLLARY. In addition to the above, assume that both of the functions [

and _q’I Lu(V, V’) are a.e. separably-valued. Then for each s I the function
G(-, s)’I -’* Lu(V is the unique continuous solution of

(t, s) -()2e()(, s) a,

(vi) G(., s)’I, --. Lu(V) is SAC, and
(vii) for each I G(t, )" I, --. Lu(V) is SAC.
Proof. /and o are weakly measurable and a.e. separably-valued so they are

uniformly measurable [11, p. 75]. Thus the map "-*/Z-l(t)’(t)’Ia--* Lu(V is
summable, and Lemma 2.4, with X Lu(V) and M the set of continuous x e X
for which ]Ix(t)- I11 =< exp (l k()-1K()dl)- 1, shows there is an operator-
valued function which satisfies

M(t, s) I #- ()&()M(, s) d.

But for xo I/, the function M(t, s)xo is the unique solution of (4.3), so M G.
That each G(., s) is SAC in Lu(V) follows from the integral representation above,
and this fact, the identity

G(t, sl)- G(t, s2)= G(t, s2){G(s2,0 G(s,O)}G(O,s)
and the uniform boundedness of G imply the last result.

Assume (I), (III) and (V), and let x(t) be a weak solution of (4.1). Since
s G(s, 0) is a.e. strongly differentiable and G(0, s) G-(s, 0) is strongly con-
tinuous, it follows [4, pp. 136-137] that G(O,s) is differentiable and (d/ds)G(O,s)

G(O, s) [(d/ds)G(s, 0)]G(0, s) + G(O, s),//Z- X(s)q(s) a.e. on I,, where d/ds
denotes the strong derivative. Since x(t) is differentiable a.e. we have

(4.5) (d/ds) [G(O, s)x(s)] G(O, s) [x’(s) + [/[- X(s)4’(s)x(s)]
and hence from (4.1) follows

(4.6) (d/ds) [G(O, s)x(s)] G(O, s)[- (s)f(s, x(s))
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a.e. on Ia. Since x(t) is a weak solution it follows that the right side of (4.5) is in
L l(la, V) so we may integrate (4.6). If // and ’ are a.e. separably-valued in
Lu(V), then SAC of G(0, s) in Lu(V) and that of x:la V imply that G(0, s)x(s) is
SAC in V and we integrate (4.6) to obtain (after operating with G(t, 0)) [11, p. 883

(4.7) x(t) G(t, O)x0 + G(t, s)/t- l(s)f(s, x(s))ds.

This is the desired integral representation.
DEFINITION. Assume (I), (III) and (V). A mild solution of (4.1) is a continuous

function x:I,-- V which satisfies (4.7). (In particular, the integrand belongs to
LI(Ia, V) for each

In the special case of equation (3.1), which is obtained from setting 0
and hence G(t, s) I, it follows by comparing (4.7) with (3.6) that mild solutions
are equivalent to weak solutions. Our next result states the relation between
weak and mild solutions in the general case.

THEOREM 4. Assume (I), (III) and (V). Then a mild solution of (4.1) is a weak
solution of(4.1); a weak solution is a mild solution if////and are a.e. separably-
valued.

Proof. The second statement was proved in the discussion preceding the
definition of mild solution. If x :I, V is a mild solution, then from

X(t) G(t, O) o + G(O, s)//[-l(s)f(s, x(s)) ds

it follows that x is strongly differentiable a.e., satisfies (4.1) a.e. and x’ L(la, V).
Thus we need only to verify that x is WAC (see Remark following definition of
weak solution).

Let v e V and b V’. Applying b to the identity

G(t, O)u u -1() (()G(, 0)u d

and then taking the indicated adjoints give us the weak integral identity

(G*(t, 0), v) (dp, v) (G*(, 0)&*() ’()*b, v) d.

From this we obtain the strong integral

a*(t, 0)4, 4, *(, o)*()-’()’4, d

in V’ from estimates like (iii) of Proposition 4.1 and the measurability of adjoints.
From this we see that G*(t,O)dp:I,-, V’ is SAC. But we already know

Xo + o G(O, s)//- a(s)f(s, x(s)) ds" I, V is SAC, so it follows from (qS, x(t))
(G*(t, O)ck, Xo + G(O, s)//- (s)f(s, x(s)) ds) that x(t) is WAG on I,.
COROLLA,. Assume (I), (II), (III) and (V). Then there is at most one mild

solution of (4.1).
Proof. Every mild solution is a weak solution and there is at most one weak

solution.
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THEOREM 5. Assume (I), (II), (III), (IV) and (V). Let xo V be such that
If(t, Xo)[v, < Q(t)bo on I Then there is a c, 0 < c < a, such that there exists a
(unique) mild solution of (4.1) on I If additionally Bb(xo) V, then there is a mild
solution on I.

Proof. Let x(. be strongly continuous from I to V and x(t) Bb(xo) for all
I. For any b V’, the map s (dp, G(t, s)(- l(s)f(s, x(s))) (G*(t, s)b,

-l(s)f(s,x(s))) is measurable by Lemma 3.2 and Proposition 4.1(v). Also we
have the estimates of Proposition 4.1(iii) and (II), which show that the map
s - G(t, s)g- l(s)f(s, x(s)) is in L 1(I, V) for any I. Also, for t, z Ia we have

G(t, s)#- l(s)f(s, x(s)) ds G(z, s)[- l(s)f(s, X(S)) ds

(4.8) [G(t, 0) G(z, 0)3 G(O, s)#- l(s)f(s, X(S)) ds

+ G(t, s)//{- l(s)f(s, x(s)) ds

and this difference converges to zero in V as . Thus, for any x as above we
define a continuous function by

[Fx](t) G(t, O)xo + G(t, s)- l(s)f(s, x(s)) ds.

Finally, the estimate

][Fx](t)- Xo] v = [G(t, O)xo Xol v + exp (K/k (bo + b) (Q(s)/k(s)) ds

shows that for c sufficiently small, F maps the set M of those continuous functions
x" lc V with every x(t) B(Xo) into itself. The estimate of Lemma 2.4 follows
from (II), so F has a unique fixed point. When B(Xo) V, we may proceed as in
Theorem 3.

5. The strong solution. Let V be the reflexive and separable Banach space of
3. Let H be a Hilbert space with norm and inner product given by Ih[n and

(hi, h2)n, respectively. Assume V is a dense subset ofH (so H is separable) and the
injection Vc- H is continuous. Thus we have [v[n <= c]v[v on V for some c > 0.
If we identify H and its antidual H’ by the theorem of F. Riesz [4, pp. 43-44], we
then have VH c_ V’, the second injection following by duality from the first,
and also (x, Y)n (x, y) on/4 V under the indicated identification.

Let {/{(t)’t I,} and {(t)’t I,} be the families of operators in L(V, V’)
constructed in 3 and 4. Define M(t) and L(t) to be the respective restrictions of
//{(t) and o(t) to H. These restrictions are unbounded operators on H with
respective domains given by D(M(t)) {x V: (t)x H} and D(L(t)) {x V"
5g(t)x H}. Note that an element x V is in D(M(t)) if and only if the conjugate-
linear map y- m(t; x, y)" V C is continuous with respect to the topology
induced by H on V (which is weaker than that of V). (See [4, pp. 62-67] for an
elementary discussion and references.)
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DEFINITION. A strong solution of (4.1) is a weak solution for which each term
of the equation is in H a.e. on I,. This is equivalent to writing

M(t)x’(t) + L(t)x(t) f(t, x(t)) a.e.

We note that (5.1) is an equation in H whereas (4.1) is an equation in V’.
Our first result is a sufficient condition for the linear propagator to generate

strong solutions.
PROPOSITION 5.1. Assume (I), (III), (V) and in addition"
(VI) for a.e. I, we have D(M(s))

_
D(L(t)) for s It, and there is a K1

LI(I, R) such that IlL(t)M-(S)IIL(H) <- K x(s) when 0 <= s <_ <= a.
Then for Xo D(M(O)) the function x(t)= G(t, O)xo is the strong solution of the
homogeneous equation

(5.2) M(t)x’(t) + L(t)x(t) O.

and

Proof. Consider the linear space X of all elements x L(Ia, V) for which

x(t) D(L(t)) a.e. on I,

ILL(" )x(- )11La,m ess sup {IL(t)x(t)l’t I} < c.

(Note that for each v e V, the map (L(t)x(t), v)n (-q"(t)v, x(t)) is measurable
by (V) and the measurability of x(. ); V is dense in H, so this means L(t)x(t)’I,
--, H is measurable.) Since each L(t) is closed, it follows that X with the norm

Ilxllx max {llxllLoao,v), liE(" )x(. )llLao,m} is a Banach space.
Let x e X and e [0, a]. For e I [0, t] we have M- t()L()x() e D(M())

c_ D(L(t)) by (VI), and from (I) the estimate [M- ()L()x()[n _< clM- ()L()x()lv
=< ck()-XlL()x()l =< ck()-llXllx In (v) we may assume K >= .1, and hence
k() -1 is in L(Ia, R), without loss of generality. Since Lemma 3.2 implies

---, M- ()L()x() is measurable I, --. V and since V H is continuous, the map
is measurable I, H, hence in L(I,,H). Also from (VI) follows the estimate
IL(t)M-()L()x()In <= g()lL()x()ln <= gx()llxllx. For each ve V the map

--. (L(t)M- ()L()x(), v)n (’(t)v,/1- ()()x()) is measurable and V is
dense in H, so the map L(t)M-()L()x() is in L 1(It, H). Since L(t) is closed
we have M-()L()x()d belongs to D(L(t))and

(5.3) L(t) M- ’()L()x() d L(t)M- ’()L()x() d

(see [11, p. 83] for a proof).
Consider the function defined a.e. on I, by (5.3). From the estimates

g(t) M-()L()x()d <-IIKllL,(,o,llxllx
H

and

M- l()L()x() d <= II(K/k)ll
v
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it follows that this function is in X. Finally, since x0 e D(M(0)) and IL(t)Xoln
<= KI(O)IM(O)xolH the function F defined by

(5.4) [Fx] (t) Xo M- l(OL()x( d, - Ia,

maps X into itself and satisfies

[IFxl Fx2llx <= max {I](K/k)I]L,tXo,R), IIK,IIL,to,)}llx, x2llx.
By the usual arguments, it follows that there is a unique x X for which Fx x,
and this is the strong solution of (5.2). By the uniqueness of weak solutions it
follows that x(t) G(t, O)xo.

COROLLARY. Assume (I), (III), (V) and (VI). Then for Xo D(M(s)), s [0, a],
the function x(t) G(t, s)xo is the strong solution of (5.2) on Is, a].

THEOREM 6. Assume (I), (Ill), (V) and (VI). Let xo D(M(O)) and f I x Bb(xo)- H be given with If(t, x)ln =< Q(t)g(Ixl), where g’[0, ] - [0, o] maps bounded
sets into bounded sets and the measurablefunction Q 1(" is such that Q1K Ll(Ia, R).
Then any mild solution of (4.1) is a strong solution.

Proof. Let u(. be a mild solution. For s [0, a], define y(s) M- l(s)f(s, u(s)).
The function - x(t, s) G(t, s)y(s)’[s, a] - D(L(t)) is the strong solution of (5.2),
and hence has the representation x(t,s)= y(s)- M-l()L()x(,s)d. This
follows from the previous corollary since y(s) O(M(s)). From (5.3) we obtain
the estimates

[L(t)x(t, S)IH <= [L(t)y(s)IH / Kl(OlL(Ox(, s)lH

and Lemma 2.3 thus gives

IL(t)x(t, s)l <= K l(s)Q l(s)g(lu(s)lv) exp K1(0 d

for 0 __< s __< _< a. By an argument like that preceding (5.3), one can use Proposi-
tion 4.1(v) to show that s L(t)x(t, s)" [O, t]--. II is measurable and the above
estimate shows that

s)M- u(s))l < .l(s)f(s, ds

(We have used the fact that {g(lu(s)lv)’S [0, a]} is bounded since u’I V is
bounded.) Finally, the map s G(t, s)M- l(s)f(s, u(s)) G(t, s)- l(s)f(s, u(s))
is in LI(I,, V)_ LI(I,, H) by the definition of mild solution, so we have (see
[11, p. 83])

s)M- u(s)) el(s)f(s, ds D(L(t)).

The result is now immediate from (4.7) and Proposition 5.1.
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Remark. The requirement that Xo belong to D(M(O)) is unnecessarily restrictive
when D(L(t)) is independent of t. It is only necessary to have the map L(t)xo
in L 1(I,, H) (see the argument preceding (5.4)).

Our final result is a sufficient condition for the existence of a strong solution
of (3.2). In applications the function f will contain spatial derivatives of order as
high as those of the leading operators, whereas Theorem 6 requires that f contain
spatial derivatives of order at most half of the order ofthose of the leading operator.

THEOREM 7. Assume (I) and (Ill), with V and H as given above. Suppose there is
a separable and reflexive Banach space D, dense and continuously imbedded in H for
which D(M(t))_ D and IM(t)xl >= k(t)llxll for x e D(M(t)) and a.e. e I. For
each x D, the function f(., x) is measurable from I, to H, and for each I we
have If(t, x) f(t, Y)I <= Q(t)lx Ylo. Assume that Q(t)/k(t) is in L I(I,, g). Then
for each Xo in D such that If(t, Xo)ln boQ(t), there is a unique SAC function
x :I - Dfor which the strong derivative x’(t) exists a.e., x’ L(I, D), x’(t) D(M(t))
a.e., x(O) xo and

M(t)x’(t) f(t, x(t)) a.e. I,.

The proof of Theorem 7 can be patterned after the techniques above. There
are certain measurability results that must be obtained, but these can also be
handled as above. If D is continuously imbedded in V, this function is a strong
solution.

6. Applications. We shall present a rather general realization of the abstract
evolution equations (4.1) and (5.1) as a mixed initial and boundary value problem
for a partial differential equation of third order. The same technique yields similar
results for higher order equations [4], [15]. Problems of this type arise in the flow
of fluid through fissured rocks. J3], thermodynamics [6], shear in second order
fluids [8], [12], consolidation of clay [23], and others [10]. Certain examples of a
linear and time-independent version of our model have been studied [1], [7], [16],
[17]., [18], [24]. Time-dependent and nonlinear variations have also been studied.
In particular, [26] contains results for a linear equation like (4.1) in which the
operators are strongly-differentiable, and [13] applies to the linearized form of
equation (5.1) when the operators are realizations of regular elliptic boundary
value problems and the time-dependence is continuous in the uniform operator
topology. The nonlinear equation (3.2) is considered in [10] with the added assump-
tion that the linear operators are independent of time. The Lipschitz assumptions
in [10] imply ours, and "solution" in [10] means "weak solution" in our notation,
so the existence results of [10] are contained in ours.

Our abstract results imply that each of the boundary value problems in the
preceding applications is well-posed in an appropriate function space. The intent
in the following is to display the types of nonlinear problems to which the abstract
results apply, so we do not consider properties of solutions. Such properties as
regularity [13], [19], [20] and asymptotic behavior [7], [14], [17], [21] have been
discussed for linear equations. We refer to [2], [4], [15], [19] for references to
unsupported results on regular elliptic boundary value problems and additional
models like those below. Finally we remark that we assume no continuity in the
time-dependence of the operators in our models below. In fact we simply require
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that the coefficients be measurable in the space and time variables and not "too
degenerate" in time. The third example does not require ellipticity of the leading
operator.

Let f be an open set in R" with boundary c3f2 an (n 1)-dimensional manifold
with t2 on one side of c3f. Fo is a measurable subset of c392 and F1 c3f\Fo.
H will denote the space of (equivalence classes of) functions b e H _= L2() such
that Db e L2() when lel =< rn, where D is a partial derivative of order lel. Then
H" is a Hilbert space with inner product

Let V be the closed subspace of Hl(f) consisting of those 4 e H(f) for which
(the trace of) vanishes on Fo. Then V is a reflexive and separable Banach space
with the norm ]]v (, )-We shall assume that On is sufficiently smooth
for the divergence theorem to apply: there is a unit outward normal
n(s) (nl(s), ..., n,(s)) at each s c3f2 for which

fn Djck dx fo nj(s)ck(s) ds’ j= 1,2,-..,n,

for all smooth functions qb, where
Let I [0, 1] and functions moL(f I), L(Fx I) be given, for

which Re a(s, t) => 0 and Re mo(x, t) >= k for some number k (0, 1]. Let r/:I !
be measurable and assume j’ (r/(t))- dt < . Then for b, in V we define

fom(t , ) rl(t) DjckDj dx + mo(x, t)c/9 dx + (s, t)c ds.
j=l

The assumptions (I) and (III) are satisfied with k(t)= k. q(t). The restriction of
//(t)b e V’ to C(f) is the distribution given by

(6.1) //(t)b -r/(t) DjOfp + mo( t)dp.
j=l

By the regularity theory of elliptic operators, the domain of the restriction to
H L2(f2) is given by

D(M(t)) {dp V VI H2:m(t; dp, J) (M(t)dp, )L(n), V}.

The condition that 6 V means b vanishes on Fo, while from the second condition
we see that

j=l j=l

for all in V. But elements of V are (essentially) arbitrary on F, so the divergence
theorem asserts that this is a variational boundary condition

(6.2) q(t)D,dp(s) .qt_ O(S, t)(S) O, S e I-"
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Here D, j= nj(s)D denotes the normal (directional) derivative on c3f. Thus
we have

(6.3) D(M(t)) {b HZ:b 0 on F0, rl(t)D,ck + b 0 on F1 },
where the equations on Ofl are interpreted as above.

Assume we are given functions lij, li, lo L(fl x I), i,j 1, 2,..., n, and
fl L(F1 x I). For ok, q V define

l(t;ck’q)- fn{ j=xlj(x’t)Djdp’J+l(x’t)dP’}"dx
+ f (s, t)4)(s)(s) ds.

As above we have

(6.4) ’(t)4p Oi(lig(. t)Djdp) + lg(. t)Dgck + lo(. t)ck
i,j=l j=l

and the domain of the restriction to H is given by

O(L(t)) ck V" Oi(lig( t)Ogqb) LZ(fl), l(t ok, qt) (L(t)ck, )
i,j=

q V}.for all
.)

The second condition is the variational boundary condition

ni(s)lij(s, t)D/k(s) + (s, t)dp(s) O,
i,j=

The assumption (V) is satisfied with K(t) K depending on the L(fl I) norms
of the coefficients in (6.4) and the norm of fl in L(F I).

A sufficient condition that the condition (VI) hold is that

(6.5) q(t) 1, lij(x, t) 6j, fl is independent of t.

In this case we see that D(M(t)) D(L(t)) is independent of though the operators
may vary with through the lower order terms. A second sufficient condition for
(VI) is that

(6.6) lij(x,t)=O and fl=0.
Then D(L(t)) V for 1. The estimate in (I) is easily obtained and K depends
on k, r/and the coefficients in 5e(t). Other variations are possible; we may require
(6.5) to hold for [0, 1/2] and (6.6) for [1/2, 1], but we cannot interchange the
order of these requirements.

Example 1. We consider the semilinear equation

(6.7a) //l(t)D,u(x, t) + q’(t)u(x, t) F(x, t, u(x, t), Du(x, t)),

with the linear conditions

(x,t)ef x I,

(6.7b)
u(s, t) O, s e Fo; rl(t)D,Dtu(s, t) + (s, t)Dtu(s, t) + fl(s, t)u(s, t)

+ n(s)lij(s,t)Du(s,t)=O, seF; tI,
i,j=
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and the initial condition

(6.7c) u(x, O) Uo(X), x f.

The measurable function F’f 1 C"+1 C is assumed to satisfy the Lip-
schitz condition

(6.8) IF(x, t, ) F(x, t, r/) =< Q(t) I, q,I, , rl C,+ 1,
i=0

where Q(t) >= 1 is measurable and Q(. )/r/(. e L 1(1, R). From the Cauchy-Schwarz
inequality we then obtain the estimate

liE( ", t4,, Djb) F( ,t, ff, O)llLzt,)=< Q(t)x//n + 114- lv
for qb, ff in v. Similarly, if F satisfies

(6.9) IF(x, t, )l =< Q(t) q(x) + IjI x f, C"+ x,
j=O

where q(x) >= 0 and q 6 L2(f), then we obtain the estimate

IIF(., t, b, Ojb)llL=t) Q(t)g(Iclv),

where g(x)= [(n + 2)(llqll 2 1/2,. + x2)] x => 0.
From Theorem 5 we obtain the following. Let the spaces V and H and ses-

quilinear forms re(t;.,. and l(t;.,. be given as above. Let the measurable func-
tion F be given and satisfy (6.8). Thus f(t, ck)(x)= F(x, t, ok(x), D/k(x)) defines a
function f’I V H; since H is continuously embedded in V’, f satisfies (II)
and (IV). Assume that a Uo is given in V for which If(t, Uo)[IL2tn _--< Q(t)bo on 1
for some b0 > 0. (This estimate is automatically true if (6.9) holds.) Then there
exists exactly one mild solution u(t) of (4.1) on I. This mild solution satisfies the
partial differential equation (6.7a) a.e. on I in the sense of distributions, the initial
condition (6.7c) is satisfied a.e. on f, and the first boundary condition in (6.7b)
is satisfied in the sense of traces on Fo. Finally, we have the identity

m(t u’(t), dp) + l(t u(t), dp) (l(t)u’(t) + q(t)u(t), dp)n

for all 4) in V, and this is a variational boundary condition on F1 which by the
divergence theorem implies the second condition in (6.7b). If we furthermore
assume (6.5) and (6.9) and that Uo is given in D(M(O)), then Theorem 6 asserts
that u(t) is a strong solution, so the boundary conditions (6.7b) are strengthened
to require that u(t) D(L(t)) D(M(t)) for every e I. This also implies a regularity
result, i.e., that u(t) H2() for e I (see (6.3)).

Example 2. The techniques above are applicable to solutions of the quasi-
linear equation

(6.10a) g(t)D,u(x, t) + Di(Fi(x t, u(x, t), Dju(x, t))) Fo(x, t, u(x, t), Dju(x, t))
i=1

with the nonlinear boundary conditions

u(s, t) O, s Fo; rl(t)D,D,u(s, t) + a(s, t)D,u(s, t)
(6.10b)

ni(s)Fi(s, t, u(s, t), Dju(s, t)) G(s, t, u(s, t)), s F1,
i=1
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and an initial condition (6.7c). Here we assume Fi:f I C" + C, 0, 1, 2,
.., n, are given which are measurable and satisfy (6.8). G:Fx I C C is

measurable and satisfies

IG(s, t, ) G(s, t, q)l =< Q(t)l r/I, , r/ C.

Then we define f :I V V’ by

(f(t, ), )= f Fi(x t, b(x), Odp(x))Di(x)dx + G(s, t, ck(s)),(s)ds,
i=0 JF

where Do 1. Weak (= mild) solutions are obtained from Theorem 3 (Theorem 5)
for Uo appropriately chosen. Strong solutions are obtained from Theorem 7 if

Uo 6 D V (’1 H2, (6.5) holds, and G 0.
Example 3. Let I {0, 1 and f I I. V is the closure of C(f) in the

norm I. Iv, where 14’l n (IDql 2 / IDzb[ 2) dx. For any 4) in C we have

{14(xa,x2)l 2 / XlDll(xx,x2)l 2} dxx- XllCk(Xl,X2)12l o,
0

fo f{Ic(x1,x2)l z dx1 <= 2 Xlldp(x1,x2)[ IDldp(xl,x2) dx

I)(X1, x2)l 2 dXl + 2 IDII)(XI,X2)[ 2 dx1,
-2

and hence,

I(xa,x=)l 2dX 4 IOx(Xl,X2)l 2 dxa.

Integrating this with respect to x2 on I we obtain

(6.11) b L2n) =< 2 O1 L2(f)

for all 4) in Cff(f). Thus V= {ckeL2(D)’DlCk, Dic/),D2dpeL2()and b 00n On,
Dff 0whenxl 00r 1}. Definem(t;4, O) In(D4DO + D24D2O)dxon V
and

2

l(t; , O) Z l(x, t)DDO dx,
j=0k=0

where lk L( x I). Then (I), (III) and (V) are satisfied; we use (6.11) to verify
the boundedness of l(t; , if). Thus we have

2

(t) D D and (t)ff (- 1)kDk(lk(’, t)D).
j=0k=0

Nonlinear terms and coecients in (t) could be added as above. Theorem 2
asserts the existence of a weak solution u(t) of (4.2) which satisfies the partial
differential equation (4.2) in the sense of distributions on , the boundary condi-
tions built into the space V at each I, and the initial condition u(x, O) Uo(X)
a.e. on , where Uo is given in V. (We note that (t) is not elliptic.)
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AN INEQUALITY RELATED TO POISSON’S EQUATION*

Abstract. The inequality

ALAN R. ELCRAT-

for u 6 W22.0(), is presented. The (n-dimensional) region has a piecewise smooth boundary with
nonnegative mean curvature, and 2 is the fundamental frequency of. If is a convex polyhedron, the
inequality is sharp, so that the fundamental frequency of is characterized.

Suppose that is an n-dimensional region with piecewise smooth boundary.
The Hilbert space of functions which are square summable over together with
their first and second order distribution derivatives is denoted W2(), and the
closure therein of smooth functions vanishing on c3 by W22,o().

THEOREM. If C3l has nonnegative mean curvature almost everywhere,

[,[Ulw)]z-fuZdx+flVu[Zdx+flDZul2dx
(A)

__< + - + - (Aut x

for u in W,o(), where 2 is the lowest eigenvalue of Au + 2u 0 in . If is a
convex polyhedron, then (A) is sharp.

Proof. The inequality (A) was established in [3] for smoothly bounded .
The proof given there applies without change here. If N is a convex polyhedron,
the results of [4] imply that the eigenfunction uo corresponding to 2 is an element
of W,o(). By a well-known identity [2, p. 17 1 ],

fudx + flVuol2 dx + flD2uol2 dx

+ + (Auo)2 dx H, ds.

Since H vanishes almost everywhere for a polyhedron, the result follows.
It is perhaps worth remarking here that if ? is locally convex, then the

results of [5] imply that A is an invertible operator from W,o( into L2( and
(A) provides an upper bound for IIA- ll.

We now observe that since (2)= + 2- + 2-2 establishes a one-to-one
correspondence between (0, ) and (1, ), the quantity

inf fuZdx+flVul2dx+flDZul2dx
uW’(gt) f (Au)2 dx

* Received by the editors June 4, 1971, and in revised form October 4, 1971.

? Department of Mathematics, Wichita State University, Wichita, Kansas 67208.
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determines the first eigenvalue of a convex polyhedron. This appears to yield a
new characterization of this quantity for convex polyhedra. It is natural to con-
jecture that this characterization also holds for convex, or for more general
regions , but the author is thus far unable to accomplish such an extension.
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MODIFIED ABEL EXPANSION AND A SUBCLASS OF
COMPLETELY CONVEX FUNCTIONS*

S. P. PETHE AND A. SHARMA?

Abstract. We consider a modified Abel series which corresponds to an interpolation problem
considered in 1936 by I. J. Schoenberg. This leads to a subclass of completely convex functions which in
turn lead to the necessary and sufficient condition for a function to have an absolutely convergent
generalized Abel series expansion.

1. Introduction. In the notation of Schoenberg [7], the Lidstone series
corresponds to the interpolation problem given by the incidence matrix

(1.1)
0 0 0

The nonzero entries indicate that only even order derivatives are prescribed
at two points 0 and 1. In 1942 Widder [9] introduced the class of completely
convex functions and showed its close relationship with Lidstone series. A function

fe C[0, 1] is said to be completely convex if

(-1)f)(x) __> 0, k 0, 1,..., 0 __< x __< .
Widder proved that such a function is necessarily entire. He also obtained neces-
sary and sufficient conditions for a function to have an absolutely convergent
Lidstone series expansion.

Earlier Schoenberg [6, Whittaker [8 and Poritsky [4 had considered a
series expansion corresponding to the interpolation problem given by the incidence
matrix

(1.2)
0 0

Schoenberg [6] solved the unicity question connected with the interpolation
problems (1.1) and (1.2).

Our object here is to study a modified Abel series expansion corresponding
to the interpolation problem (1.2) and to find necessary and sufficient conditions
for this expansion to be absolutely convergent. It is interesting that the results are
easily formulated in terms of a class of functions (c-c* functions) which forms a
subclass of completely convex functions.

In 2 we introduce the modified Abel expansion and its fundamental poly-
nomials. Sections 3 and 4 deal with their relation with Bernoulli and Euler poly-
nomials and their estimates. The class of c-c* functions is defined in 5. In 6,
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we introduce the class of minimal c-c* functions which gives the main result of
the paper in Theorem 6.5. In 7, we give a representation theorem for c-c* func-
tions following a similar result of Boas [1] for completely convex functions.

This theorem and its proof are due to the kindness of the referee for which
we are very grateful.

(2.1)

2. Modified Abel expansion. Letf e C[0, 1]. Consider the formal expansion

f(x) f<2")(1)#,(x) +
n=O n=O

where #,(x) and v,(x) are the fundamental polynomials of the interpolation problem
(1.2). The series on the right in (2.1) will be called the modified Abel series. The
Lidstone series corresponds to the interpolation problem (1.1) and is given by

(2.2) f(x) ftz")(1)A,(x) + ftz")(0)A,(1 x),
n=O n=O

where A,(x) is a polynomial of degree 2n + given by the generating function
(see 9])

sinh xt
t2kAk(x)"(2.3)

sinh k:o

Similarly it is known 6] that

cosh xt
t2l(x(2.4)

cosh ,= o

and

vdx) ’ + (x 1), k =0,1,2,....

Adding (2.3) and (2.4) and observing that

sinh xt cosh xt

sinh cosh
2 sinh (1 + x)t

sinh 2t

we easily see that

( +x) k 0,,2,(2.6) A(x) + #(x) 22 + ’A 2

Since Ao(x) x, Al(X) (X X), from (2.6) we have

/o(X) 1, /l(X) 1/2(x 2 1) and /2(x)= (x2 1)(x 2 5)/24.

Also from (2.4) we have

(2.7)
#,(1) 0, /4(0) 0, k= 1,2,
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Further, we have

(2.8) #k(--X) #k(X), k O, 1,2,....

The differential system (2.7) suggests that the Green’s function for this system
is given by

x-l, O_<t<x_<l,
(2.9) K(x,t)

t-- l, O<_x<t 1.

Then

#,(x) #,_ l(t)K(x, t) dt.

Setting

(2.10)
K l(X, t) K(x, t),

K,(x, t) K(x, y)K,_ I(Y, t) dy,

we see that, since #o(t) and Vo(t) 1,

(2.11)

12,(x) K,(x, t) dt,

v(x) K(x, t)(t 1) dr.

n=2,3,...

These remarks lead us to formulate the following lemma.
LEMMA 2.1. Iff(x) C2")[0, 1], then

(2.12)
f(x) f(1)+f’(O)(x- 1) + ft2i)(1) Ki(x,t)dt

i=1

+ ft2i+ 1)(0 Ki(x, t)(t 1)dt + R,(f; x),
i=1

where

R,(f x) ftzn)(t)K,(x, t) dt.

Since Kl(X, t) < 0 for 0 =< x, __< we see that (-1)"K,(x, t) >= 0. Hence,
from (2.11) we get

(2.13) (-1)"kt,(x) >= 0 and (-1)"+lv.(x) >__ O, n O, 1,....

3. Relations with Bernoulli and Euler polynomials. Since

text
e o= m’.
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where Bin(x) denote Bernoulli polynomials, it follows easily that

(3.1)

22m
A,,(x)

(2m + 1)! B2m+
1 +x

_B2m+l
2 2

22m+1 (l+x)(2m + 1)! B2m+ 2

Therefore it follows from (2.6) and the known relation

B,(1 x) 1)"B,(x)
that

2
+ (2k)

#,(x) 22kA,( +x)2
Ak(x)

(2k)! 22kB2 2 2 B2

where we have used the known relation

B,,(x) B,,(x + 1)- nxn-1

Since

E,(x) + En(X + 1)= 2x",

where E,(x) denote the Euler polynomials, it follows from simple calculations
that

22k-1 (I+x)(3.2) #,(x)
(2k 1)! E2k-1 2

whence

(3.3) v,(x)
(2k + 1)! E2k+l

Since (-1)k+XE2k+ (x/2) > 0 for 0 < x < 1, this again confirms the second part
of (2.13).

It is known [3] that

sin (2knx)
B2m + I(X) 2(- 1)"+ X(2m + 1)!

k=l (-ji,
0 __< x < 1.

This gives

(3.4)

22m +

Am(x) B2m+(2m + 1)! l+x)2
2(- 1)m+-.. ;- i

1)k sin krtx

k=l

0<x<l.
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Using (2.6), we have after some simplification,

(_ 1).22n+ 2 COS (k "JI- 1/2)TCX
(3.5) #,,(x) rc-k-;/-+-- Y" (- 1)’

(2k + 1)2n+’
0 < x < 1,

k=O

whence from (2.5) we have

COS
(3.6) v,,(x)

(-- 1)n+ 122n+3 (k q- 1/2)7"CX
Tc2n-7-- 2 (2k + 1);’ 0 < x <

k=0

4. Estimates for #,(x) and v,(x). In the following, Co, C1,"" will always
denote positive constants independent of n even though this is not specifically
stated.

LEMMA 4.1. There exist constants Co, C such that

(4.2)

22n + 2
GX

(-- 1)nl’ln(X) 2n + COS T
Co< 2n+l,

0 X n 0

22n + 3
7gX

1)n + 1Fn(X
Tg2n+ COS T

C1 0=<x=< 1, n=0,1,72n

Proof. From (3.5), we have, for 0 < x < 1,

22n + 2 TgX

1)n#n(X 2n +1 COS T
2n+

which proves (4.1), since the sum of the right side is a Dirichlet series which
tends to as n --+ oo. Equation (4.2) follows similarly from (3.6).

The results are trivially true for x 1.
LEMMA 4.2. For 0 <= x <= 1, we have

(4.3) 0 <= (--1)npn(X) <= C2(rc/2)-2n n 0, 2

and

(4.4) 0 (--l)n+ 1Fn(X C3(7r,/2) -2n n 0 2

Proof. The proof follows at once from (4.1) and (4.2).
LEMMA 4.3. For 0 < Xo < 1, there exist constants C2, C3 independent of n

such that

(4.5) (_ 1)nlln(Xo) >= C2(r/2)- 2n
F/ 0 2

and

(4.6) (- 1)n + 1Fn(XO) C3(a:/2)- 2n, n 0, 1,2,

Proof. From (3.5) we have

(-
lim

cos (rXo/2) )2n 4

This yields (4.5). Equation (4.6) follows similarly from (3.6).
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DEFINITION 4.4. A real entire function f(x) belongs to the class P* if there
exists a number p < re/2 such that

f(")(O) O(p") as n .
The following lemma is due to Widder [9, p. 392 and is proved by using

Taylor’s formula.
LEMMA 4.5. If f(x) P*, then there exists a positive number p < c/2 such that

(4.7) f(")(x) O(p"),

uniformly jbr 0 <= x <= 1.
THEOREM 4.6. If f(x) P*, then

(4.8)
f(x) f(1)/o(X + f’(O)vo(x) + f"(1)/,l(X)

+ f"’(O)Vl(X) + ...,
the series converging uniformly in 0 <= x <= 1.

Proof. If S2n(. denotes the sum of the first 2n terms in the series in (4.8), then
f(x) Sz,(x) has the property that all its derivatives of order 2k vanish at x
and those of order 2k + vanish at x- 0 for k 0, 1,2,..-, n- 1. By the
definition of K,(x, t) in (2.9) and (2.10) it is clear that if

F"(x) 4(x),

with

then

Hence,

F(2k)(1) F(2k + 1)(0) 0,

F(x) K,(x, t)dp(t) dr.

f(x) S2,(x) K,(x, t)f(2")(t) dt.

k=0,1,...,n- 1,

Using (2.11) and (4.3), we have

If(x) S2,(x)[ -< (- 1)"K,(x, t)if(2n)(t)l dt

_< C4. p2, (- 1)"K,(x, t) dt

(4.9)
cp2"lm(x)l

_< Csp2n(/2) -2n,

Also,

n 0,1,...

S2n+ 1(X) S2n(X + f2")(1)#,(x),
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so that we easily have

If(x)- $2,+ x(x)l-< If(x)- S2.(x)[ + Ift2)(1)l( 1)/,(x)
(4.10)

<= C6p2.(r/2)- 2..

The result then follows from (4.9) and (4.10).
THFOIEM 4.7. If the series

(4.11) boto(X) aovo(x) blll(x) + alva(x) +

converges for a single value of x in 0 < x < 1, it converges uniformly in [0, 1] to a

function f(x). Also the series

(4.12) bo + ao(rC/2)- + bl(rt/2) -2 + ax(rc/2) -3

converges and

(4.13) (-1)f(2)(x)= b,/ao(X a,vo(X b,+la(x) + ak+lVl(X -t-...

forO <= x <= and k 0, 1,2, ....
Proof. If(4.11)converges for x Xo, then lim,_,oo b,p,(Xo) 0 and lim,_oo a,

v,(Xo) 0. By Lemma 4.3, b, 0((7z/2)2n) and a, O((rt/2)2"). Using (4.1)
and (4.2), we see then that

(4.14)

converges absolutely. Subtracting (4.11), which is convergent for x Xo, from
(4.14), we see that the series

cos b. + a.
7"/; -- n=0

must converge. This proves (4.12).
Replacing Xo by x in (4.14) and (4.15) it is clear that both series converge

uniformly in 0 =< x __< 1. The same is then true for their difference, the series (4.11).
In order to prove (4.13), we observe that the series

2n+
COS "t’- (-- 1)n+ lan+kVn(X) 2n+ 2 COS

and

cos (-T +k
n--O

+ (- 1)"+ Xa,+k

both converge uniformly in 0 __< x =< 1 because of (4.15), (4.1) and (4.2). Hence
their sum also converges uniformly in 0 < x <__ 1. This completes the proof of
Theorem 4.7.
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5. C--C* Functions. We shall now consider a class of functions which is a sub-
class of completely convex functions. We call these functions completely convex*
or c-c* functions.

DEFINITION 5.1. A real function f(x) is said to be c-c* on a <= x <= b if"
(i) f C[a, b]
(ii) (-1)kf(2k)(x) >= 0, a x b, k 0, 1,2,...,
(iii) (- 1)*+ xf{2+ l(a >__ 0, k 0, 1,2,....
Thus cos (rex/2) is c-c* on [0, 1], but sin (rtx/2) is not.
The following results are easy to prove, and give some of the basic properties

of c-c* functions.
LEMMA 5.2. If f is C--C* in 0 <__ x <__ 1, then

f(2n)(1) O((rC/2)Zn),

f(z,+ ’)(0) 0((/2)2n+ ’).

Proof. The proof follows from (2.13) and the identity (2.12) which give the
inequalities

0 <= f(Zn)(1)#n(X <= f(x), 0 <= x <= 1, n O, 1,2,...,

0<__f(2"+l)(0)v,(x)<__f(x), O x _<_ 1, n O,1,2,

The result follows by putting x 1/2 and applying Lemma 4.3.
LEMMA 5.3. lf f(x) is C--C* in 0 <= x <__ 1, then there exist constants C6, Cv

such that

(5.1)
0 -< (--1)nf(2n)(x) <= C6(/2X)2n,

0 (-- 1)"+ lf(Zn+ 1)(X _< Cv(r/(2(1 x)))2"+1

Proof. If f(x) is c-c* in a =< x __< b, then F(x) f(a + x(b a)) is c-c* in
0__<x=< 1. By Lemma 5. 2, we have for 0 <= a < b <__ 1,

F(zn+ 1)(0) f(Zn+ X)(a)(b a)2,+ 0((/2)2n+ 1),

F(2")(1) f(z")(b)(b a)2. O((a:/2)2").

Setting a x > 0, b 1 in the first of equations (5.2) and b x < 1, a 0 in the
second, we obtain (5.1), which proves the lemma.

THEOREM 5.4. Iff(X) is C--C* in a <__ x <= b with b a > 1, then f(x) e P* and
(4.8) holds.

Proof. Reasoning as in the proof of Lemma 5.3, we have for a suitable constant
Ca,

[f(2n-1)(X)[ Cs(rc/(2(b- X)))2n-1 a < x < b

Choose c so near to a that b c > 1. Then

If(2n-1)(X)[ <= C8P2n-1 and If(z"+ 1)(x)l < C8p2n+1

with p z/(2(b- c)). Now the well-known Hadamard’s inequality [9, p. 177,
Lemma 20a] after some simple computation yields

f(2")(x) O(p2").
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That is, f(")(x) O(p") as n--, uniformly in a __< x < c. This shows that f(x)
is entire and that f(x + a) P*. This completes the proof.

6. Minimal e-e* functions. The sufficient condition of Theorem 5.4 for the
representation of a function as a generalized Abel expansion is not necessary.
The example f(x) cosh x shows this, since it is not c-c* in [0, 1, yet it has the
representation

cosh x cosh #k(x).
k=O

In order to obtain conditions which are both necessary and sufficient, we introduce
a class of minimal c-c* functions.

DEFINITION 6.1. A function f(x) is called minimal c-c* in [0, 1 if it is c-c*
in [0, 1] and if f(x) e cos (7:x/2) is not c-c* for any positive e.

Thus the functions 0 and cos x are minimal c-c* in [0, 1.
THEOREM 6.2. If the series

(6.1) bo#o(X -a0v0(x -bl/tl(X q-alvl(x + ...,
a,>0 b >0 n=0 2

converges to f(x), then f(x) is minimal c-c* in 0, 1.
Proof. Differentiating (6.1) 2k times, we have

Also

(- 1)kf(z)(x) (- 1)"b,+/,(x) + (- 1)"+ la,+v,(x) >= O,
n=O

0<x<l.

(_ 1)+ lf(2k+ 1)(0 2 (-- 1)"b,+,#;(O) + (- l)"+ la,+,v’,(O)
n=0

ak

because of (2.7) and (3.3). Thus f(x) is c-c*.
By Lemma 4.2, we have

where

(- 1)f(a)(x) _<_ C b,+k
n=0

C(/2)2R,

R b,(r/2)- 2, a,(r/2)- 2n- 1.
n=k

Due to (4.12), Rk --+ 0 as k --, av. Therefore, for a given positive e and a number Xo,

0 < xo < 1, we can find an integer k so large that CR cos (rCXo/2) < 0. That is,

(-1) x)-ecos--
X=XO
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Hence f(x)- cos (cx/2) does not belong to the class c-c* in 0 < x =< 1 which
proves the result.

LEMMA 6.3. Suppose that
(i) f(x)>= 0,0 <= x _< 1,

(ii) -f"(x) >= O, 0 <= x <= 1,
(iii) f’(0)__< 0, and
(iv) f(xo) > ac/2 for some number Xo in 0 <= x _< 1.

Then
gX

f(x) > ecos
2

0 < x <

Proof. If Xo 1, then from (ii) and (iii) it follows that f(x) is a concave function
and has a negative slope at x 0. Therefore, it has its maximum at x 0 and so
f(x) > arc/2 and a fortiori f(x) > cos (rx/2).

If Xo 0, the inequality follows by considering the function f(1- x).
Thus we have to prove the result for 0 < Xo < 1.

Since f’(x) f’(O) + ) f’(t) dt it follows because of (ii) that f’(x) <= f’(O) <__ 0
for x > 0. Also since

f(x) f(xo) + f’(x) dt

we have, for 0 <__ x __< Xo, f(x) >__ f(xo).
From the concavity of f(x) (that is, condition (ii)) the curve y f(x) is above

the chord joining (1, 0) and (Xo, f(xo)). Then

f(x) > f(xo)
mX

X0
>= f(xo)(1 x) e. (1 x)

X
sin (1 x) cos -This completes the proof of the lemma.

THEOREM 6.4. If f(x) is a minimal c-c* function in 0 <= x < 1, then it can be
expanded in a convergent modified Abel series (2.1).

Proof. If S,(x) denotes the sum of the modified Abel expansion up to n terms,
it is clear from the properties of c-c* functions and of the fundamental poly-
nomials/tk(x) and vk(x) that

S,(x) <= f(x), 0

_
x

_
1, n--O, 1,...,

and that S,(x) is a nondecreasing function of n for each x. Hence, S,(x) tends to
some function as n --+ c. If lim, S,(x) g(x), we want to show that g(x) f(x).

Suppose this is not so; then for some x0 in 0 =< x =< 1,

so that
f(xo)- lim S,(xo)= A > O,

(6.2) f(xo) S2,(Xo) K,(x, t)f(2")(t) dt >= A, n 1,2,....
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Since f(x) is minimal c-c*, f(x)- e cos (nx/2) fails to be c-c* in 0 _<_ x _<_ for
every e > 0. Then there exists an integer k, and a number xl in (0, 1) such that

7X
(-- 1)kf{2k)(X) g(/l:/2)2k COS -- < O.

This implies, by virtue of Lemma 6.3, that

(- 1)k/{2k)(X) < e(=/2)2k+1,

whence, using the estimate (4.5), we have

f(xo) S2n(Xo) < g 5 C2 < 6,

if e < 2A/(C27). This contradicts (6.2) and completes the proof of Theorem 6.4.
We now prove the following theorem.
THEOREM 6.5. A necessary and sufficient condition that a real function f(x)

can be represented by an absolutely convergent modified Abel series is that it should
be the difference of two minimal c-c* functions in 0 <= x <_ 1.

Proof Sufficiency. Let f(x)= g(x)- h(x), where g(x) and h(x) are both
minimal c-c* functions on 0 _<_ x -5 1. Then, by Theorem 6.4, both can be ex-
panded in the convergent modified Abel series. Since each is a series with positive
terms, their difference f(x) can also be expanded in an absolutely convergent
modified Abel series.

Necessity. Assume that

(6.3) f(x) b.#,,(x) + a,,v,,(x),
n=O

the series on the right converging absolutely. Then, setting

and

g(x) (- 1)"lb.l#.(x) + (- 1)"+ Xla.lv.(x),
n=O

h(x) (- 1)"[Ib.I (- 1)"b.]#.(x) + (- 1)"+ X[la.I (- 1)"+ a.]v,,(x),

we see, on account of Theorem 6.2, that both g(x) and h(x) are minimal c-c*
functions. Observing that f(x) g(x) h(x) we see that the proof is complete.

7. Representation of c-c* functions. R. P. Boas [1] has given the following
representation theorem for completely convex functions, which is analogous to
the known theorem of Bernstein for completely monotonic functions.

THEOREM 7.1 (Boas 1]). A function f(x) defined on 0 <_ x <= 1 is completely
convex if and only if it has the form

}ok(t) dt + O(t)
dt(7.1) f(x) sin rex +

cosh rt + cos rex cosh rt cos rx
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where C >= 0 and dp and are entire functions of the form
ant2n(t) .-o (2n)

and bnt2nO(t) .-o (2n) i’
where

(7.2) a,>=0, b,>=0, a,rc-2"< oe and b,-2"
n=O n=O

Using the known integral representations for Bernoulli polynomials [31, one
can write (7.1) in the following known simpler form (see [1])"

(7.3)

C sin rx " (- 1)a 22 +f(x) B2a="’o (2k + 1)! +

with conditions in (7.2).

l-x) (--1)kbk
2 (2k + 1)a---O

We now give the representation theorem for c-c* functions.
THEOREM 7.2. A function defined on 0 <= x <= 1 is e-c* if and only if it has the

form
7r,X

f(x) C cos - + (- 1)a{ba#a(x) aava(x)},
k=O

where C >__ O, ak >= O, b >= O, k O, 1, 2,..., and

(7.4)
k=O

Proof From (7.4) and the nonnegativity of aa and ba, we have (4.15), and
then reversing the steps in the proof of Theorem 4.7, we see that (7.4) implies the
convergence of

(- 1)k{bk#k(x) akVk(X)}, 0 <= X < 1.
k=O

Then from Theorems 6.2 and (6.4) we see that f(x) is minimal c-c* if and only if
f(x) has the form

f(x) (- 1)a{ba#a(x) aava(x)},
k=O

aa>=O, baO,

where (7.4) holds.
To complete the characterization of c-c* functions it remains to prove that

there is a nonnegative number C such that

F(x) f(x) C cos (gx/2)

is minimal c-c*.
To prove this, let E denote the set of all nonnegative numbers such that the

function f(x) cos (rx/2) is c-c*. The set E is nonempty and is bounded. Let C
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denote its supremum. If C 0, there is nothing to prove. Suppose that C > 0,
that k is a nonnegative integer, that 0 =< s < C, and that 0 __< x < 1. Thus

(- 1)+ 1F+ )(0) (- 1)+ f(2+ )(0) > 0.

Observe that

gk(S) (-- 1)kF2k)(x) (-- 1)kf(Zk)(x) s(r/2)2k cos (rx/2)

is a nonincreasing function of s. Therefore,

g(s) >= O, O_< s_< c,

since gk(So) < 0, 0 =< So < C, would imply that So is an upper bound for E. Con-
sequently,

1)kFk)(x)-- lim(-- 1 k)Fzk)(x)>0=
s-- C

which establishes that Fc is c-c*. The definition of C guarantees that Fc is minimal
C--C*.

Aeknowledglnent. The above proof has been kindly provided by the referee
whom the authors would like to thank for this and other valuable suggestions.
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ERRATA" DISCONJUGACY TESTS FOR SINGULAR LINEAR
DIFFERENTIAL EQUATIONS*

D. WILLETT

1. Add the additional hypothesis to Theorem 1.1 that equation (1.1),

Ly =_ y(") + pl(t)y("- ) + + p.(t)y O, p C(o, fl),

is disconjugate at , so that Theorem 1.1 is as foll.ows If Ly 0 is disconjugate at ,
then Ly 0 is disconjugate on [, [3] if and only if for any [cz, b] [, fl], there
exists a fundamental principal system on [, b].

2. Eliminate the second sentence in the second paragraph of the proof of
Theorem 1.1.

3. In the proof of Theorem 3.1, first let < c < fl so that c is a nonsingular
point. Then the proof as given but adapted to intervals [b, cl, a __< b < c, establishes
disconjugacy at cz for (2.15). The remainder of the proof is then the proof as given,
which uses Theorem 1.1.

4. We note the following theorem, which does not require the hypothesis of
disconjugacy at e.

THEOREM. The equation Ly 0 is disconjugate on [, fi if and only if for
any [a, b] [z, [3, there exists a fundamental principal system on [a, b].

Proof. If Ly 0 is not disconjugate on [e, fl] or (e, fl), then there exists [a, b]
(, fl) such that Ly 0 is not disconjugate on [a,b]. But this contradicts

Theorem 1.1 as given in remark above, since a is not singular and Ly 0 is
disconjugate at a. If Ly 0 is disconjugate on (e, fi), then it is disconjugate at
and Theorem 1.1 again applies.

Acknowledgment. The author thanks Mr. Euel Kennedy for pointing out the
need for the additional hypothesis in Theorem 1.1.
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EVALUATION OF DISTRIBUTIONS USEFUL IN KONTOROVICH-
LEBEDEV TRANSFORM THEORY*

G. Z. FORRISTALL" AND J. D. INGRAM:

Abstract. The transform methods of Kontorovich and Lebedev seem to offer a direct approach to
the solution of many physical problems involving the geometry of angular sectors. This promise has
often been thwarted in practice by the coupling of boundary conditions which makes a direct inverse
transform impossible. In the present work, we offer a method to meet this difficulty, based on the
evaluation of the distributions listed below in terms of tabulated functions:

dr
lim Ki(2r)Ki(r
e",, -e’

lim Kiv(,r)r2m -i dr,

lim Ki(r)li(2r
g’,,0

1. Introduction. The transform methods of Kontorovich and Lebedev
[7]-[9] seem to offer a direct approach to the solution of many physical problems
involving the geometry of angular sectors. Unfortunately, this promise is usually
thwarted in practice by a coupling of boundary conditions which makes it im-
possible to take an inverse transform in a direct manner. For example, let us con-
sider the transform pair:

dp(r) X(v)Kiv(kr sinh (v)v dr,

(1)
X(v) - @r)Kiv(kr

where K(kr) is the modified Bessel function. After the application of the transform
to boundary conditions, the coupling of the boundary conditions may lead to
equations in the transform plane which include both the Bessel functions K(kr)
and K(kr). In this case the inversion formula in (1) is not applicable, and we need
the evaluation of the distribution

(2) lim Ki(2r)Ki(r .
which is discussed in 4. This evaluation was central to the work of Ingram [6] on
wave propagation in acoustic wedges in contact and was also used in the work of
Forristall and Ingram [4] on wave propagation in an elastic wedge. In the latter
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562 G. Z. FORRISTALL AND J. D. INGRAM

work and in other problems in which the boundary equations in the transform
plane include Bessel functions of different orders it is useful to expand one of the
Bessel functions in a series and evaluate the distributions

(3) lim Kiv(kr)r2m- 1-i{+e dr,
e"0

as in 2.
Similar problems arise in the use of another Kontorovich-Lebedev transform

pair:

f6+imok(r) X(v)Kv(kr)v dr,

(4) o dr
X(v) p(r)I(kr)

17f, F

where I(kr) is the modified Bessel function of the first kind. In this case, it is useful
to have an evaluation of

dr
(5) lim Ii,(r)Ki(r) .1’0

which is discussed in {} 3.

2. Distribution involving a modified Bessel function of the second kind and a
power. Define

(6) L(v { m k) lim Kiv(kr)r2m- -i+ dr,
0

where v and are real and nonzero.
For 2m+s > 0, the integral in the expression above has a well-known

evaluation [12, p. 388], so for m > 0,

1
(7) L(v, , m, k) m- =(v + )

Z
F rn+(v- )

However, for m 0, we see that we must investigate the singular behavior of the
gamma functions in taking the limit"

1() -i ( (y (limF + ) F +(v- )(8) L(v 0 k) - ’,o

This could be done by a rather simple contour integration, but it is more convenient
to use the apparatus of generalized function theory [5], so that

(9)

-i
lim F(e + ix)= lim F(e + + ix)--= F(1 + ix)--
-,,o ’,,0 + ix x- i0

iF(1 +ix){ + }irfi(x)
X
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where 1/x should be considered as a principal value. Using this fact in (8), we have

(10)

L(v, , O, k) - v+ +2it6(v+ ).v_ +2irtb(v-

or

(11)

L(v, , O,k) - -ivF(-iv)cS(v )+

(v + ) r

where 1/(V2 2) should be considered as a principal value.

3. Distribution involving modified Bessel functions of the first and second kind.
Define

dr
(12) H(v ’2) lim Iiv(/r)Ki(r)-_ ,

’0 r

where v and are real and nonzero.

0<2__<1,

The integral in (12) has been evaluated for positive [3, vol. 2, p. 93], so that

H(v, 2) lim 2i"F
e" e

,-o r(1 / iv)
/ (v / ) F / (v )

(13)

(_ e
,R22El / (v / ), / (v );1 / iv"

We note that the singular behavior of (13) as e ", 0 comes, as in the previous
section, from the gamma functions, and a similar evaluation is possible:

(14)

Using (14) in (13) and noting that

(15) 2F1(0, b c z) 1,

we have
ir

H(v, ;2)= -vv2’[6(v__ + ) + 3(v )] v22
(16)

F(1 + i(v + )/2)F(1 + i(v 0/2) 22
r(l + iv)

2F, (v + ),(v- );1 + iv;

where 1/(v2 2) must again be considered as a principal value.
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For 2 > 1, H(v, ;2) obviously is not defined; in fact, the series used in
deriving (13) does not converge. This may be clearly seen by considering the
asymptotic expansions for the Bessel functions"

(17) Iiv(2r) e’/J2r
and

However, for 2 l, the series still converges, and the hypergeometric function
in (!6) has a special form [1, p. 556] which gives

(18)
-i

H(v, ;1) ---[-6(v / ) + (v )]
V2ZV

4. Distributions involving two modified Bessel functions of the second kind.
Define

dr
(19) G(v, ;) lim Kiv(/r)Ki(r _,

0 r

where v and are real and nonzero.
First we consider the case 0 < 2 =< 1. From symmetry, the case where 2 >=

will then be obvious. The derivation could proceed from an integral representation
of the product of two Bessel functions [2], but it is more straightforward to use the
result of 3, along with the fact that

(20) {I iv(r) Iiv(2r)}.Kiv(2r)
2isinh nv

Thus

G(v, ; 2)
2i sinh 7zv

{H(-v, ;2) H(v, ; 2)}

(21)

cos (v log 2)
2 vsinhtv

[(v + ) + (v O]

V
2 2

j2_iF(1 i(v + O/2)F(1 i(v -0/2)
r(1 iv)

v + ); iv;J2

_2ivF(1 + i(v + O/2)r( + i(v- 0/2)
F(1 + iv)

2F1 (V + ), (v ); + iv; ;2
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This result may be considerably simplified by using the linear transformation
[3, vol. 1, p. 106]:

r(a)r(c a)
2Fl(a, b; c; z) eic-")(1 z)

r’(c)

F(c a)F(1 b)
2F1(c- a,c-b;e+ 1-a-b;1- z)

F(e+ 1-a-b)
(22)

eir(1 a)( z)b- c(1 Z)

r(1 b)r(a)
2F1(1 b,c- b;a + 1 b;z-1)

F(a + b)

on the first hypergeometric series in (21), and the related transformation

ra)rc a)
2Fl(a b c; z) ei’(-a)z -(1 z)

r(c)

F(c a)F(1 b)
(23) 2Fl(1 a, b;c + a b;1 z)

F(c+ 1-a-b)

ei. (_ z)-c(1 z)
F(1 b)F(a)
F(a + b)

2Fl(1-b,c-b;a+ 1-b;z-1)
on the second hypergeometric series in (21). Performing the necessary algebra
we obtain the result

2 COS (F log 2)
G(v,;2)=

2 v sinhrcv
If(v+ )+6(v-)]

(24)

+ sinh (v + ) sinh ) g(v, ; 2),

where

2 2g(v,;2)=-(2 1)2 2F 1-(v+ ),l-(v- )’2"1-

Some special cases of (24) are of interest. For v , we use an integral representa-
tion [1, p. 558],

(25) F(a b c z)
V(c) - 1(i t) - 1(1 tz)- dt

r(b)r(c b) do
to get

71;
2

g(v, v; 2) v sin (v log 2).

For 2 1, it is obvious that

g2 1
(26) G(v, ; 1)

2 v sinh rtv
[6(v ) + 6(v + )],
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which can be seen to be a statement of the Kontorovich-Lebedev transform pair
(1).

Acknowledgment. We would like to thank the reviewer for suggesting a
simplified method of analysis.
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QUANTITATIVE ESTIMATES FOR A NONLINEAR SYSTEM OF
INTEGRODIFFERENTIAL EQUATIONS ARISING IN REACTOR

DYNAMICS*

T. A. BRONIKOWSKI, J. E. HALL AND J. A. NOHELS"

Abstract. In this paper we obtain precise quantitative estimates for the asymptotic behavior of
solutions of a class of nonlinear integrodifferential equations arising in nuclear reactor dynamics. The
method uses a Galerkin approximation and certain energy estimates (Lyapunov functions) to obtain
suitable bounds for solutions of related ordinary differential equations.

1. Introduction. We study the system

(1.1)

u’(t)= a(x)T(x,t) dx, 0 < x < c, O< < ,
Tt(x, t) (b(x)T(x, t))x q(x)T(x, t) + l(x)a(u(t)),

where ’= d/dt and where subscripts denote partial derivatives, subject to the
initial conditions

(1.2) u(O)= Uo, T(x,O)= f(x), O < x < c,

and to the boundary conditions

(1.3) d T(O, t) + d2Tx(O, t) O, daT(c, t) + d4T(c, t) O.

In (1.1), (1.2), (1.3) the real functions a, r/, f b, q are prescribed on 0 =< x =< c,
the real function a(u) is defined for - < u < , and c, u0, di, 1, 2, 3, 4, are
constants with [dll + [d2[ > 0, [d3[ + [d4[ > 0.

Special cases of (1.1) with b(x) _= and q(x) =- 0 have been studied by Levin
and Nohel [4]-[7] in both the linear case a(u) u and the nonlinear case, on the
finite interval [0, c] and the infinite interval -v < x < (for the latter the
boundary conditions (1.3) are omitted). The system (1.1) and the various special
cases are of interest as dynamic models of a one-dimensional continuous medium
nuclear reactor for which a(u)-- -1 + exp u. Here, as in earlier papers, the
principal interest is in the behavior ofsolutions as - , once it has been established
that (1.1), (1.2), (1.3) is a properly posed problem.

In I4] it is shown under appropriate conditions that if a(u) u, b(x) 1,
q(x) 0, - < x < v, the solution u(t), T(x,t) of (1.1), (1.2) satisfies
u(t) O(t- 3/2), T(x, t) O(t- 1/2) (uniformly in x) as . More recently Miller
[83 has shown that under essentially the same hypotheses, but with a(u) u + o(u)
as lu] 0, the solution u(t), T(x, t)of(1.1), (1.2)with lUol and If sufficiently small

is the Ll-norm approaches zero as ---, c (uniformly in x).
In [5 and [6] sufficient conditions are given which ensure that with b(x) =- 1,

q(x) 0 all solutions of the nonlinear system, which need not have a(u) =- u as a
special case (one assumes only ua(u) > 0 (u 0)), approach zero as in both

Received by the editors July 6, 1971. The work of the third author was supported in part by the
United States Army Research Office--Durham.

" Department of Mathematics, Marquette University, Milwaukee, Wisconsin 53233.
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568 T. A. BRONIKOWSKI, J. E. HALL AND J. A. NOHEL

the finite (0 =< x =< c) and infinite (-oe < x < oe) cases; i.e., one has global
asymptotic stability of the equilibrium state u =_ O, T(x, t) =- O.

In [-7] the effect of delayed neutrons is studied in both the finite and infinite
cases, in the special case b(x)= 1, q(x)= 0, a(u)=-1 + expu, and global
asymptotic stability results are obtained. This physically important phenomenon
complicates the equation (1.1) considerably and the methods of this paper only
yield partial results in this case.

Bronikowski studies (1.1), (1.2), (1.3) in the linear case a(u) -= u. By applying
a suitable tauberian theorem for Laplace transforms (different from the one used
in [4]) to solutions of a related linear Volterra equation satisfied by u(t), he obtains
precise asymptotic formulas for the solution u(t), T(x, t) as oe in a variety of
cases.

In this paper we obtain precise quantitative estimates for the solution u(t),
T(x, t) of (1.1), (1.2), (1.3) in the nonlinear case as --, oe several cases are con-
sidered, and extensions to boundary conditions more general than (1.3) are
indicated. The technique employed combines the Galerkin approximation with
suitable Lyapunov functions for related systems of ordinary differential equations
using methods developed by Hall [3]. We also remark that the present results
require, roughly speaking, less stringent hypotheses regarding e, r/,f than in
[5], [6], [7], but a somewhat stronger hypothesis on a(u) than was the case in [5],
[6. Moreover, the technique, which appears to be of independent interest, is
different; in [5], [6], [7] suitable energy functions were applied to related nonlinear
Volterra integrodifferential equations to obtain the behavior of u(t) as o. It
does not appear possible to deduce quantitative estimates concerning the behavior
of u(t) and T(x, t) as from those energy functions. However, such quantitative
estimates are readily obtainable by elementary methods from the related systems
of ordinary differential equations and our analysis makes use of the fact that these
estimates do not depend on the number N of approximating ordinary differential
equations in the Galerkin procedure.

In the sequel the symbol (m.na) will denote the first expression in relation
(m.n) and (m.nb) the second.

2. Summary of results. Intimately connected with (1.1b), (1.3) is the following
Sturm-Liouville problem. Let

L(y) -(b(x)y’)’ + q(x)y, d/dx, O < x < c,

and consider the boundary value problem

(2.1) L(y) 2y,

(2.2) dly(O) + d2y’(O) O, d3y(c + dy’(c) O.

The asymptotic behavior of solutions of (1.1), (1.2), (1.3) depends heavily on the
nature of the spectrum and of the eigenfunctions of (2.1), (2.2). We make the
following assumptions"

(2.3) did2 <= O, d3d4 >- 0;
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(2.4)
either b, b’, b" are continuous and b(x) > 0 on [0, c] or b(x) >__ 0 on
[0, c], b(x) > 0 on (0, c), b’, b" exist on [0, c] and b, b- are integrable
on [0, el;

(2.5)
q is continuous on [0, c] (more generally q is measurable and inte-
grable) and q(x) >= 0 on [0, c].

The following result is well known and its proof may be found, for example, in
[-2, p. 415] or [11, pp. 110-114].

TrIEOREM A. Let (2.3), (2.4), (2.5) be satisfied. Then the eigenvalues of the
boundary value problem (2.1), (2.2) are simple, nonnegative, denumerable with no

finite limit points. Indexing the eigenvalues so that 0 <= 2o < 21 < 22 < one has

(2.6) 2, n2rt2L -2 + O(1), n , where L (b(x))-1/2 dx.

If y,(x) is the eigenfunction corresponding to 2, normalized so that y2, dx 1,
then {y,}= o form a complete orthonormal set in L2(O, c) and SUpo_<,_<c [y,(x)[ <_ K,
for some constant K independent of n (actually, precise asymptotic estimates are
available, but no use is made of them here).

Moreover, iff is any realfunction on [0, c] which satisfies the boundary condition
(2.2) and f, (bf’)’ L2[0, ], then

(2.7) f(x) f,y,(x), f, (f y,),
n=0

where the series converges absolutely and uniformly; in fact,

ILl < .
n----O

The last statement follows from (2.6) and the elementary calculation using
(2.1), (2.2) and integration by parts"

L (f, y.)= =(f, L(y.))= y,,) + .(fq, y.);

thus ILl 0(1/n2) as n .
We remark that in the ease of more general boundary conditions,

(2.8)
m ly(O) + m 12Y’(O) + n ly(c) + nl 2Y’(c) O,

m21Y(O) + m22Y’(O) + n21Y(C) + n22Y’(C) O,

where mi2, ni2 are real constants (this includes the case of periodic boundary
conditions), the boundary value problem (2.1), (2.8) is self-adjoint if and only if

det
mll m12

m21 m22

///11 t/12)det
/’/21 /’/22
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If b, q satisfy (2.4), (2.5) and if it is assumed that mij nij are such that the spectrum
of (2.1), (2.8) lies on the nonnegative real axis, the conclusions of Theorem A are
unchanged, except for the fact that the eigenvalues are not necessarily simple (they
can have multiplicity at most 2; we list double eigenvalues twice); in particular
zero can be a double eigenvalue.

In the analysis below involving (2.1), (2.2) it will be important to distinguish
when zero is or is not an eigenvalue. If

(2.9) either q 0on[0, c] or Idll + Id31 >0,
then the smallest eigenvalue 2o is positive. If

(2.10) q--=0on[0, c] and dl =d3 =0,

then 20 0 is the smallest eigenvalue. The corresponding normalized eigen-
function is yo(x) c-1/2, a constant.

In order to state the principal results concerning the problem (i.1), (1.2), (1.3)
we make the following assumptions:

, r/, f, (br/’)’, (bf’)’ L2(0 c), f C(0, c), and f, q satisfy the boundary(2.11) condition (2.2).

Defining f, as in (2.7) and similarly %, q,, let

(2.12) ,q, >= 0, n 0, 1, ..-,

and let there exist constants > 0 and ? such that

(2.13) =< < ? for all n for which ,r/, > 0.

We shall also be interested in the special case in which

(2.14) ,,q,, 0 implies ,, r/,, 0, rn > 0.

It may be noted that (2.12), (2.13), (2.14) hold in the physically important case
o(x) ktl(x) for some constant k > 0. We also note that

(2.15) ILl < , Irt.I < , Inl <
n=O n=O n=O

in view of(2.11), the calculation following (2.7), and (2.13). Concerning the function
a(u) we suppose

a C’(- ), xa(x) > O if x#O,
(2.16)

S(x) a(z) dr as Ixl--’ ,
which is satisfied in the physically important case a(u) + exp u as well as in
the linear case a(u) u. For some of the conclusions we also need

(2.17) a’(0) > 0

and that there exists a constant F so that the growth condition

(2.18) aZ(x) =< FS(x), - < x < ,
is satisfied.
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In the results given below, Theorem establishes existence, uniqueness,
boundedness and exponential decay of solutions as - oo of (1.1), (1.2), (1.3), in
case zero is not an eigenvalue of (2.1), (2.2), i.e., if (2.9) is satisfied. The zero eigen-
value case is treated in Theorem 2. In the zero eigenvalue case the T component of
the solution need not decay to zero. We assume throughout that (2.3), (2.4), (2.5),
(2.11), (2.12), (2.13), (2.16) are satisfied.

THEOREM 1. Let (2.9) and either (2.14) for all m >= 0 or (2.18) be satisfied. Then
there exists a unique solution u(t), T(x, t)of (1.1)existing forO < < oo, 0 < x < c

satisfying condition (1.2), (1.3); moreover, there exists a constant K > 0 such that

(2.19) ]u(t)] =< K, sup IT(x, t)] =< K, 0 __< < .
O<x<c

If in addition (2.17) is satisfied and if the strict inequality holds in (2.12)for at least one
n, then there exist positive constants K and 09 such that

(2.20) [ui)(t)[ =< K e -t, O, 1,2,

sup ]T(x, t)] <= K e -’‘ 0 < <
O<_x<_c

THEOREM 2. Let (2.10) and either (2.14) for all m >= 0 or (2.18) as ell as (2.14,
m O) be satisfied. Then there exists a unique solution u(t), T(x, t) of(1.1), (1.2),
(1.3) existing jbr 0 < x < c, 0 < < such that u(t) satisfies (2.19a) and such that

(2.21) sup IT(x,t)l <-_ K + (u(s)) ds 0 <= < o.
O<x<c

If in addition (2.17) is satisfied and if the strict inequality holds for at least one n >=
in (2.12), then u(t) satisfies (2.20a). If aorio > O, then T(x, t) satisfies (2.20b). If
aorio 0 and if (2.14, m 0) is satisfied, then there exist constants K > 0 and
co > 0 such that

(2.22) sup IT(x, t)- c-X/2fo <= K e -’, 0 <= < .
O<x<_c

If (2.10), (2.18) are satisfied, if Oorio 0 and 0o 0, but rio :/: 0, then u(t) again
satisfies (2.20a). Moreover, there exist constants K > 0 and co > 0 such that

(2.23) sup
O<_x<c

T(x, t)’- c- /2 fo + rio a(u(s)) ds < Ke-or 0<t< ,
where the integral in (2.23) exists for 0 <= <= oo. (It may be noted that if also
rio 0, (2.23) reduces to (2.22).)

We remark that hypothesis (2.11) is not the most general one under which our
results can be established. For example, if 0, ri, f satisfy the hypothesis made in
Bronikowski [1] and if one assumes in addition that (2.15) is satisfied, the con-
clusions of Theorems and 2 hold, interpreting (1.2), (1.3) in a limiting sense.

If the boundary conditions (1.3)are replaced by

m T(O, t) + m 2 Tx(O, t) + n T(c, t) + n 2 T(c, t) 0,

2T(0, t) + 22Tx(0, t) + rll2T(c t) + rt22Tx(c t) O,
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where mij, nij satisfy the conditions stated following (2.8), the results and proofs
ofTheorems and 2 are unchanged if either 2 0 is not an eigenvalue or 2 0 is a
simple eigenvalue of the eigenvalue problem (2.1), (2.8). If 2 0 is a double
eigenvalue of (2.1), (2.8), u(t) satisfies (2.20a) however, the behavior of T(x, t) can
be more complicated than (2.20b) or (2.22), (2.23) (see, for example, [7, Theorem 4]
where the constant coefficient case of (1.1b) together with delayed neutrons is
discussed).

If 2 0 is an eigenvalue of (2.1), (2.2), and if 0r/0 0, but o 4: 0, then
Theorem 2 does not apply; neither Lemma 3 below nor the Corollary to Lemma 3
below hold. In fact, this case can lead to instability as shown by Bronikowski [1]
in the linear case of(1.1) and by Miller [9] in the constant coefficient case of(1.16).
Similar results hold here.

3. Related systems of ordinary differential equations. The Galerkin method
applied to (1.1), (1.2), (1.3) proceeds as follows. Let u(t), T(x, t) be a solution for
0 < x < c, 0 < < , and suppose that

T(x, t) T.(t)y.(x), T.(O) f,,
n=0

where y, are the eigenfunctions of (2.1), (2.2). Define f,, a,, r/, as the Fourier
coefficients of f, a, r/ with respect to the orthonormal system {y,} respectively.
Then formally T(x, t) satisfies (1.2b) and (1.3). Substituting in (1.1) and using (2.1)
we obtain formally

u’(t) a.T.(t),
n=O

r’.(t)y.(x)= (b(x)T.(t)y’.(x)) q(x) T.(t)y.(x)+ tl(x)a(u(t))
n=0 n=0 n=0

L(y.(x))T.(t) + rl(X)a(u(t))
n=O

2.y.(x)T.(t)+ rl(X)a(u(t)).
n-O

Multiplying the last relation by Ym and integrating from 0 to c yields the infinite
system of ordinary differential equations

(3.1)
n-’O

r’.(t) 2.T.(t) + rl.a(u(t)),
O<t<, n 0,1,...

where u(0) uo, T,(0) f,, n 0, 1, It should be noted that if (2.9) is satisfied,
then all the 2, > 0 in (3.1), while if (2.10) is satisfied, then 2o 0, 2, > 0, n >__ 1,
and the analysis will be more complicated (see proofs of Lemma 3 and Theorem 2
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below). Truncating the system (3.1) we obtain the finite system of ordinary differ-
ential equations of the form

(3.2)

N

x’It) Z ,z,t),
n--0

z’.(t) ,.z.(t) + ,,(x(t)), O<=n<=N,

with initial conditions x(0) Uo, z,(0) f,, n 0, 1, ..., N.
It is the purpose of this section to show that under various hypotheses (namely

those of Theorems and 2) the solutions of (3.2) exist on 0 < < , are bounded,
and tend to zero exponentially (except for the one case when 0 is an eigenvalue;
see Lemma 3 below)and that the estimates involved are independent of N. While
such systems were considered by Hall [3], it is not quite possible to apply his results
directly to (3.2), although we use entirely his method to derive the results of
Lemmas 1, 2, 3 below. The first two of these deal with the case when the smallest
eigenvalue 2o of (2.1), (2.2) is positive while Lemma 3 is concerned with 2o 0.
Lemma is the most restrictive, but simplest from the point of view of exposition
and contains the essential ideas.

LMMA 1. Let 0 < 20 =< 21 < 22 (actually under hypothesis of Theorem
A and (2.9) strict inequalities hold between the 2i). Let ,, rl, satisfy (2.12), (2.13),
(2.14). Define

3.3) c,
,/rl, /f ,q, > 0,

if ,rl, O.

Let , 0 if and only if , O. Let a(x) satisfy (2.16). Then for any uo,f,, n O,
1, ..., N, there exists a unique solution x(t), z,(t), n O, 1, N, of (3.2) satisfying
the initial conditions x(O) uo, z,(O) f,, existing on 0 <= < and x(t), z,(t) are
bounded./f f,},= o 6 12 (ensured by (2.11)) there exists a constant f > O, independent
of N, such that

(3.4) Ix(01-<_ fl, Iz,,(t)l -< f, 0 =< n _< N, 0 __< < .
If in addition a(x) satisfies (2.17), if A ,ola,I < (see (2.15)),/f the

strict inequality holds in (2.12) for at least one n, and if (2.16) is satisfied, then there
exist constants fo > O, o9 > O, independent of N, such that

Ix(t)l o exp (- ogt), Iz.(t)l < fo exp (- ogt),

0=<t<,

Proof Define the Lyapunov function

N
2W(x, Zo, z) s(x) + -, c.z..

=0

Clearly Wis positive definite and its derivative with respect to the system (3.2)
(using (3.3)) is

N

w’(x, Zo,..., z) Z ,’,z, --< 0.
n=0

O<n<N.
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Without loss of generality we may assume 0 < c =< and >= in (2.13). By a
standard argument one now deduces the existence, uniqueness, and boundedness
of the solution x(t),z,(t), n O, 1,..., N, of the system (3.2) on 0 __< < oe;
however, the a priori bound of the solution will depend on W(uo, fo, fl,’", fN)
which depends on N. But letting

C
Wo max {S(uo), S(- Uo)} + ,o f,2,

which is independent of N, we observe that

o <= w(x(t), Zo(),..., z()) <__ Wo, o <= < .
Thus defining

(3.6) f max [w/ZWo/, 1.u.b. {]xl’S(x) <= Wo}],
which exists, since S(x) o as Ix[ ---, o, yields the estimate (3.4).

To prove (3.5) we may, without loss of generality, assume qo > 0. For, suppose
s,r/, 0 for 0 _< n __< k, r/k + - 0, SO that necessarily N >_ k + 1. Then because of
the assumption s, 0 if and only if r/, 0, the equations for Zo, ..., zk uncouple
from the system (3.2) and Zo(t),..., zk(t) decay exponentially. The proof given
below then applies to the coupled portion of the system with subscript k + in
place of 0. Further if qo < 0, then So < 0 and replacement of zo by -Zo in (3.2)
yields a system equivalent to (3.2) with -So in place of So and -r/o in place ofr/o.

Define

V(x, Zo, z, z) w(x, Zo, "., z) flr(X)Zo,

where fl > 0 is a constant to be chosen conveniently below. It follows easily from
(2.17) and l’Hospital’s rule applied to rZ(x)/S(x) as x --, 0 that there exist constants
q) q(f) > 0 and (f) > 0 such that

(x)
(3.7) q9

S(x) ’ Ixl .
Using the right-hand inequality of(3.7) it follows that iflx[, Iz,[ _-< f for 0 __< n __< N,
then

S(x) -+- CnZn

n=l 2

< V(x, Zo,"’, zu)

co-c( o)< S(x)l + + 1+ + c,z,
n=l 2

Thus if < min (1/O, Co/2) and Ixl, Iz.I for 0 =< n _< N,

1/2W(x, Zo, "", zu) <= V(x, Zo, "", zu)

< W(x, Zo,’", z),
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andclearly Vispositivedefiniteforlxl,lz,I <= , 0 <= n <= N. Formingthederivative
of V relative to the system (3.2) we obtain

N N

n=O n=O

By continuity there exists a constant D > 0 such that [a’(x)[ __< D for Ixl _<- ft. This
together with the inequality Juv] <= 1/27(U 2 -k U2/])2) for any 7 > 0 gives

N

V’tx, Zo,..., z) >= Z
n----O

flD s

.Yo I.l z + z.2)2

flrlo oZ+ -o1 + I’’()

-->/"---q(x)2 + zg[2oCo -/
2 ,nC+ %

n=l

2 be denoted by B, and/ 2o(: flAD/2, we haveLetting the coefficients of z,
B, _> /, where we have used the monotone property of the {2,}. Thus

N

-V’(x,zo, ",zN)=>--z--flrla2(x) + Boz + %.
n=l

We now choose fl so small that both (3.8) and Bo > 0,/ > 0 are satisfied. This will
be the case if

0 < fl < min Co 2r/oCo2o 2(:2o
(I)’ 2’2o2 + 2qoAD’ AD

Let COo rain (fir/o/2, Bo,/). Using the left-hand side of (3.7), we obtain

-V’(x, Zo,"’, zu) >= COo
N

2
0
.2 _[.. Zn

n=O

(Do qS+ z,
n=O

Let co min (2COo/3:, cooq/3) and apply (3.8), obtaining

V’(x, zo, zN) >= 2coV(x, zo, z);

it may be noted that co is independent of N. Thus

(3.9) V(x(t) Zo(t), zs(t)) < V(uo, fo, fu) e- 2’t 0 < < oo

From (2.17) and l’Hospital’s rule as x 0 applied to 0 < S(X)/X2, X O, we see
that there exists a constant q > 0 such that qx2 S(x) for Ix[ __< f. From (3.8) one
has first

V(uo, fo, f) <= kW(o, fo, f) <= Wo.
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Applying (3.8) once more to the left-hand side of (3.9) one obtains

1/2W(x(t), Zo(t), zu(t)) <= V(uo, fo, f) e- 2,o,

and hence

0=<t<,

x2(t < 2V(u0,f0,..., fN)
e 2,, < 3Wo 2o,=e 0=<t<,

q q

Finally, by defining

max ,
which is independent of N, we obtain the inequalities (3.5) and complete the proof
of Lemma 1.

The condition that a, 0 if and only if r/, 0, which plays an important role
in establishing the a priori estimates in Lemma 1, is restrictive. It will be removed
at the expense of an additional hypothesis on a(x).

LMMA 2. Let the hypotheses of Lemma 1 be satisfied, except for the requirement
0 if and only if rl, O. Let a(x) satisfy (2.18). Then the conclusions of Lemma 1

hold.
Proof. Since a,, r/, satisfy (2.12) we may assume without loss of generality that

a _>_ 0, r/ > 0 as in Lemma 1. The sequences {a,}, {r/,} induce a partitioning of the
positive integers W (including 0) into three disjoint classes z, , defined as
follows:

{nU’a, > 0, r/, 0},

{n .A/’.a, 0, r/, > 0},

{nU’a,tl, > 0or a, r/, 0}.
For each N dV define z’ VI {0, 1, ..., N} and similarly , o. Then the
system (3.2) may be written in the form

x’(t) Z
nN nN

z’,(t) 2,z,(t) + rl,a(x(t)), n ,
(3.10)

z’,(t) 2,,z,(t) + rl,a(x(t)) n ,
z’,(t) 2,z,(t), n ’,

subject to the initial conditions x(0) u0, z,(0) f,, n 0, 1, ..., N. Integrating
the last set of equations in (3.10) and substituting in the first equation yields the
equivalent system"

x’(t) o,z,(t) + eu(t),
n

(3.11) z’,(t) 2,z,(t) + ri,a(x(t)), n ou,
z’,(t) -2,z,(t) + ri,a(x(t)), n N,
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where x(0) Uo, z,(0) f,, n 0, 1, ..., N, and where

ev(t)= Z a,f, e-"’"
nCN

Since the classes N and N are disjoint the last system in (3.11) is independent of
the first two lines. We may therefore restrict our attention to the system

x’(t) ,z,(t) + eu(t),
(3.12)

z’,(t) 2,z,(t) + rt,a(x(t)), n

The behavior of the components of z,(t), n Mu, is easily deduced from the last
line in (3.11) once the appropriate estimates have been obtained for the solution
of (3.12). Note that the essential difference between the systems (3.2) and (3.12) is
the addition of the forcing term eu(t) in the latter. We remark also that if for n
,---r/. 0, then the corresponding equations in (3.12b) uncouple and the
corresponding z,(t) decay exponentially. For this reason we may as well assume
,qn > O.

Since f, satisfy (2.11) we may assume that the infinite sequences {f,},
{an) G 12. Thus there exists a constant K > 0, independent of N, such that

(3.13) [eu(t)l <= K e-’t 0 < <

Note that if is empty (which it cannot be in the second part of the lemma
provided N is sufficiently large) one has trivially the existence, uniqueness and
boundedness (independent of N) of solutions of (3.12) by inspection.

Define the Lyapunov function

2W(x, z) s(x) + - Z c.z.,
nN

where z is a vector whose components are z,, n . Relative to the system (3.12)
the derivative of W is

W’(x, z)= 2,c.z,2 + a(x)eu(t)<= a(x)eN(t).
n.N

Thus using (2.18) and (3.13) one has easily

W’(x, z) < 1/2leu(t)l(1 + rz(x))

=< 1/2lem(t)l + VS(x)+

F=< 1/2leu(t)l -4-

K FK< e- 40, + e- ’W(x z)

Letting x(t),z,(t), n u, be a solution of (3.12) one obtains by an elementary
argument, on integrating the above differential inequality, the a priori estimate
(independent of N)

W(x(t), z(t)) <__ + Wo exp
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where Wo is defined in Lemma 1. Thus defining f by (3.6) one obtains the bounded-
ness of solutions of (3.12) and the estimate (3.4) as in Lemma 1.

Now consider the solution x(t), z,(t), n JN, of (3.12) with [x(t)l -< f, Iz,(t)[
< f, n JN, 0 __< < . Take N sufficiently large that JN is not empty (see 2.12).
Define, for some constant//> 0,

V(x, z) W(x, z) (X)Zo.

If 0 q .u replace Zo in V by zk, where k is the smallest integer in .u. Then by the
argument of Lemma one obtains the estimate (3.8) for those z having indices
n e .N, where/, independent of N, has the same meaning as in Lemma 1. Thus
V(x, z) is positive definite for Ixl-< f, Izl-<_ f, n ocu, We now compute the
derivative of V relative to the system (3.12), and we obtain in much the same
manner as in the proof of Lemma the estimate

V’(x, z) < -zV(x, z) + (a(x) fla’(X)Zo)e

for Ix] , [z.[
_ , n u, where the constant z > 0 is independent of N and is

chosen as follows. Let O9o have the same meaning as in Lemma 1. Then define
> 0 to be any number for which < min (2O9op/3, 4O9o/3g) and 4: 20. Since

or, or’ are continuous on [-f, f2], there exists a constant Ko > 0 such that

V’(x, z) r V(x, z) + Kole(t)l Ixl, Izl , n o.
Thus for the solution x(t), z,(t), n N, of(3.12) one has, using (3.13), the differential
inequality

(3.14) V’(x(t),z(t)) < -z,V(x(t),z(t)) + KoK exp(-2ot), 0 =< <

Integrating one obtains

V(x(t), z(t)) V(uo,f) exp (- rt)
(3.15)

KKo+ (exp (- 200 exp (- rt)), 0 < <

where f is the vector consisting of those components of fo, "", fu for which
n . The inequality (3.15) now easily yields estimates of the form (3.5) for those
components of
one obtains the exponential decay of [z,(t)l as pointed out at the beginning of the
proof. This completes the proof of Lemma 2.

We now consider the case when 2o 0 while the other eigenvalues 2, > 0.
The system (3.2) takes the form

N

x’(t) =-oY(t)- Z ,z,(t),
n=l

(3.16) y’(t)

z;(t) -,z,(t) + n,a(x(t)), n N,

with initial conditions x(0)= Uo, y(0)= fo,z,(O)= L,n 1,..., N, where we
have relabeled z0 by y for emphasis.
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LEMMA 3. Let the hypotheses of Lemma or 2 be satisfied. Then for any
Uo, fo, fN the system (3.16) has a unique solution x(t), y(t), z,(t), n 1,..., N,
0 <_ < , satisfying the given initial conditions. There exists a constant f in-
dependent of N such that

(3.17) Ix(t)l ff, ly(t)[ K, Iz.(t)l ,
n--1,...,N, 0___<t<o.

If the strict inequality in (2.12) holds Jbr at least one n >= (in place of n >= 0) and if
oqo > O, then there exist constants fo > 0 and co > 0 independent of N such that

(3.18) Ix(t)l _<=_ Do exp (-cot), ly(t)l <= no exp (--cot), Iz.(01 o exp (-cot)

jbr 0 <= < o and n 1, N. If eorlo 0 and if (2.14) is satisfied for m O,
then y(t) ==- fo and x(t), z,(t) satisfy (3.18).

Comments on the proof of Lemma 3. We remark on the proof in the case of the
situation analogous to Lemma 2. Introducing classes N, u,cu exactly as in
Lemma 2, one is led to the system

N

x’(t) -oy(t)- ..(t)+ (t),

(3.19)

:(t) .z.(t) +

where eu satisfies the estimate

[eu(t)[ =< K e -lt, 0 =< <

for some constant K > 0. One now defines the Lyapunov function

CoY
2

2w(x, y, z) s(x) +---- + c..,

which is used to establish the bounds (3.17). To establish the exponential decay
one uses the Lyapunov function

V(x, y, z) W(x, y, z) flc(x)y p[3a(x)z

where it is assumed without loss of generality that e ocN and where/ > 0, p > 0
are constants. To establish the differential inequality of the form (3.14) one proceeds
as in the proof of Lemma 2; here one needs to make use of the fact that hypothesis
(2.17) together with Ixl _-< implies the existence of a constant d > 0 such that
c’(x) >__ d, -f __< x __< . This is needed because ’(x) occurs as the coefficient of y2
on the right-hand side of the expression for V’(x, y, z). The exponential bounds
(3.18) are then established as in Lemma 2.

If CZor/o 0 and if (2.14, m 0) is satisfied, then the y dependence is uncoupled
from the systems (3.16) and (3.1.9). In this case y(t) f0; that x(t), z,(t) satisfy the
exponential decay bounds in (3.18) may then be deduced as in Lemma 2 applied to
the system (3.19) with the second equations omitted. This completes the proof of
Lemma 3.
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If or/o 0 and if o 0, but r/o 4: 0, i.e., (2.14, m 0) is not satisfied, the
system (3.19) becomes

N

x’(t) ,z,(t) + en(t),
n=l

(3.20) y’(t) r/oa(X(t)),

z’,(t) 2,z,(t) + rl,a(x(t)), n e

where eu(t) is as above. It is evident that the middle equation in (3.20) is uncoupled
from the rest of the system. Applying Lemma 2 to the system (3.20) with the y
equation omitted, we obtain readily the following corollary.

COROLLARY TO LEMMA 3. Let aorlo 0 and let o O, but rio :A 0 (i.e., (2.14,
m 0) is not satisfied). If the other assumptions of Lemma 3 are satisfied, then there
exist constants o > O, co > 0 independent of N such that

Ix(t)[ =< fo e-" [z,(t)[ < oe-" y(t) fo + qo a(x(s)) ds

0=< < , n= 1,2,...,N,

where the integral exists for 0 <= <= . (Note that if also r/o 0, (2.14, m 0) is
satisfied and the corollary reduces to the last assertion of Lemma 3.)

That the integral exists for all => 0 follows from (2.16) and the exponential
decay of x(t).

4. A related Volterra equation. We consider first the Volterra equation

(4.1)

where

(4.2)

u(t) uo + K l(t + Kz(t- s)a(u(s))ds,

K,(t) ,=o--ff, (e- -1),

nr/nK2(t ,o--,(e -1), 0_<t<.

In (4.2) it is assumed that all eigenvalues 2, of the boundary value problem (2.1),
(2.2) are strictly positive; this is the case if (2.9) is satisfied. The Volterra equation
(4.1) is obtained formally as follows. Solve the second set of equations in (3.1) for
the T,, n 0, 1, ..., substitute in the first equation and integrate, again using the
initial condition u(0) Uo. It is clear from (2.6), (2.11) that K(t),Kz(t) C’[0, )
and that

K’(t) ,f,e-z"’,
(4.3)

,,=o

n=O

in view of the uniform convergence of the series involved.

0_<_t<,
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If the smallest eigenvalue of the boundary value problem (2.1), (2.2) is zero
(which is the case if (2.10) rather than (2.9) is satisfied), we consider the Volterra
equation (4.1) with, however,

(4.4)
K(t) -oofot + (e-"’

n--l

OnrlKz(t) -aorio + ,=,Z ---,
for which

-1),

-1),

K’(t) -aofo a,f.

K2(t)= -oqo- 0,q,e
a,t 0< t< oo

We shall establish two results concerning the behavior of solutions of (4.1),
first for when (4.2) holds, and then (4.4).

LEMMA 4. Let (2.9), (2.11), (2.12), (2.13), (2.16) be satisfied. Suppose that either
(2.14) holds for all m >= 0 or that (2.18) is satisfied.

(i) Then there exist a unique solution u(t) of (4.1), (4.2) on 0 <= < o and a
constant K > 0 such that (2.19a) is satisfied. Moreover, u(t) C’[0, oo) and

(4.6) u’(t) K’(t) + K’z(t- s)a(u(s)) ds, 0 <= < oo,

where K’, K’2 are given by (4.3).
(ii) If in addition (2.17) is satisfied and if the strict inequality in (2.12) holds for

at least one n, then u(t) tends exponentially to zero in the sense of (2.20a).
Proof Evidently (4.1) has a unique solution u(t) on [0, to) for some to > 0. In

accordance with a well-known continuation result (see, for example, [10]) this
solution u(t) can be extended to the interval [0, oo) if it satisfies an a priori bound
independent of to. To establish this property let 0 < < to, P P(tl)

SUpo<t<,, lu(t)l and let M M(tl) suPo_<,_<,, [a(u(t))l.
Consider the family of systems for N 0, 1, ...,

XN OnZNn,
n=0

(4.7) zu: -2,zu, + tl,a(xu), n O, 1,2, N,

where the initial conditions xN(0) Uo, zN,(0) j,, 0 <_ n <= N, are specified. The
system (4.7) of ordinary differential equations is, for each fixed N, of the form
discussed in Lemmas and 2 in 3. The hypotheses of Lemmas 1 or 2 are satisfied
and thus by (3.4) there exists a unique solution xu(t), zN,(t), 0 <= n <= N, of(4.7) and a
constant f independent of N such that

(4.8) Ix(t)l
0__<t<, O<=n<N,_ N--0,1,...
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We next solve the last N equations in (4.7) for the quantities zN, by variation of
constants and substitute in the first equation in (4.7). This yields

(4.9) XN(t Uo + KN(t + KzN(t s)r(XN(S)) ds, 0 <= < ,
where K1N, K2 are the functions defined by the Nth partial sums of the series in
(4.2).

We first show that XN(t) u(t) uniformly on 0 _<_ __< tx. From (4.1), (4.2), (4.9)
and the mean value theorem one has

(4.9)
N

O

where L supxs ]a’(y)l and S [-P, P] U [-, ]. Since P P(t), one also
has L L(t). The interchange of summation and integration used in obtaining
(4.9) is justified by the uniform convergence of the series involved. Let

Q(N)= =+2 X+-Mt and B=L= < .
Then (4.9) has the form

(4.0 lu(t- x(t ( +, u(s- x(s s, o t.

By the Gronwall inequality one obtains

lu(t)- xu(t)l Q(N)e"’, 0 t.

Since lim Q(N)= 0, it follows that limox(t)= u(t), uniformly on
0 t. Therefore one also has from (4.8a), lu(t)l 2, 0 t < o,

where is an a priori constant independent of N, t and to. Thus u(t) can be
continued (uniquely) to the interval 0 < in such a way that (2.19a) is
satisfied with K 2. That u(t) C’[0, ) and satisfies (4.6) now follows im-
mediately by differentiation of (4.1) using the uniform convergence of the series in
(4.3) on [0, ). This completes the proof of (i).

To establish (ii) one notes that the hypotheses imply that Lemma or 2 may be
applied to the truncated system (4.7). Thus by (3.5) there exist constants o > 0
and > 0 independent of N, such that

IXN(t)l<oe-’ 0<t<, N=0,1,...

The uniform convergence of x(t) to u(t) as N - on finite intervals shows that
u(t) decays exponentially to zero and that (2.20a) for 0 is satisfied. To show that
(2.20a) holds for i= 1, 2, one notes that the continuity of a’, (2.16) and (2.20a),

0, imply the existence of constants K0, COo > 0 such that

(4.11) Ir(u(t))l =< K0 e
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where, without loss of generality, we may choose 0 < coo < 2o. It therefore follows
from (4.3), (4.6) and 0 < 2o < 2 < that

lu’(t)l =< I,,/.I e-’t + Ko a.q,, e-ot-)e-os ds
n=O n=O

.=o I,7,1 e-’ +
2o ZOo n=0

< K e-o

which establishes (2.20a), 1, where

0=<t<,

I"Ll’;to COo.=

Differentiating (4.6) one obtains

u"(t) y’ ,L2,e-;"’

n=0

for 0 < < oe the differentiation is justified because of the uniform convergence
of the differentiated series for 0 < to _<- < , for any to > 0. Now let 0 < 6 < 2o,
to > 0, and K ,o I.f.,.l e-"-’- Then for >= to,

where

lu"(t)l K e -‘ + Ko e -’‘

+ Ko_o,,tl2 e- e(-ds

_<_ K e- t + Ko e- oot e,,q,, + Ko e- ot on=0 ’n coO

< Ke-,

co min (fi, O9o), K,Ko ,rl,,Ko
,=o ,=o

This establishes (2.20a) for 2. The overall a priori constants K and o9 in (2.20a)
for 0, 1, 2 are defined in an obvious way from the estimates just obtained for
lu(t)], lu’(t)l and lu"(t)l. This completes the proof of Lemma 4.

We now turn to the zero eigenvalue case.
LZMMA 5. (i) Let (2.10), (2.11), (2.12), (2.13), (2.16) be satisfied. Suppose that

either (2.14) holds for all m >= 0 or that (2.18) as well as (2.14) with only m 0 are

satisfied. Then conclusion (i) of Lemma 4 holds, where K’, K’2, in (4.6), are given by
(4.5).

(ii) If in addition (2.17) is satisfied and if the strict inequality in (2.12) holds for
at least one n >= 1, then conclusion (ii) of Lemma 4 holds.
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Proof The proof parallels that of Lemma 4 very closely.
(i) In place of the family of systems (4.7) we now consider the family

XN ZoyN OnZNn
n=l

(4.12) y qoa(Xu),
N 0, 1,...,
n= 1,2,.-.,N,

z;. 2.zu. +

where the initial conditions xN(0 u0, yN(0) fo, zu,(0) f,, n 1, ..., N, are
specified. For each N, (4.12) has the form of system (3.16) studied in Lemma 3 of

3. Using Lemma 3 (in place of Lemmas and 2) and the argument of part (i),
Lemma 4, one obtains the result of part (i), Lemma 5, where K1, K2, K’, K are
now given by (4.4), (4.5) respectively and where K, KZN are now the Nth partial
sums of the series in (4.4).

The proof of (ii) is exactly the same as the corresponding proof in Lemma 4
when establishing (2.20a) for 0, where the result (3.18) of Lemma 3 is applied
to the truncated system (4.12), in place of applying Lemmas and 2 in the proof
of Lemma 4. To prove (2.20a) for and 2 we note that from (4.6), (4.5) one has,
by differentiation,

(4.13) u’(t) -%fo Oorlo a(u(s))ds + w(t), 0 <= < ,
where

(4.14) w(t) o,f, e -z"’
n=l

and

(4.15)

o,rl, e- "’-s)a(u(s)) ds,
n=l

u"(t) -0rtor(u(t)) + ,f,2, e
n=l

+ e,rl,2 e- x"(’-s)(u(s)) ds,
n=l

,(u(t))

O<t<;

the differentiation is justified by the uniform convergence of the differentiated
series. We observe that (2.20a) for 0 implies that (4.11) holds. Therefore, (4.15)
and the argument employed in the proof of Lemma 4 for the behavior of u"(t)
shows that (2.20a) holds for 2. Since (2.20a) holds for 0 and 2, one has
that limt_o u’(t) 0 by the mean value theorem. On the other hand, (4.14) and the
elementary argument employed in prov.ing the exponential decay ofu’(t) in Lemma 4
shows that w(t) decays exponentially as ---, oe. Therefore, letting --, oe one obtains
from (4.13) that

(4.16) Zofo oo a(u(s)) ds,
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and hence (4.13) yields
u’(t) o’o r(u(s)) ds + w(O.

Finally, using (4.11) we obtain

lu’(t)l _-< or/oKo e-’s ds + K1 e-t

where

< aor/oKo
e mot .3t_ K e-’t= K,e ,oot 0 < < c,

(_Oo

K1 max ILI K
,r/,

=1 ’/]’1 (-DO n=l

This establishes (2.20a) for and completes the proof of Lemma 5.
If eor/o 0 and eo 0, but r/o - 0 (i.e., (2.14, m 0) is not satisfied), the

system (4.12) is replaced by (see (3.20))
N

XN OnZNn,

(4.17) Yv rloa(XN),
N O, 1,...,
n-- 1,2,...,N,

in which the middle equation is uncoupled from the rest of the system. The kernels
K1, K2 in (4.4) are now given by

nfK ,,= ---f-f e "t 1),
(4.18)

Kz(t . Onrln

which are of the form (4.2) with the sum beginning with n in place of n 0;
likewise K’, K are of the form (4.3) starting with n 1. Hence the argument of
Lemma 4 (using also the corollary to Lemma 3) easily yields the following.

COROLLARY TO LEMMA 5. If 00 0 and o O, but o # 0 (i.e., if (2.14,
m 0) is not satisfied) and the other hypotheses of Lemma 5 are satisfied, then the
unique solution u(t) of (4.1), (4.18) decays exponentially in the sense of (2.20a).

5. Proofs of Theorems I and 2. If the hypothesis of Theorem is satisfied, let
u(t) be the unique solution of the Volterra equation (4.1), (4.2) on 0 =< <
guaranteed by Lemma 4 if the hypotheses of Theorem 2 are satisfied, let u(t) be the
unique solution of (4.1), (4.4) on 0 =< < guaranteed by Lemma 5. In either case
define

where

(5.2)

T(x, t) G(x, t)f() d + G(x, r)r/()a(u(z)) d dr,

G(x, t) y,(x)y,() e-
n=0

0<x,<c, 0<t< oe,
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where 2,, y,(x) are the eigenvalues and eigenfunctions of the boundary value
problem (2.1), (2.2). The following well-known result for the heat equation may be
established by elementary methods; we omit the proof.

LEMMA 6. Let f, q satisfy (2.11). Then T(x, t) has the following properties"
(i) T(x, t), T,(x, t), T,,(x, t) are continuous for 0 < x <= c, 0 < < o,

(ii) Tt(x, t)= (b(x)Tx(x, t))x- q(x)T(x, t) + rl(x)a(u(t)), 0 < x < c, 0 < < oe,
(iii) T(x, t) satisfies the boundary conditions (1.3),
(iv) T(x, t) is continuous in (x, t) for 0 <= x <= c, 0 <= < ,
(v) for each >= O, T(x, t) L2(0, c), as a function of x.
To show that in either Theorem or 2 the pair u(t) (solution of(4.1) in Lemma 4

or 5 respectively) and T(x, t) satisfies (1.1), it is only necessary to show that (1.1a)
is satisfied (that (1.1b) is satisfied follows from Lemma 6 (ii)). By the Parseval
theorem and (4.6) one readily obtains

(x)T(x, t) dx K’(t) + K’2(t s)a(u(s)) ds u’(t),

0__<t<v,

which is (1.1a); here K’I, K are given by (4.3) if the hypotheses of Theorem are
satisfied and by (4.5) if the hypotheses ofTheorem 2 are satisfied (by Lemmas 4 and
5 respectively).

The uniqueness ofthe solution u(t) of(4.1) (in either the case ofTheorem or 2)
coupled with any standard uniqueness theorem for the inhomogeneous heat
equation readily yields the uniqueness of the pair u(t), T(x, t) defined above
satisfying (1.1), (1.2), (1.3).

Now suppose that the hypotheses ofTheorem are satisfied. Then by Lemma 4
u(t) satisfies (2.19a) and (2.20a) for 0, 1, 2. To prove (2.19b) we have from (5.1),
(5.2) and the Parseval theorem,

T(x, t) f,y,(x) e- z,t + q,y,(x) e- "’-s)a(u(s)) ds.
n=0 n=0

From (2.19a) and the continuity of a there exists a constant Ko such that

From (2.11), Theorem A, one has, f, el 1, supo_<,,_ciy,(x)l <__ K 1, 0< 2o
< 21 < "’", and therefore

(5.4) IT(x, t)l _-< K1 I/,I / K1Ko Ir/,I e -z(t-s) ds <= K,
n=O

which proves (2.19b). To prove (2.20b), we recall that (2.20a) implies that (4.11) is
satisfied and therefore from (5.3),

IT(x,t)l <= K1 ILl e-"t + K1Ko ]q,I e-X"(t-s) e-’Sds
n=O n=O

----< KI e-Z’
,=o

jf"] + K’Ke-’’ ,=o 2, Irl"]-
o)o

which proves (2.20b) and completes the proof of Theorem 1.
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Now suppose that the hypotheses ofTheorem 2 are satisfied. Then by Lemma 5
u(t) satisfies (2.19a) and (2.20a) for 0, 1,2. Equation (5.3) now takes the form

T(x, t) foc- 1/2 + f,y.(x) e-’ + loC-
n=l

+ tl.Y.(X e- x"(’-)a(u(s)) ds.
n=l

Thus one obtains

IT(x, t)l K, ILl / K a(u(s)) ds
n=0

1/2 fl a(u(s)) ds

which is (2.21).
We note that (5.5) has the form

(5.6) T(x, t) + 0 O’(b/(S)) ds C-1/2

where, by the argument employed in Theorem 1,

(5.7) IT(x, t)l =< K, e-X".= ILl + K,Ko e-t
,,=x 2,,- OOo"

To establish the remaining conclusions of Theorem 2 suppose first that or/0 > 0.
Then one has from (4.16),

thus from (5.6),

and using (4.11),

fo o a(u(s)) ds

T(x, t) rloC-1/2 o-(u(s)) ds + Tl(X t),

IT(x, t)l Iqolc-1/2Ko e-’ ds + IZl(X, t)l,

which together with (5.7) yields (2.20b).
If aor/o 0 and (2.14, m 0) is satisfied, then (5.6), with qo 0, and (5.7) yield

(2.22).
If aoqo 0 and o 4 0 (i.e., (2.14, m 0) is not satisfied), the corollary to

Lemma 5 shows that u(t), which is now the solution of (4.1), (4.18), and T(x, t),
defined again by (5.1), (5.2), satisfy (1.1), (1.2), (1.3) on 0 < x < c, 0 < < o and
u(t) satisfies (2.20a). Equations (5.6), (5.7) yield the estimate (2.23) for T(x, t). That
the integral in (2.23) exists for 0 =< < o follows from (2.16), (2.20a). This com-
pletes the proof of Theorem 2.
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BOUNDEDNESS PROPERTIES OF STATIONARY LINEAR
OPERATORS*

JAMES D. BAKER].

Abstract. A characterization of boundedness given by R. E. Lane provides a foundation for
studying stationary, linear transformations which map the left-continuous quasi-continuous functions
on the line into functions on the line. Properties of these operators are identified in terms of the trans-
forms of J(t) Z(o,). It is shown that the norm of an operator T is the variation of TJ, that there is a
Stieltjes integral representation of T with this function as the integrator, and that convergence of a
sequence of these operators is equivalent to convergence in variation of the sequence of transforms of J.
An operator which is continuous under pointwise convergence is shown to be bounded on a closed
interval, and is characterized by the left-continuity of TJ.

1. Introduction. A number-valued function on the closed interval [a, b] is
said to be quasi-continuous if it is the uniform limit of a sequence of step functions
on Ia, bl;a function on the line is said to be quasi-continuous if it is quasi-con-
tinuous on each closed interval. We denote by Q(a, b]), the set of quasi-continuous
functions on [a, b], and by Q, the set of quasi-continuous functions on the line.
The subsets of Q([a, b) and Q which contain the left-continuous functions will be
identified by the subscript L.

In [53, Lane considered bounded, stationary, linear transformations on the
set Q, and demonstrated that these operators could be represented as the sum of
two Stieltjes a-mean integrals over a closed interval. These operators and their
representations were subsequently used to develop a theory for the study of linear
physical systems [6]. The subset of QL containing the functions of bounded varia-
tion on each closed interval and which vanish to the left of the origin were of
primary interest in that investigation. Bounded linear functionals on Q([a, hi)
were first considered by Kaltenborn [43, and it was observed that these functionals
have representations as a Stieltjes interior integral plus an infinite sum. Dyer
later considered both bounded linear functionals and bounded linear operators
on Q([a, b]) [1], [2]. He provided Stieltjes mean integral representations for both
the functionals and operators and gave conditions for the inversion of certain
classes of the operators.

In this paper, additional properties of bounded, stationary, linear operators
on QL are investigated and those operators which are continuous under pointwise
convergence are identified. Since Q contains all functions which have length on an
interval, it is a natural set for the study of many types of systems. Little is lost in
generality by considering Q as opposed to Q since analogous results hold for
right-continuous functions.

One motivation for studying operators in terms of their integral representa-
tions is that it facilitates the study of integral operator equations, and hence, the
application of operators to problems. The operator characterization given here is
in terms of the left-Cauchy integral, which has been used in studies of integral
equations by several investigators, including MacNerney [7 and Dyer [3.

* Received by the editors June 10, 1971, and in revised form October 28, 1971.
]’Corporate Research Center, Honeywell, Inc., Hopkins, Minnesota 55343.
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2. Preliminaries
DEFINITION 2.1. Suppose A is a nonempty set of real numbers and T is a

transformation such that:
(i) if y e QL, then Ty is a function on the line;
(ii) if Yl e Q and Y2 e QL, then T(yl + Y2) Tyl + Ty2;
(iii) if y e Qt. and k is a number, then T(ky) k Ty;
(iv) if y e Qc, c is a real number, and z(t) y(t + c), then Tz(s) Ty(s + c),

for each real number s;
(v) if s is a real number, then there is a positive number B, such that if

y e Qx. and [y(s t)[ M for e A, then [Ty(s)l <-_ MBs.
Then T is said to be a stationary linear operator on QL which is bounded over the
set A, or, equivalently, a Qx.-operator over A.

The norm of T at s is the greatest lower bound of the numbers Bs and is
denoted by ]T(s)]. It was shown in 5 that IT(s)l IT(0)[ for each real number s,
so the norm of T is independent of s and will be denoted by T ll.

Definition 2.1 (v) is equivalent to the usual definition of bounded when T is
restricted to the subset of Q containing the functions which vanish outside the
set A. Also, it is a trivial matter to show that if T is a QL-operator over A and if
A c B, then T is a QL-operator over B.

LEMMA 2.1. Suppose T is a QlToperator over [a, b], y e QI, and [c, d is a closed
interval. Then there is a sequence of step functions in Q such that Ty,(s)--, Ty(s)
un!/brmly jbr s e c, d].

Proof. Any sequence of step functions in Q which converges uniformly to y
on c b, d- a] has the desired property.

If T is a Q/-operator over [_a, b, then T is a mapping from Qc into Q, and it
was shown in [5 that Ty is of bounded variation or continuous accordingly as y
is of bounded variation or continuous. Using Lemma 2.1 and the observation that
left continuity is preserved under uniform convergence, we have that for T to be a
mapping from QL into itself, it is necessary and sufficient that TJ e QL, where
J

3. Q-Operators. For a given Q7operator T, the function fi(s) will be used
to denote TJ(s).

THEOREM 3.1. Suppose T is a Q-operator over a, hi. Then each of the jbllowing
statements holds"

(i) fi(s) 0 jbr s < a, and fi(s) fi(b +)for s > b;
(ii) / is of bounded variation on [a, b].
Proof. If s < a, then J(s t) 0 for e [a, hi, so TJ(s)l 0. Suppose r > b

and s > b. Using an argument like that in [5], it follows that TJ(r)= TJ(s).
Property (ii) follows as a result of Theorem 3.3 in [5] since J is of bounded variation.

In Remark 4.1 of [5], an example is given for which fi(b)
and s is a real number, let Ty(s) 1/2[y(s) + y(s 1)]. Then T is a Qx.-operator
over [0, 1] with fl(s) 0 if s _<_= O, fl(s) 1/2 if s e (0, ], and fl(s) if s > 1.

THEOREM 3.2. If T is a Q.-operator over [a, b] which is not a translation or
magn!iication, then there is a smallest closed interval over which T is a Q.-operator.

Proof Let X- fq[a,b], where T is a QL-operator over [a,b] for
each . If X , then fi(s) 0 for each real number s. If X- {c}, then TJ(s)
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fl(c+)J(s- c). Since T is stationary, linear, and bounded, it follows that
Ty(s) (c +)y(s c) for each y 2. and each real number s. The only remain-
ing case is for X to be a closed interval.

It also follows that if T is a 2-operator on [e, f] for each [e, j’]
_

[a, hi, then
fi(s) 0 for each real number s.

The properties of fl allow one to consider Stieltjes integrals as a representa-
tion technique; and of these, the left-Cauchy integral is well-suited for QL-operators.

THFOREM 3.3. Suppose T is a QL-operator over [a, b]. If y QL and s is a real
number, then

Conversely, if y QL, s is a real number and

gy(sl c (s 0

where has he properties of Theorem 3.1, then U is a Ql-operator over [a, b].
Proof. The first part of the theorem follows from a standard argument using

the observations that

TJ(s) fl(s)= LC J(s- t)dfl(t),

that if y is a step function in Q and s is a real number, then

y(s- t)= ckJ(s- t- tk) forte[a,b],
k=l

and that for a sequence of step functions satisfying Lemma 2.1, we have

LC y(s- t)dfl(t)= lim LC y,(s- t)d(t).

The second part of the theorem follows directly from properties of the left-Cauchy
integral.

THEOREM 3.4. If T is a Q-operator over [a, b], then T Vb+(fl).
Proof. Suppose a o < tl < < t,_ b is a partition of [a, b and t, > b.

Choose e to be or accordingly as fl(t) fl(t_ 1) is nonnegative or negative,
and let

Then

z(--t) 8.k[J(t t)- J(tk_
k=l

Ifi(l;k)- fi(tk-1)1--ITz(O)I TII.
k=l

The reverse inequality follows directly from properties of the left-Cauchy integral
and the definition of T
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As was proved above, the norm of the operator T is equal to the variation of
the integrator function in the integral representation. For representations with
the Stieltjes mean integral, the integrator function is g(t)= 2fl(t)- fl(t-) (see
[1]), and for this case, the strongest result that can be obtained is TII < Vb+(g)
=<.3 T.

A sequence {T} of Q-operators is said to converge to an operator T if for
e > 0, there is an integer N such that if y e Qa, s is a real number, and ly(s t)l =< M
for [a, b], then lT,y(s) Ty(s)l < M for n => N. Since

Ty(s)l Ty(s) Ty(s)l + Ty(s)[,

there is an integer no and a positive number eo such that

ITy(s)l-<_. M[V,b+(fl,o) + eo].

Thus, T is a Q-operator over [a, b].
THEOREM 3.5. Suppose {T,} and T are Ql-operators on [a, b]. If fl TJ and

ft, T,J for each n, then for lim,_oo T, T, it is necessary and sufficient that
lim,_.oo Vab+(fl. fl)= 0.

Proof. Convergence in variation of {ft,} assures that lim,_ T, T. To
prove the converse, suppose {ft,} does not converge in variation to ft. Then there
is a number 6 > 0 such that for any integer N, there is an m > M such that
Vb,+(fl,,,- fl) > 6. Choose e < 6. There is a sequence {tk},=o of real numbers
such that to a and t,_ b, and such that

I(flm- fl)(tk)- (ft,,- fl)(tk_ 1)1 >
k=l

Let z(- t) be or for Its_ , t) accordingly as [(tim fl)(t) (fl,, fi)(t_
is nonnegative or negative. Then Iz(0 t)] __< 1, and

LC z(0- t)d[fl,,(t)- fi(t)] > 6;

hence, IT,,z(0) Tz(0)l > e.

4. Continuous operators. Suppose T is a transformation on the set Q/ which
satisfies (i), (ii), (iii) and (iv) of Definition 2.1. Suppose, also, that if s is a real number
and {y,} is a sequence of functions in QL such that y,(s t)- 0 for A, then
Tcy(S - O. An operator with these properties is said to be continuous over the
set A. We use/c to denote TJ.

THEOREM 4.1. If T is a continuous operator, then there is a closed interval
[a, b] such that T is a QL-operator over [a, b].

Proof. Suppose [c, d] is a closed interval and that T is continuous over Ic, dl.
Since uniform convergence is stronger than pointwise convergence, we have that
ifs is a real number and {y,} is a sequence of functions in Q such that y,(s t) 0
uniformly for [c, d], then Tcy,(s) 0. This property is equivalent to Definition
2.1 (v); hence, Tc is a Q-operator over [c, dl.

We now show that if T is a continuous operator, then there is a closed interval
[a, b] such that fie is zero to the left of a and is constant to the right of b. If no such
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number b exists, then there is an increasing sequence {tk} of real numbers, which
does not converge, and for which flc(tk+ 1) c(tk) V O. Let

[fl(tk + 1) flc(tk)]- if [tk, tk + 1),
Wk( t)

0 otherwise.

Let

and let

Then z QI, and

k=l

z(- t) lim z,(- t).

lira (z z,) 0.

For k 1, 2, let TJ(s) tic(S) if s e (tk, tk+ 1], and TJ(s) 0, otherwise.
Then T is continuous over Its, t+ 1], and, hence is a QL-operator over Its, tk+ 1.
Since

Tz(0) lim Tz,(0)= lim Tz(0),
n k=l

and since for each integer k,

z(0) c w(- t) () ,
we have that z(0) lim, n. This contradicts the requirement that z(0) be a
number. Thus there exists a number b such that c(S) is constant for s > b; a
similar argument shows the existence of a number a such that (s) is constant for
s a. To show that tic(s) 0 for s a, let J,(t) Z(,,). Since lim,. J,(t) O,
we have that

lim T.J,(s)= lim c(S- n)= 0;

and since/c is constant to the left of a, the theorem is proved.
THEOREM 4.2. If T is a continuous operator over [a, b, then is left con-

tinuous.

Proof. Suppose r e (a, hi. For each positive integer n, let z,(-t) if [r
1/n, r), and let z,(-t) 0 otherwise. Then

Tz,(0) [3(r)- (r- 1/n),

and since lim,_, Tz,(0) 0, it follows that/c(r-) [3(r).

Acknowledgment. The author wishes to acknowledge the very helpful
comments and suggestions of Professor James A. Dyer.
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CONTINUOUS LINEAR FUNCTIONALS ON CERTAIN K{M,} SPACES*

CHARLES SWARTZ’

Abstract. A distribution T is known to be tempered if and only if there is a positive integer k such
that T* 4)(x)/(1 + ]x12) is bounded for any 4) , if and only if there is a positive integer k such that

1/(1 + ]xl2)"c_xT:x R"} is bounded in @’. The analogues of these characterizations are established
for certain of the test spaces K{Mp} of I. M. Gelfand and G. E. Shilov.

In [1, II.41, Gelfand and Shilov obtain a representation for the continuous
linear functionals on certain K{M,} spaces. In particular, the representation in 11
contains as a special case the familiar representation of the tempered distributions
of L. Schwartz [5, Thm. 25.4]. There are several other well-known characteriza-
tions of the tempered distributions [3, Chap. VII, 4, Thm. VII, and in this note
we establish the analogue of some of these characterizations for certain K{Mp}
spaces. Our results are also applicable to the space of distributions of exponential
order [2], [6], [7.

We recall some of the notions pertinent to K{Mp} spaces. (These facts are
treated in [1, Chaps. lI and III].) Let {Mp}p= be a sequence of real-valued con-
tinuous functions defined on [" and such that _<_ Ml(X) < M2(x) _-< -.-, x eR".
The vector space K{Mp} consists of all infinitely differentiable complex-valued
functions 4) defined on JR" such that

sup {Mp(x)lDd(x)l’x R", 1o1 p} < oo

for all p >__ 1. (The definition of K{Me} spaces given in [1] is more general since
the functions Me are allowed to take on infinite values; we make this restriction
so that the resulting K{Mp} spaces are closed under translations.) The vector
space K{M,} is supplied with the locally convex topology generated by the
sequence of norms {11" II.}L 1’ Under this topology, K{M,} is a Frechdt space
[1, II.2.2].

We shall consider K{Mp} spaces which satisfy the conditions (M) and (N) of
Gelfand and Shilov 1, II.4.2. The sequence {Mp} satisfies (M) and (N) if:

(M)" The functions Mp are quasi-monotonic in each coordinate, i.e., if

[x)[ =< [xl, then

Mp X1, Xj, X CpMp Xi, Xj, X

for each fixed point (x;, ..., xa_ , xa+ , ..., x,).

(N)" For each p there is p’ > p such that the ratio mp(xj/Mp,(x)= mpp,(X)
tends to 0 as Ix] ---, o and the function mvv, is Lebesgue summable on
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In 1, II.4.2], it is shown that if {Me} satisfies (M) and (N), the sequence of norms

(2) 4)’q--Sup(fMq(t)lD4(t)ldt’ll<q}, q_>_l,

generates the same locally convex topology as the sequence of norms defined
in (1).

Further, we impose the condition (F) which was employed in 4].

(F)" Each Me is symmetric, i.e., Mp(x) Me(-x), and for each p there is a
p’ > p and Cp, > 0 such that Me(x + h) _<_ Ce,Mp,(x)Me,(h for all
X, h Rn.

Before stating our first result, we recall that if T 9’ and b 9, their con-
volution, T* 4 , is given by T, OS(x) (T, rxb) for x [", where %05 is
defined to be %(y) (x + y) (see [1, III.3.2]). This definition differs from that
given in many of the standard functional analysis texts; see, for example, 5, Def.
27.1. Also, since the injection K{Mp) is continuous and is dense in
K Me), each element of K{Me)’ can be identified with a distribution.

THZORZM 1. Let Me} satisfy conditions (M), (N) and (F). For T ’, the follow-
ing are equivalent:

(i) T K{Mp}’.
(ii) There exist a positive integer p and bounded measurable functions f
( ", I1 p) such that T llpD(Mpf).

(iii) There is a positive integer k such that for any , (T* 4)/M is bounded
O n.

(iv) There is a positive integer k such that {(1/M(h))r_hT:h "} is bounded
in ’.

Proof. That (i) and (ii) are equivalent is established in 1, Chap. II, ff 4.2.
First we show (ii) implies (iii). Assuming the representation in (ii), we have

for any ,
IT* b(x)l f M(y- x)lL(y- x)Ddp(y)l dy

<= Mp,(X)Cp,L J Me,(y)lDdp(y)l dy

Me,(x)Ce,L c/5 e’,

where p’ is given by condition (F) and L is a common bound for the {f}. Thus, if
we set k p’, (iii) is established.

Now we show (iii) implies (iv). Let b . By (iii) there exists B B4, > 0
such that ]W* qS(x)l __< SM(x) for x ". That is, sup {]((1/M(x)r_x T,

B so that {(1/M(x))r_xT:x e N"} is weakly bounded in ’ (and also strongly
bounded [3, Chap. III, 3, Thm. IX]).

We conclude by showing that (iv) implies (ii). Now {(1/Mp(h))r_hT’h
bounded in ’ implies there is a compact neighborhood K of 0 in R" and a positive
integer m such that if e, the family of continuous functions

(3) {1/Me(h)’c-hT* O’h e



CONTINUOUS LINEAR FUNCTIONALS 597

is bounded on K [3, Chap. VI, 7, Thm. XXII]. The elementary solution E of
As is m-times continuously differentiable for large N so if 7 e c is such that
7(0 for in some neighborhood of 0, then 7E e and di AS(TE)- b,
where b e 9. Therefore,

(4) T T,

Now T, b g since T ’ and b e , and (3) gives

sup {1/Mp(h)( T,

since 0 e K. Also 7E e implies

sup {1/Mp(h)lT* (yE)(h)l:heR"} <

by (3) since 0 e K. Thus (4) yields (ii).
Remark 2. Some parts of Theorem 1 find analogues in parts of [3, Chap. VII,

4, Thm. VII. Here Me(x (1 + ]x]2)p and {Me} satisfies (M), (N) and (F) [4].
Remark 3. Theorem also yields some of the characterizations of K’I, the

space of distributions of exponential growth, as given in Theorem of [7]. In
this case, Me(x exp (p[xl), and {Me} is easily seen to satisfy conditions (M), (N)
and (F)[4].

An infinitely differentiable function on " is said to be a multiplier on
K{Mp} [1, II.3.2] if

(i) b K Mp) for each q5 K(Mp} and
(ii) the map q5 ffq5 is continuous from K(Mp} into itself. The vector space

of all multipliers on K(Mp} is denoted by (9(K{Mp}). We have the following
result pertaining to multipliers on K{Mv} when {Mp} satisfies conditions (M),
(N) and (F).

THEOREM 4. Let M) satisfy conditions (M), (N) and (F). If a function
belongs to (_gM(K{Mp}), thenfor each there is a positive integer k such that (D)/Mk
is bounded on

Proof. Suppose C(K{Mp}). We show that there exists a positive integer k
such that q//M is bounded, and since (fiM(K{Mp}) is closed under differentiation,
this will establish the result. If this fails, there are points {Xk} in [" such that

Ilxk Xk / 111 => 4 and I(Xk)/Mk(Xk)] k. Pick h @ such that h(x) for Ilxll =<
and h(x) 0 for Ilxll >= 2, Define bk by qbk(X) h(x Xk)/Mk(Xk). Now the
sequence {b} is bounded in K{Mp} since for any positive integer p and Ifll =< P,

f Mv(t)lDqb(t)] f Mp(u + x) Dlh(u)l
dt

Ilull _-<2 Mk(Xk)
du

Mp,(xu) f Mp,(u)lDh(u)l du<= Cp,
M(x)

<= Cp, h p, fork=>p’.

However, I(q/qS)(x)l > k for each k so that {} is not bounded in K{Mp} and
thus C(K Mp}). Hence, there is a positive integer k such that /M is bounded.

The converse is established in 1, II.3.2] under the additional hypothesis
on {M.}"
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(A)’For any two subscripts p, r (p >= r) there exists s => p such that Mp(x)Mr(x
CprMs(x for x N".

Combining this result with Theorem 4 we obtain the following corollary.
COROLLARY 5. Let {me} satisfy conditions (M), (N), (F) and (A). A jinction

6/ d is a multiplier on K{mp} if and only if for each there is a positive integer k
such that (DO)/Mk is bounded on

Remark 6. This gives the characterization of multipliers on . as in Theorem
25.5 of [51 since in this case 9 K{Mr} with Mr(x (1 + Ix12)r and
satisfies conditions (M), (N), (F) and (A).

Remark 7. The corollary also gives the characterization of multipliers on

:/ [7] as in Proposition 4, parts (1) and (2) of [6]. In this case, Mr(x) exp (pT(x)),
where 7(x) x/ + x 2, and {Mr} is easily seen to satisfy (M), (N), (F)and (A).

Using the corollary, if {rap} satisfies (M), (N), (F) and (A), we may replace
condition (iii)in Theorem by (iii)’ for each d?e@, T* dp(gM(K{mp}).

COROLLARY 8. Suppose {rap} satisfies (M), (N), (F) and (A). Then for T @’,
conditions (i), (ii), (iii), (iii)’ and (iv) are equivalent.

Proof. Clearly (iii)’ implies (iii) by Corollary 5, and to see that (iii) implies
(iii)’, we note that for , N", D(T* dp) T, Dad?.

Remark 9. The equivalence of (i) and (iii)’ in the case where K{Mp} is
given in the remarks following Theorem IX of [3, Chap. VII, 51. For the case
where K{M,} :g see [6, Prop. 93.
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ON OSCILLATORY SOLUTIONS OF CERTAIN FOURTH ORDER
LINEAR DIFFERENTIAL EQUATIONS*

M. S. KEENER

Abstract. We consider the fourth order linear homogeneous differential equation

y4) + p3(x)y,,, + pz(x)y,, at pl(x)y’ + Po(X)y 0

with continuous coefficients. Our studies center on the oscillatory behavior of solutions of the above
equation under the separate disconjugacy conditions 1"22 r31 0(3 and r22 r13 oe.

1. Introduction. In this paper we consider the differential equation

(.) y + p3(x))/" + p(x)" + pl(x)y’ + po(x)y o,
where pi(x)e C[e, c), 0, 1, 2, 3, for some real number e. We are interested in
the behavior of solutions of (1.1) under certain types of disconjugacy conditions.
The following definitions are therefore needed.

DEFINITION l. A nontrivial solution y(x) of (1.1) has an il
distribution of zeros on an interval I [e, c), where n > 1, provided there exist
n points Xl < x2 < < x, in I such that y(x) has a zero at xk of order at least
for k 1,2,3, ..., n.

DEFINITION 2. For equation (1.1) and e [e, ), riliz...i.(t is the infimum of
the numbers b > such that there exists a nontrivial solution of (1.1) having an

2 distribution of zeros on It, b]. If no such number b exists, we
write

(1.2) riai2...in(t 00.

If (1.2) holds for all , ), we write

leili2""in O0.

For [e, ) the numbers riai2...i,(f), 2= i/ 4, have been of considerable
interest recently. In a paper by Ridenhour and Sherman [5] it was shown that
r121 o implies r13 r31 . In his recent dissertation, Schneider [6] con-
sidered self-adjoint fourth order differential equations for which r121 . For

[, o0), we define r/(t) by

/(t) rllll(t).

Peterson I4 has shown that

r/(t)- min

and that at most one of the numbers in the brace is infinite if r/(t) < . It can
also be shown (see [1) that

r/(t) min {r3 l(t), r22(t), rl3(t)}.
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In Leighton and Nehari’s I2] classical paper on self-adjoint fourth order
differential equations, the authors considered the behavior of solutions of

(1.3) [r(x)y"]" p(x)y 0

and

(1.4) [r(x)y"]" + p(x)y O,

where r(x) and p(x) are positive and continuous on an interval [e, m). For (1.3) it
was shown that q(t) rzz(t and r31 r13 r12 o0. Others have considered
the behavior of solutions of more general equations than (1.3) and (1.4) uiader the
assumption rl(t) rz2(t). Either [1 or [8] furnishes a good list of references.

The conditions imposed on the equation in this study force the equation to
be nonself-adjoint. Such equations may arise in the study of a vibrating string in
a medium where some frictional force is considered. The purpose of this paper is
to study the behavior of solutions of (1.1) under the conditions

r22 r31 z, r/(t)-- r13(/),
and

r22 r13 o, rl(t) r31(t).

We shall be interested in the oscillatory behavior of solutions. A nontrivial solu-
tion of (1.1) is said to be oscillatory on [e, ) provided it has unbounded zeros
on [a,

The following lemma is well known and is fundamental in the study of the
behavior of solutions of (1.1). The proof is omitted.

LEMMA 1.1. Let u() be a nontrivial solution of(1.1) with a zero at x a e [a, c)
of order >= 1 and a zero of order m >= at b > a ad u(x) va O on (a, b). Let
v() be a solution of (1.1) which is not zero on (a, b) and which does not have zeros
at a and x b of orders >__ n and m respectively. There then eists a o-
trivial linear combination of u(x) and v(x) which has a double zero on (a, b).

In this paper it will be convenient to refer to the fundamental set of solutions
{y(a; )}, 0, 1, 2, 3, of (1.1) defined by the initial conditions

y!)(a; a) 6i,
where i,j 0, 1, 2, 3. Note that if y(x) is a solution of (1.1) which vanishes at x a,
then y(x) is a linear combination of y(a;x), 1, 2, 3.

2. r22 r31 zt3. In this section we shall consider the behavior of oscillatory
solutions of the system

y(4) + P3(X)y,,, + P2(x)y,, + p(x)y’ + Po(X)Y 0,
(2.1)

1"22 --/’31 0(3.

A motivating example for this case is

(2.2) y(4)_ y,= 0.

A fundamental set of solutions of (2.2) is

1, ex, epx sin qx, epx cos qx},
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where p 1/2 and q x//2. Throughout this section it is understood (though
not always stated) that 1"22 r31 o for e,

It has been reported [3 that Aliev has shown that for

(2.3) r31(t >= rz1(t >= min {rzz(t),r31(t)}.

It then follows that under our standing hypotheses, rzla . The following
lemma is then immediate.

LZMMA 2.1. For equation (2.1) we have re1 , and all zeros of oscillatory
solutions are simple zeros.

LMMA 2.2. If two nontrivial solutions of (2.1) have three zeros (counting multi-
plicities) in common, they are constant multiples of each other.

Proof Suppose u(x) and v(x) are nontrivial solutions of (2.1) each having
zeros at x , x =/, and x 7 with

(2.4) c __</ =< 7.

If equality holds throughout (2.4), then both u(x) and v(x) are constant multiples
of y3(; x). If < 7, then u"()v"() =/= 0 and the solution

WI(X)--- U"(OOt)(X)- V"(OOU(X

has a 3-1 distribution of zeros on [e, ). Hence w(x) =_ O. If 0 < 8 7, then
u’()v’(oO = 0 and the solution

w(x) u’()v(x)- v’()u(x)

has a 2-2 distribution of zeros on [e, ). Accordingly, W2(X 0. Finally, suppose
cz < /3 < 7. It follows that u’(cz)v’(e) 4= O, and the solution

W3(X U’(OOV(X )’(O)U(X)

has a 2-1-1 distribution of zeros on [, ). This concludes the proof of the lemma.
In the example mentioned above (2.2) there are two linearly independent

oscillatory solutions whose zeros separate each other. Theorems 2.1 and 2.2 are
motivated by that observation. Before proceeding with these theorems, we prove
the following lemma.

LEMMA 2.3. Suppose u(x) and v(x) are two nontrivial linearly independent solu-
tions of (2.1) such that u() v(z) u() v() O, where a < ft. Then the zeros

of u(x) and v(x) separate on (e,, ). If fl, we mean u() v() u’(z) v’() 0.
Proof Assume the conclusion is false. To fix the ideas, suppose that there

exist two consecutive zeros x a and x b of u(x) such that v(x) 4:0 on (a, b)
and a < b < . By Lemma 2.2, v(x) 4:0 on [a, b. Applying Lemma 1.1, there
exists a nontrivial linear combination w(x) of u(x) and v(x) such that w(x) has a
double zero on (a, b). Hence w(x) has either a 2-2 or a 2-1-1 distribution of zeros
on (e, ) according as or z < fl, respectively. This contradiction concludes
the proof of the lemma.

THEOREM 2.1. Suppose there exists an oscillatory solution y(x) of(2.1). There
then exists an oscillatory solution z(x) of (2.1) such that z(x) and y(x) are linearly
independent.
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Proof Let x b be a point for which y(b) :/: O, and let {an}= denote the
increasing sequence of zeros of y(x) with b < a l. Define a sequence of solutions
{z,(x)}-i of (2.1) by the boundary conditions

(2.5) z,,(a,) z,,(a,,+ 1) z,,(b) O.

Without loss of generality for each n, let c1,, c2,, c3, be constants such that

c, +c22, +c,-
and

(2.6) Zn(X ClnYl(b x) -+- cznYz(b x) nt- c3nY3(b x).

If we consider the sequence of vectors

{(c,.,c.,c.)}.-i

on the unit ball, it follows that there exists a subsequence

which converges to a vector (cl, c2 C3) on the unit ball. Define

z(x) clyl(b x) q- c2Y2(b; x) q- c3Y3(b x).

2Since c + c22 + c 1, z(x) is a nontrivial solution of (2.1). Furthermore,
{z,k(x)}= converges uniformly to z(x) on compact subsets of (e, oo) by (2.6).
That y(x) and z(x) are linearly independent follows immediately from

z(b) 0 :/: y(b).

It remains to show that z(x) is oscillatory. Recall from (2.5) that z,(x) and y(x)
have two zeros in common. By Lemma 2.3, the zeros of z,(x) and y(x) separate
each other on the interval (e, a,). If < fi are consecutive zeros of y(x), then
z,k(x) has a zero on (a, fl) for all k large enough. It follows then that z(x) is
oscillatory. This concludes the proof of the theorem.

It is clear from the proof of Theorem 2.1 that z(x) has a zero on the interval
[, fi, where y() y(fl) 0 and y(x) -- 0 on (, fl). Suppose for some choice of
constants c and c2 the solution

w(x) cz(x) + c2y(x) 0

is nonoscillatory. Note clc2 "/= 0 and assume without loss of generality that
w(x) > 0 for large x. Then

(2.7) clz(x) > -czy(x)

for large x. By Lemma 2.1 we may choose n large enough so that

sgn c -- sgn y(x)

on the intervals (a,+ 2k, a,+ 2k+ 1), k 0, 1, 2,-... Then z(x) does not vanish on
[a,+ 2, a,+ 2+ 1 by (2.7). These observations constitute a proof of the following
theorem.
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THEOREM 2.2. Every linear combination of y(x) and z(x) is oscillatory.
It should be noted that

W[y(x), z(x)] y’(x)z(x)- z’(x)y(x)

does not vanish. If W[y(x), z(x)] 0 for x b, then there would exist a nontrivial
linear combination w(x) of y(x) and z(x) having a double zero at x b. By Lemma
2.1, w(x) would be nonoscillatory contradicting Theorem 2.2. Since Wy(x),
z(x) =/= O, it follows easily from Lemma 1.1 that the zeros of y(x) and z(x) separate
each other on (e, ).

In the above example (2.2), the reader may note that all oscillatory solutions
of (2.1) are linear combinations of y(x) epx sin q(x) and z(x) epx cos q(x). The
question that presents itself is whether or not a similar statement can be made
concerning the solutions y(x) of z(x) of Theorem 2.1. Theorem 2.2 provides only
a partial answer to this question. The converse of Theorem 2.2 remains an open
question.

3. r22 r13 o. We now consider the system

+ p3(x)y"’ + p2(x)y" + p(x)’ + po(x)y o,
(3.1)

r22 r13 EL).

The motivating example for this case is

y4) + y, 0(3.2)

which has

1, e-X, ep sin qx, epx cos qx}

(p 1/2, q x/2) as a fundamental set.
The following inequality is known (see [3]):

(3.3) ritz(t) >= min [rzz(t),r13(t).

We state the following lemma for reference; it follows immediately from (3.3).
LEMMA 3.1. r22 r3 ct3 implies r 2 .
A proof similar to that of Lemma 2.2 may be constructed for the following

lemma.
LEMMA 3.2. Two nontrivial solutions of (3.1) with three zeros (counting multi-

plicities) in common are constant multiples of each other.
LEMMA 3.3. If equation (3.1) admits an oscillatory solution y(x), then any non-

trivial solution z(x) with two zeros (counting multiplicities) in common with y(x) is
also oscillatory. Furthermore, if z(x) and y(x) are not constant multiples of each
other, their zeros separate each other for large x.

Proof Suppose z(x) has two zeros in common with y(x). If </ are con-
secutive zeros of y(x) and is large enough, then z(x) must vanish on (,/3).
Otherwise, Lemma 1.1 would imply the existence of a nontrivial solution with
either a 2-2 or a 1-1-2 distribution of zeros on (e, o) contradicting either the
standing hypotheses or Lemma 3.1. A similar argument shows that y(x) has a zero
between consecutive zer.os of z(x). The proof is then complete.
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In the previous section of this paper it was shown that v22--?’31- ct3

implied that the zeros of oscillatory solutions are all simple zeros. The following
theorem states that this is not the case under the assumptions r22 r13 .
Whereas r22-=-ral oo implies that solutions with multiple zeros are non-
oscillatory, the opposite is true if r22 r13 c.

THEOREM 3.1. If y(X) is an oscillatory solution of (3.1), then any nontrivial
solution which vanishes twice (counting multiplicities) is oscillatory.

Proof. Let z(x) be a nontrivial solution of (3.1) which vanishes twice. If z(x)
has two zeros in common with y(x), we may apply Lemma 3.3. Assume then z(x)
has two zeros at x and x fl, _<_ fi, and at most one zero in common with
y(x). There then exist points x a and x =.b for which y(a)= y(b)= 0 and
z(a)z(b) O. Let w(x) be a nontrivial solution of (3.1) which satisfies the boundary
conditions

w(fl) w(a)= w(b)= O.

By Lemma 3.3, w(x)is oscillatory. Let u(x) be a nontrivial solution of (3.1)satisfying
the boundary conditions

u() u(fl) u(a)= O.

Accordingly, u(x), hence z(x), is oscillatory by Lemma 3.3. This completes the
proof of the theorem.

In view of the previous theorem it is not clear whether or not nonoscillatory
solutions exist. Clearly, solutions with multiple zeros will be oscillatory if (3.1) is
oscillatory. The following theorem shows that nonoscillatory solutions always
exist if r22 r3 oe.

THEOREN 3.2. Suppose there exists an oscillatory solution y(x) of (3.1). Given
a (e, ) there then exists a nonoscillatory solution z(x) such that z(a) O.

Proof. Let a (e, ), and let {a,},%a be the increasing sequence of distinct
zeros of y(x) with a __< al. Define a sequence {z,(x)}= of solutions of (3.1) by the
boundary conditions

(3.4) z,(a) z,(b,)= z,(b,)= O,

where b, (a, + a,+1)/2, n 1,2, 3,.... Then z,(x) 4= 0 if x < b, and x - a.
Furthermore, we may choose z,(x) so that there exist constants c1,,c2,,c3,
such that

and

c2, -+-c2, + c,-- 1

(3.5) z,(x) cl,yl(a; x) + C2nY2(a X) q- C3nY3(a X).

Considering the sequence of vectors {(c1,,c2,,ca,)},%1 on the unit sphere in
three-space, there exists a subsequence

which converges to a vector (cl, c2, ca) on the unit sphere. Consider the solution

z(x) =_ clyl(a; x) + c2Y2(a; x) + caya(a; x).
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By (3.5), the sequence {z,k(x)}G converges uniformly to z(x) on compact subsets
of (e, ). Note z(a) O.

To complete the proof of the theorem it is necessary and sufficient to show
that z(x) has no zeros other than x a. Suppose z(b) O, a b. Then by Theorem
3.1 there exists a point x c > max{a, b} such that z(c) 0. Since rl 2 oO, it
follows that z’(c) O, and hence z(x) must change sign as x passes through the
point x c. In order to fix the ideas, for x sufficiently close to x c, let

z(x) > O ifx>c,

z(x) < O ifx<c.

Choose X and x2 sufficiently close to x c and x < c < x2. Then there exist

K1 and K2 such that z,k(x) < 0 for all k > K and z,(x2) > 0 for all k > K2.

For k > max {K1,K2}, we have

Zn(X1) < 0 < Znk(X2).
Accordingly, z,k(x)vanishes on the interval (Xl, X2) for all k > max {K, K2}. But
z,(x) also satisfies the boundary conditions (3.4). For k large enough, z,(x)
would then have a 1-1-2 distribution of zeros. This contradiction completes the
proof of the theorem.
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ON THE SYMMETRIZED KRONECKER POWER OF A MATRIX
AND EXTENSIONS OF MEHLER’S FORMULA FOR HERMITE

POLYNOMIALS*

DAVID SLEPIAN’

Abstract. Mehler’s formula expresses the exponential of a quadratic form in two variables as a
series of products of Hermite polynomials. We give several useful generalizations of this formula to the
case of n variables, being guided in this work by interpretations in terms of Gaussian variates. Along the
way we encounter the symmetrized Kronecker power of a matrix and we present a new generating
function and recipe for calculating this quantity.

1. Introduction, notation, and main results. For a probabilist, the natural way
to define the Hermite polynomials is in terms of the all-important standard
Gaussian density

In this connection, it is convenient to denote derivatives by subscripts,

d
(2) q Z = -lz @ Z :0,1,

with q0 q. The Hermite polynomials are then defined by

H (z) 1) v =0,1,2,.-..

(4)

Mehler’s formula, the subject of this paper, asserts that

l_72(x2-+-Y2)-27xYt 7exp
2 2(1 72) o .H(x)H(y).

On using (3) and (2), (4) can be written as

(5) p(x, y)
2rex//17______

exp
2(1 7 2) =0

qo(x)qov(y).

This formula shows that the probability density p(x, y) for two jointly Gaussian
variates, each of unit variance, has a simple Maclaurin series in their correlation
coefficient, 7. It is this notion that generalizes easily to higher dimensions.

To present our results, we must first introduce some notation. Boldface
lower-case Greek letters, la, v, etc., will be used to denote matrices; boldface lower-
case Latin letters, 1, m, etc., will denote column vectors. If v is a matrix with n

Received by the editors August 10, 1971.
-1- Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974.
The definition given coincides with that of Cramer [1, p. 133]. Another normalization in common

use ([2, p. 193], for example) calls 2V/2H(w/2z) the vth Hermite polynomial.
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rows and n2 columns, we write

r(v) (rl, rg,
(6)

?/2

ri 2 Vij’
j=l

rn),

for the vector whose components are the row sums of v, and we write

C(V) -(C1, C2, Cn2),
(7)

nl

c vii, j 1,
i=1

for the vector whose components are the column sums of v. Throughout we adopt
the convenient abbreviations

i,j

(8) i,j

v:O Vnln2:0Vll----O V12:0

lirl H ri,

1! =- I-I li !,

2_=2...2,
1=0 /1=0 ln=O

where the entries of la are #ij, the components of are i, etc. We call a matrix of
nonnegative integers, such as v in the last line of (8), an index matrix. If

is an n-vector, we write

(10) 1]=11 -+-12 + + l.

and we call 1] the weight of I. Finally, we introduce the function

(11) q}(z; p) exp {-1/2p- 1z}(27v)"/21pl 1/2

and, in analogy with (2), its derivatives

{[!]
{12) (/}l(Z; p) Z/IIOZ2 {i

q}(Z

In these definitions, p is a positive definite n n matrix with determinant
and z and are n-vectors, the latter having nonnegative integers as components.
The tilde denotes transpose.

With these preliminaries out of the way, we can state our main result. Let
the n n positive definite symmetric matrix p have the partitioned structure

(13) p---
? [
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Here and II are square matrices of n and n2 rows respectively, 7 is a matrix of
n rows and n2 columns, and n nl + n2. Let x be an nl-vector and y an nz-
vector and denote by

(14) z x y

the n-vector whose first n components are x ,x2, Xn and whose last n 2

components are yl, Y2, Yn2" Then

(15) 7p(x, y;p) -= qg(z; p) . qgo,)(x a)qgc)(y [I)
v:O

in analogy with (5). When n 2 and --/ 1, (15) does indeed yield (5).
Equation (15) gives the power series expansion for the probability density of a
jointly Gaussian n-vector and an nz-vector in terms of the correlation co-
efficients 7u between the vectors, and is a natural extension of (5).

In 3, we show how a formula closely related to (15) can be used to generate
identities in Hermite polynomials.

In 4 we study further the functions qg(z;p) of (12) and evaluate certain
integrals of products of these functions. In 6 we reconsider (15) and show how
to find the eigenvalues and eigenfunctions of the equation

(16) dy dy,p(x, y; p)ff(y)w(y) dy dYn

in the important case a I1, w(y)= 1/q(y; a). Here certain irreducible repre-
sentations of the real general linear group unexpectedly make an appearance,
and we exhibit in 5 a simple generating function for the matrices of these repre-
sentations that does not seem to be noted in the literature. The Mercer expansion
of the kernel of (16) is yet another generalization of the Mehler formula (5).

2. Derivation of formula (15). The multivariate Gaussian density has the
well-known Fourier representation 1, p. 118]

(17) qg(z; p)
(2re)"

dt dt, exp {i taza} exp - pjktjtk

By differentiating behind the integral signs, we see that for j -: k,

( 8)
ao(z; p) :q(z; p)

c3p c3z cz
where we take account of the fact that pkj pj and consider (z; p) as a function
of the n(n 1)/2 quantities pj for j > k.

Now if p has the form (13), the multiple power series for (z;p) in the
quantities ya , 7 2, 7n n2 is

v ’+"" +’,,w2

(9) (z; p)=
7,77

(z, p)
y=O
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But (18) in the present case gives

(20)
Oqg(z; p) O2qg(z; p)

Tjk XjC3Yk
when (13) and (14) are kept in mind. Replacing the derivatives with respect to
the 7’s in (19) by derivatives with respect to x and y by use of formula (20) yields

v=O =0

where we have used the definitions (6), (7) and (10). But since no differentiation
with respect to 7 is indicated in (21), the evaluation at 7 0 shown can be effected
before differentiation. Since

(15) results when (12) is used, and our derivation is complete.

3. Hermite polynomial identities. Equation (18) and the technique of the last
section allow one to expand (z; p) in a power series in the off-diagonal elements
of p. One finds immediately

(22) q(z;p)
V12=O

where

(23)

If now

rjk rkj,

k--- 1,2,.-.,n,

j,k 1,2,...,n.

(24) Pii-- 1,

equation (22) becomes

(25) (z;p)= V.,

i= 1,...,n,

in a symbolic notation. Dividing by 1-[ qg(zi), we find finally

(26)
exp {-1/2 E (19/ (ij)zizj} Dv

iol,/2 E .Hs,(Zl)" Hs,(z,,),

where Pi} is the element in the ith row and jth column of p- and tij is the usual
Kronecker symbol. Note that if an off-diagonal element Pij is zero, the correspond-
ing summation index vii can be omitted from (26) and from the definition (23) of
the s’s.

Equation (26) can be used to generate Hermite polynomial identities in-
definitely. Every symmetric positive definite matrix for which the inverse can be
written explicitly gives rise to such a formula. We illustrate with a few simple
examples.
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Example 1. Let
Pii--- 1, i= 1,2,...,n,

Plj=tj, j= 2,3,’’’,n,

pij 0, l<i<j.

The inverse is readily found to have elements p

=1-
2

au/d, where

all 1,

alj= -tj, j= 2,...,n,

aii=d + t, i= 2,...,n,

au= ttj, < i<j,

px. In (26), let v ljand, of course, Pi
remaining v’s equal to zero. We then have

kntk22 l H n(z )Hk(z2)Hka(Z3)... H.(z.)E E k2 kn +k3+."+
k2 0 kn 0

2O(zl + +
x/a

exp
2 2

which is the general case of equation (1.3) of [3].
Example 2. For the general 3 x 3 matrix satisfying (24),

1 2

p 3 1

2 1

zx I1 2 + 2,

[1 t2 tlt2 t3 tit 2

p- tlt2 t 1 t tzt

\tlt 2 tzt 1 t
In (26)set 112 /(;3’ V13 k2, V23 kl" Then

kj for j 2, 3,..., n and set the

2<i<j

(27)

tk fk2 tk3

H + k3(z )H_ + ,(z)Hk + 2(z)

x/
exp 2 2"]- t32) - Z2([ - t-) + z(t -]- t) 2tlt2t Z z2i

+ 2 titjziz 2t3zlz2 2t2ZlZ3
i<j

which is (1.4) of [3].
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4. The n-dimensional Hermite functions. We shall call qo(z; p) as given by (12)
an n-dimensional Hermite jhnction of weight 1. In terms of these functions, and
in analogy with (3), we can define homogeneous polynomials of total degree [11
in n variables by the formula

(28) H,(z) (- 1)mqo,(z p)/q0(z p).

Except for scaling, these are identical with those first studied by Hermite. Many
details of their properties can be found in 2, pp. 283-291] or in 4].

The polynomials (28) for different l’s are linearly independent, so the same
is true of the Hermite functions. There are

n+p-1
(29) N(n, p)

P

such functions of weight p since this is just the number of n-vectors with non-
negative integer components that sum to p [1].

The Hermite functions have a simple generating function

(30) o(z + t; p) io,(z; p),
!=O

which is just Taylor’s theorem in many variables. By means of this formula we
can evaluate an integral that will be of use to us later.

Consider

(31) I dz dz.q)(z + s; p)cp(z + t p)w(z p),

where the positive weight function w is

(32) w(z; p)

Using (30), we find at once that

(33) I dz dz,,cp,(z’p)qOm(Z’p)w(z’p)
l,m 0 1 m

On the other hand, (31) can be evaluated directly using the definitions of o(z; p)
as given by (11). From this formula we find the algebraic identity

so that

(34)

q)(z + s; p)rp(z + t;p)
q(z; p)

exp { io(i 1Sitj}(/9(Z -}- S -}- t; p)

I exp {pglsta} dz.., dz.o(z + s + t’p)

exp {2 l)ij-1Sitj} dz dz,,p(z’, p) exp {2 Pi Siti},

since O(z; p) integrates to unity over the whole space.
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Now if is any n x n matrix, we have the expansion

exp {E OijSitj} 0 "sr(g)tc(g)"--Let r(la), m c(l) in this sum and observe that [1] [m]. There results

(35)

where

(36) O’P(()lm-- N’N/[ E ---"
r(la)
c()=m

[11 [m] p

As indicated, the sum here is over all index matrices g with row-sum vector
and column-sum vector m, these latter being of weight p.

Now use (35) to develop (34) in a power series in the s’s and t’s. Comparison
with (33) gives the desired formula

(37) dz dz,o(z" P)Om(Z" P)W(z" P) 6mmm(P-X)lm

where 6i is the usual Kronecker symbol. This formula shows that Hermite
functions of different weights are orthogonal with respect to w and that the
scalar product of any two functions of the same weight p can be expressed simply
in terms of the elements of the N(n, p) x N(n, p) matrix %(p-) defined by (36).

5. The symmetrized Kronecker product. We digress to establish the relation-
ship between the matrix ap() and certain well-known representations of the
general linear group.

Let be an n x n matrix and t an n-vector. Let

(38) t’ t.

Then each of the N(n, p) normalized homogeneous products

tl li

t’l/N/" E fil N//t.
of total degree p [1] in the components of t’ is transformed under (38) into a
linear combination of the N(n, p) normalized homogeneous products
[m] [1] p, of total degree p in the components of t. The N(n, p) x N(n, p)
matrix specifying these linear transformations between the normalized homo-
geneous products t’l/, and tm/w! is known as the symmetrized Kronecker
p-th power of, [5, p. 77], which we here denote by Kp(), so that

t’ t
(39) .

[m] :n’] P
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Now let [l be another n x n matrix. Consider the transformation t"= lit’.
The quantities t"’/x/, are then linear combinations of the tm/x/! and it is clear
that

(40) :([l) :(ll):().
Thus if is restricted to lie in a matrix group, p() furnishes a representation of
the group. Representations of the general linear group obtained in this way
have been frequently studied 5],

Let us now return to (35) and there write t’ t. We have

S t

[11 [m] p

S’ S t’
(41) exp

,=o.
[l]=p

S t

B] p [m] p

where the last equality comes from the use of (39). Comparison of the second
and last members of (41) shows that

(42) %() ()
so that (35) is a generating function for the symmetrized Kronecker powers of
and (36) gives a convenient recipe for finding the matrix elements themselves.
Neither formula seems to have been previously noted in the literature.

The following basic properties of the matrices op() that we shall need later
can be derived readily from (35), (36), (40) and (42):

(43)

.,.(a ) ..(a)-if z diag (a a2, a,), then ov(z lm al61m

6. Another extension of Mehler’s formula. When n andp 11 1, equation
(37) shows that the functions bv(x gov(x)/, are orthonormal on the infinite
interval with respect to the weight function w(x) =_ 1/g0(x). Equation (5) in this
notation,

(44) p(x, y)
v=0

is then the Mercer expansion of the integral operator oo dyp(x, y)w(y). Thus
the eigenvalues and eigenfunctions of

(45) p(x, y)O(y)w(y) dy 2(I)(x)
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are

(46) 2, 7", O,(x) q,(x)/!.
Let us see how this interpretation of Mehler’s equation generalizes to n-dimensions.

In this section

is a (2n) x (2n) positive definite matrix, is an n x n positive definite matrix and
7 is an n x n symmetric matrix. The basic result (15) becomes in this case

p(x, y;o e((x; e(y;.
Now set r(v) 1, c(v) m and remember that therefore [1] Imp. We find

p=O l,m m
[] [m] p

where () is the symmetrized Kronecker pth power of as given by (36).
Equation (48) is nearly in the diagonal form required of a Mercer expansion,

for the Hermite functions (x; ) of different weights are orthogonal with respect
to the weight function w(x; ) of (32). To complete the diagonalization, we there-
fore seek new basis functions that will be linear combinations of the Hermite
functions of a given weight, that will be orthonormal with respect to w(x; ),
and that will reduce () to diagonal form.

For each p we set

{49) {x;)
[H p

to hold for all index vectors k of weight p. We assume the matrix p has an inverse.
Then (37) shows that the O’s will be orthonormal with respect to w if

with I the unit matrix, or equivalently, because of the properties of p(a) shown
in (43),

(0)

The condition that (48) be diagonal in the ’s is seen to be equivalent to

(51) pp()0p
Thus we seek a matrix 0p that will simultaneously diagonalize the symmetric
matrices p(a)and

Solutions of the diagonalization problem just mentioned are well known
7, p. 58, 8, p. 171, also Chap. 22 and these techniques could be applied directly
to p(a) and p(). However, the representational nature (43) of the Kronecker
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power permits us to find 0p by carrying out the diagonalization for the smaller
matrices x and /. Thus let v 1, v2, ..., v, and el, e2, e, be the eigenvectors
and eigenvalues of- ,/, so that

(52) ’i eil’i, 1, 2, n.

The v’s can be normalized to give

(53) ri tij i, j 1,2, n.

Next let la be the n x n matrix whose columns are v, v2, ..., v,. Then

(54)
taltt |,

,la diag(e, e2,..., G).

Finally, set

(55)

Equation (43) shows that (50) and (51) now hold with the 2’s of (51) being the
homogeneous products e.

The preceding considerations show that

(56) p(x, y;p)
1--0

where the orthonormal functions $, are defined in terms of Hermite functions
by (49) and (55) and the components of e are the eigenvalues of or-1,. This ex-
pansion is another natural analogue of Mehler’s formula (44). In analogy with
(45)-(46), we see that the eigenvalues and eigenfunctions of

(57) dy dy,,p(x, y; p)O(y)w(y; or) 2q(x)

are

(58) ,z, e’, ,,(x) O,(x;

In closing we note that since

the probabilist would write

dy,,p(x, y; O) q0(x; or)

p(x, y; p)w(y; t) p(xly),

o(x; a) p(x),

w(x,

dy,p(y)p(xly) p(x),

and would call these quantities respectively the conditional density of x given y,
and the density of x. Equation (57) written in these terms for the eigenvalue
2o e is
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the familiar Chapman-Kolmogorov equation for the stationary density for the
vector Markov process generated by the transition probabilities p(xly). Equations
(57}-(58) permit explicit answers to be given to many questions about this process.
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LOWER BOUNDS FOR EIGENVALUES WITH DISPLACEMENT OF
ESSENTIAL SPECTRA*

DAVID W. FOX"

Abstract. New constructions of comparison operators for rigorous lower bounds to eigenvalues
of a class of self-adjoint operators are presented. The formulation uses noncompact finite perturbations
to displace eigenvalues and essential spectra, and leads to workable numerical procedures. These methods
make possible for the first time lower bound calculations for the lower eigenvalues of the Schr6dinger
operators for atoms and ions having three or more electrons.

1. Introduction. This article gives a new construction ofcomparison operators
for lower bounds to eigenvalues of a class of self-adjoint operators that includes
Schr/Sdinger operators for atomic systems. Although methods for calculation of
lower bounds have enjoyed success in some applications to Schr6dinger operators,
a serious limitation shows up for nearly all but the simplest. This limitation is
rooted in the stability of essential spectra under compact perturbations, and it
has blocked the calculation of rigorous lower bounds for atoms more complicated
than helium.

To overcome this difficulty it is necessary to use perturbing operators that
are not offinite rank, but it is equally necessary to ensure that the resulting formula-
tion leads to workable numerical procedures.

In the following sections the construction ofsuitable families ofsuch operators
and the resolution of their spectral problems are sketched. To avoid complications
we shall give the construction in its simplest form and only indicate generalizations.
Essential use is made oftensor products ofHilbert spaces and ofabstract separation
of variables.

2. Construction of comparison operators. Let A be an operator self-adjoint on
its domain in a complex separable Hilbert space .. Suppose that A is bounded
below and that the lowest part of its spectrum is made up of isolated eigenvalues
2v of finite multiplicity. These eigenvalues are enumerated starting with the
lowest and accounting for multiplicity. With the corresponding orthonormal
eigenvectors uv they satisfy

(A-2v)u=0, v- 1,2,-.., and

where 2. is the lowest point of the essential spectrum of A.
The object of the construction is to obtain families of increasing operators

that are smaller than A, that have the lowest part of their spectra made up of
isolated eigenvalues of finite multiplicity, and that are resolvable, at least to the
extent that their lowest eigenvalues can be determined with any desired precision.

* Received by the editors March 1, 1971.
? Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland 20910.
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The result of this construction is a means of determining improvable lower bounds
to the lowest eigenvalues of A. The path to be followed for a short distance is that of
Weinstein-Aronszajn intermediate operators (see [1]-[4], [8], [13]).

Suppose A satisfies

A=A+,
where is nonnegative, symmetric and closeable and A is self-adjoint. The lowest
part of the spectrum ofA is supposed to be made up of isolated eigenvalues 2 of
finite multiplicity. These are indexed in nondecreasing order, and with their

o they satisfycorresponding orthonormal eigenvectors u

(Ao o o-2v)uv =0, v= 1,2,..., and 2 =<2__< <2,.

Since is positive, the values 2, 22, 2, give rudimentary lower bounds,

2__<2v, v=l,2,..., and 2,__<2,.

However, whenever it happens, as in atomic systems, that 2, lies below an eigen-
value 2u of A for which an improved lower bound is desired, the methods based on
the approximation of/] by an operator of finite rank cannot yield useful informa-
tion, since the best information obtained in this way is 2, < 2u, which is supposed
already known. What is needed is a modification that pushes up limit points of the
spectrum of A in a suitable way.

To proceed further it is necessary to leave the beaten path and to make a
number of special assumptions concerning the operators that are involved.
Before entering into the details it is appropriate to say that the operator A will be
supposed to be resolved by elementary separation of variables and A will be
assumed to couple the part operators in pairs by positive terms.

2.1. Elementary separation of variables. Let . be a tensor product
*1 ().2 ()"’" ())tn of m separable Hilbert spaces -i with inner products
(’,’)i and let A separate2 with resolvable self-adjoint part operators Ai in .i.
This means that on elementary tensor products u Ul (R) u2 (R) (R) u,, with

u , where is the domain of Ai, A is given by

Au Alttl ()/’/2 () ()Urn "31- bl ( A2H2 ( ( Urn

-at- -31- l.t ( bl2 (’’" ( A,,u,,.

Since A is bounded below and has the lowest part of its spectrum discrete, each
part operator has these properties as well. The lowest eigenvalues of A are desig-
nated 2 and the corresponding orthonormal eigenvectors are u’, so that for each
part operator Ai in .,

(A ))U.--0, v 1,2,..., and 2] __< 2 < < 2’.

For example, in the case of the lithium atom there is evidence that 2, for the lower comparison
operator corresponding to three independent electrons about the nucleus lies below even the lowest
eigenvalue of the operator for the completed atom!

For details on separation of variables in Hilbert space and the corresponding spectral theory, see
[53-[7].
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An orthonormal system of eigenvectors of A is given by the products of eigen-
vectors of the part operators, and the eigenvalues are sums of eigenvalues of the
part operators ;in particular, the lowest eigenvalues and corresponding eigenvectors
of A take the form

2 211 + 2 + +2" and po u @)u2(R) (R)

where the indices v are such that the eigenvalues 2 are ordered.

2.2. Coupling ofpairs ofoperators. What is required of is that the separation
of variables @ 2 @ @ m that works for A also allows d to be
written as the sum of pairwise coupling terms di, that is,

i<j

The sense of pairwise coupling is now to be made exact. For A 2 it means that
A12 has the expression A2 (I I Ira), where A2 is symmetric,
closeable, and nonnegative on a dense domain 2 in @ 2. To describe the
other terms Aj it is convenient to use the fact that 2 @ @ is iso-
morphic to (i @)( 2 @ @ )’, where the prime on the paren-
thesis means that the factors g and are not included. Such an isomorphism
j is determined by

j(U @ U2 @ @ Um) (U @ Uj) @ (U @ U2 @ @ Urn)

and amounts to an (abstract) interchange of variables. Thus Agj is supposed to be
expressed as

ij V [Aij @ (I @ I2 @ @ Im)’]

with Aij nonnegative, symmetric, and closeable on a dense domain j @ .
2.3. Example. To clarif the notation and exemplify the situation we have in

mind, consider the operator corresponding to the nonrelativistic fixed-nucleus
model for the lithium atom without spin interaction,

in S ,,2(R9)---1 ( .2 @-3 -2(R3) ( 2(R3) @ -2(R3) Here A is the
9-dimensional Laplacian, xl,x2, and x3 are vectors in R3, and I’1 means the
Euclidean distance in R3. The operator A is expressible as the sum A + with
A given by the quantity in the first parenthesis and/] by the second. Further, A
separates under the factorization of . indicated above into three resolvable
"hydrogenic" operators. The positive operator is given by

2--= 212 + A13 -- /23 Z "ij
i<j

Here and in the following suppose m >= 3 (see also Jauch [9, p. 284]).
4 For details on such operators, see T. Kato [10], [11]. The additional complications that arise

when the Pauli principle is taken into account will be discussed elsewhere.
See [12] for details on the resolution of these part operators by further separation of variables.



620 DAVID W. FOX

with/]ij given in . by the operation of multiplication with Ixi- xjl-1. These
operators are of the required form, for if A12 means multiplication by I11 121-1
in 2(R6), it is clear that ]12 A12 (R) 13, and thus 12 is a pairwise coupling;
similarly (using isomorphisms) for 13 and 23.

2.4. Approximation of ]. Under the assumptions made earlier in this section
it is possible, as we shall show, to generate families of resolvable comparison opera-
tors that have substantial promise of yielding useful lower bounds when limit
points must be moved up. The essential device is to approximate the positive
operators6 A in . (R) .j by operators offinite rank instead ofattacking z] or] in. directly. The key is that even when A]2 is an approximation to A12 of finite rank,
the operator ]2 defined by "/2 A2 ()(13 ( 14 () () Ira) is noncompact
and potentially able to move limit points about; and similarly for the other terms
Aj.

Suppose {plj} is a family oflinearly independent vectors in j,and let Pjbe the
orthogonal projection with respect to the inner product generated by Aj on the
linear span of the first k vectors. It is well known that {A’} with A AP is a
family of bounded operators of finite rank, increasing with k and bounded above
by A, and from this it follows that {’} with
I,,)’] Vj is also bounded, increasing with k, and bounded above by .3.j. Let K be the
family of multi-index vectors k with m(m- 1)/2 components k, < j; and let

2 2 kk <_ k mean k,j < kj. Now define Aj. Clearly, this
family is bounded, increasing with k, and bounded above by

When the vectors {plj}lcan be chosen so that the resulting spectral problems
are resolvable, the operators {A} defined by

A= Ao +

form a suitable family of comparison operators, since they satisfy

A =< Ak’ <- A: __< A for k __< k2,

and the approximations introduced do not preclude the desired displacement of
limit points of the spectrum of A. The resolution of the spectral problems is dis-
cussed in the next section.

2.5. Approximation of the operator A. When it is difficult to find vectors
{plij}l that make the spectral problem for A easy to resolve, there is still an avenue
open through modification of A. This procedure is an adaptation of one used in
[3] and [4].

Recall that the nth order truncation A’ ofA is the bounded symmetric operator
on i defined by

A AiE + 27 +1(Ii- ET)

where E7 E(2.) and Ei is the resolution of the identity associated with A.

A similar device with the same kinds of properties can be used to approximate quadratic forms.
This parallel is shown by comparing [4] with [3].
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The family {A,".}, is increasing with n and bounded above by Ai. Let N be the
ordered family of rn-tuples n (nx, n2, nm), where n <= nz means n =< n. It
is easy to show that the operator A"’ defined by

An’ A]’ (R) I2(R) (R)Im+ I (R) A"2 (R) (R)Ira+ + Ix (R)12

(R)...(R)A-’

is bounded, symmetric, increasing with n, and bounded above by A. Observe
that the definitions of A"’ and A’I’ show that A"’ can be written as the sum of
two operators, one that separates with part operators of finite rank and the other
equal to (Zi/]’7i + 1). I.

Since A"’ is bounded, it makes sense to write

A A"’ + (A A"’),

and to consider the simpler operator A"’ as a starting point with A A"’ as a
positive perturbation. Note that A A"’ has the same domain as A and that it is a
sum of pairwise coupling positive terms whenever is, so that the technique of
approximation of ] introduced in 2.4 can be applied to it.

3. Resolution of spectral problems. This section is. devoted to working out the
resolution of the spectral problems for two applications of the approximations
given in 2.

3.1. Special choice. This technique extends ideas discussed in [2] and [3].
It depends on the assumption that families {Plt} can be chosen so that each
operator7 Aik has its range contained in the tensor product of one subspace
spanned by a finite number of eigenvectors of Ai with another finite-dimensional
space spanned by eigenvectors of At. This is accomplished whenever each vector

AitPlt is a finite linear combination of elementary products of eigenvectors of Ai
with eigenvectors of At. Let k K be fixed and let 9Xr be the linear span of those
eigenvectors of Ar needed to express at least one of the vectors AtPt. Clearly the
range of Ai is contained in 9Xi (R) 9Xt. The subspaces 9X 9x (R) }]2 @ (
with 9l equal either to 9X or to the orthogonal complement 9Jl{ are a complete
family of orthogonal reducing spaces for the operator Ak introduced in 2.4;
and, as will soon be clear, the resolution of the spectral problem for Ak on each of
these spaces is either immediate or equivalent to the diagonalization of a (finite)
symmetric matrix.

The reduction of Ak by the spaces 991 is quite easy to demonstrate. First,
observe that each space 9X is a reducing space for A, and hence each 93/reduces
A. Further, the range of Aik is contained in 9X (R) 9Xt, hence 9X (R) gJt reduces
Agk; and, indeed, Ak vanishes orthogonal to 9X (R) 9Xt. From this it follows that
each 9J/reduces every term in the defining sum for k, hence k as well. Since each
9J/reduces A and/]k, each reduces Ak, too.

The resolution of the spectral problem for Ak depends on the behavior of A
on the spaces 9X, and this depends very much on how many factors 9Xi appear in

We write Ak’ij in place of the cumbersome notation Akjj.
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A subspace 93/will be said to be of type r if it has r factors 9Xi. Evidently there are

7} different subspaces of type r, and S3 is thus decomposed into 2" orthogonal

reducing spaces.
The subspace of type 0 and the tn spaces of type 1 are trivial; for on them each

term of k vanishes, and consequently Ak A. Since each 9Xi is a reducing sub-
space for the part operator Ai ofA, the restrictions ofA to the reducing subspaces
93/of types 0 and 1 can be resolved by restricting8 the part operators and identities
to the appropriate 93/i or 93/{ that appear in 93/. Thus the spectral problems for
Ak are resolved in the spaces of type 0 and by separation of variables as for A.

Beginning with r equal to 2, the spectral problems yield new information.
Evidently, for any fixed r the analysis of each case is essentially the same, so it is
enough to examine what happens for the one in which the notation is the easiest.
Thus, for r 2 consider 991 93/1 (R) 0J2 () fJ () () m. In this space Ak

coincides with A +/]12 since the other terms in /]k vanish, and separation of
variables can be applied neatly to obtain the spectral resolution. In fact, Ak can
be written

A (A2,1 + A] 2) ()112,2 + 112,1 ( A 12,2,

where Az,1 stands for A1 (R) I2 + I1 (R) Az, 112,1 for 11
(R) (R)I", and A12,2 for A3 (R) I (R) (R) I" / I3 ( A4 ( ( I" /
+ I3 ()14 ( ()A Now observe that on the finite-dimensional space
9J1 (R) 9Jz, the resolution of the spectral problem for Az,1 4- A2 is equivalent
to the diagonalization of a symmetric matrix. Further, on
the part operator A12,2 is resolvable by additional separation of variables and
restriction of the part operators, just as A. Thus the spectral problem for A is
easily resolvable on the spaces of type 2.

When r is larger than two but smaller than m, similar analyses can be made,
and each case is essentially the same for any given r. For 93/= 93/1 (R) 93/2 (R)
(R) 93/r (R) 93/rx+ (R) (R) 93/Sm, the operator Ak is expressed by

Ak (A2...,1 + ]2...)(g) I12...,2 + I12...,1 (R) Alz...r,2,

where Alz...r,1 A ( I2 ( ( I + 11 (R) A2 ( 13 (R) (R)

I2 ( ( Ar, I12...r,1 11 ( 12 ( ( Ir, l 2...r,2 It+ ( It+2 () ( Ira,
and A12...r,2 At+ ( Ir+ 2 () () Im + It+ ( At+ 2 ( () lm + + It+
(R) I+ 2 (R) (R) A,,, and k2... contains the nonvanishing contribution of/]k. The
part operator A2...r, + k2... on the finite-dimensional space 9X (R) O.R2 (R)
(R) 9X is equivalent to a symmetric matrix, and it is resolved by the diagonalization
of this matrix ;in 0Jr+ () 0Jr% 2 () () Zm the part operator A2..., 2 is resolved
by further separation of variables.

When r equals m, the space 93l itself is finite-dimensional, and Ak is resolved by
diagonalization of the symmetric matrix that represents it.

Since each of the reducing spaces of type r with r _>_ 2 leads to a matrix
diagonalization, the complete resolution of the spectral problern for A under the

See [6, Proposition 2].
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hypothesis of a special choice is achieved by the diagonalization of 2 m
symmetric matrices. From the smaller ordered eigenvalues 2 ofA and the smallest
limit point 2, of the spectrum of Ak come the lower bounds

2<2v v= 2 2,<2,

3.2. Truncation. When a special choice is not known or is inconvenient, it is
usually possible to determine useful lower bounds by employing the operator
A"’ introduced in 2.5. As pointed out at the end of that section, it is quite feasible
to approximate A A"’ as has been done for however, for the sake of clarity
we give a somewhat simpler procedure that approximates only ,4.

Consider the family {A"’k) of bounded operators defined byn,k

A,,,= A,,o + 1’.

Clearly from the properties of A"’ and/] given in 2.4 and 2.5, the family {A"’}
is increasing with n and with k, and it is bounded above by A. Since the lowest
eigenvalues and eigenvectors of A"’ are the same as those of A, the lowest eigen-
values of A"’ will generally show some increase over those of A.

Some restriction on the vectors {Plj}l used to define ft. k seems to be needed
in order to get manageable resolutions of the spectral problems for A"’. For this
reason suppose that k is fixed and that the {plij}l are such that each vector AijPlj
is a finite sum of elementary tensor products in .i (R) f3j. Note that these products
do not need to have any relation to the spectral families ofA and Aj as is the case
when a special choice is made.

Let 931’r be the span of those vectors in r that are used to express at least one
of the vectors Aipl, and observe that A is reduced by 9Jl’ (R) 9J/ and vanishes on
the orthogonal complement. However, since the spaces 9J/’g are not necessarily
reducing spaces for the operators A’I’, it is necessary to augment them. To this
end let 931i be the linear span of J)l’ with the first n eigenvectors of A. The impor-
tance of the spaces JJl is that simultaneously they reduce A" and their pairwise
products 9J/i (R) 9)lj still reduce A. This is what is needed to obtain a complete
family of manageable orthogonal reducing spaces for A"’. In fact, the spaces 93/
expressed by 9J/= 1 () f2 @ @ m, where 9li is either lJ/ or its orthogonal
complement, are the required spaces.

Formally, the analysis of A"’ proceeds now just as that for A when a special
choice is made. The classification of the spaces 931 according to the number r of
factors 9J/ in its expression is used, and separation of variables is employed to
split the problems as needed into one part with a known spectral resolution and
another on a finite-dimensional space. This similarity is not at all surprising since
it can be observed that any vectors {plij} such that Aijplj are finite sums of ele-
mentary products are, indeed, a special choice for A"’ in the sense that these vectors
can always be expressed in terms of a finite number of eigenvectors of A" and of

Ao
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EXPONENTIAL STABILITY OF SOLUTIONS OF DIFFERENTIAL
EQUATIONS OF SOBOLEV TYPE*

JOHN LAGNESE

Abstract. Let #(x, D) and c(x, D) be linear partial differential operators of order 2m with complex-
valued coefficients defined on a bounded region in R" and suppose ’ is elliptic in ft. Necessary and
sufficient conditions are given in order that solutions of //l(x, D)Ou/Ot (x, D)u 0 in the cylinder
fl x [0, m) which satisfy general boundary conditions on the wall of the cylinder satisfy inequalities
of the form Ilu(t)[12m _-< Ce-a’]lu(O)[12m and lu(t)J2m+0 Ce-atlu(O)J2m+p > 0, with positive constants
a and C independent of u. [[. [[2m and [2m+p denote the customary norms in the spaces H2m’2()and
c2m+(), 0 < p < 1, respectively.

1. Introduction. The present note is concerned with exponential stability of
solutions of

(1.1) //{(x, O)- ’(x, O)u 0

in a cylinder R +, where R+ [0, ) and is a bounded open set in R",
which satisfy on the wall of the cylinder the conditions

(1.2) Bj(x, D)u O, j 1,2, ..., m.

In (1.1), and are linear partial differential operators of order 2m with com-
plex-valued coefficients defined in and is assumed to be elliptic there. The
boundary operators Bj}]’ form a normal system of respective orders mj _<_ 2m 1.

Let H2m(Q) be the Sobolev space of order 2m with norm [1.1[ 2m, and C2m+ ’()
be the space of functions having continuous derivatives in Q to order 2m and
whose derivatives of order 2rn satisfy a uniform H61der condition in with
exponent p, 0 < p < 1. Denote by[ [2m+ p the norm in C2m+ P(). In what follows
we obtain necessary and sufficient conditions in order that solutions of (1.1),
(1.2) in C’(R +, H2m()) (respectively, in C’(R +, c2m+o())) satisfy the inequality

u(t)l 2m < Ce-"t u(0)lizm, > 0,

(respectively,

[U(t)12m+p Ce-"’lu(O)12m+o, > O)

with positive constants a and C independent of u. Roughly speaking, the necessary
and sufficient conditions are that, whenever Re 2 >= 0, (- 2/, {Bj},Q) is
a regular elliptic boundary value problem and that the eigenvalues of each of the
eigenvalue problems

(1.3) 5u L////u 0 in , {Bu 0}]’ on c,
(1.4) *u 2./g*u 0 in , {Cu 0}7 on c,
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lie in the open left half-plane. (* and ./{* denote the formal adjoints of and
./, respectively, and {Cj}7 is the system of boundary operators adjoint to {B.i}’
relative to - Zg with respect to Green’s formula. See, e.g., [3], [8].) The
conditions on the eigenvalues of the problems (1.3), (1.4) are in turn shown to be
equivalent to the conditions

Re (u, u) < [lieu 211u112 Im (,/C/u, u)12] /2

and

Re 6/{*u, *u) < ],//{*u 12 lS*ull 2 -[Im(/[*u,C.P*u)[2] 1/2

for all u 0 satisfying on cf the conditions {Bju 0}7 and {Cju 0}]’,
respectively. In the above inequalities, I’" and (.,.) respectively denote the
L2() norm and scalar product.

If for Re >_ 0, (- L/, {B,i},f) is an absolutely elliptic problem and- Z/// satisfies a certain algebraic condition, it turns out that (1.5) alone is
necessary and sufficient for exponential stability.

The term "Sobolev equation" refers to linear partial differential equations
in which mixed space and time derivatives occur in the terms with highest order
time derivative. Some authors call these equations "pseudoparabolic" [11],
[12, although this term is also applied to other types of equations. The literature
on such equations is extensive; we refer to [10] for a fairly complete bibliography
and for information on the physical origins of these equations. In particular,
equations of the form (1.1) appear in the theories of flows of second order fluids,
soil mechanics and the seepage offluid through fissured rocks. A general integration
theory for (1.1), (1.2) may be found in [6]. The question of exponential stability
of solutions of various special cases of (1.1), (1.2) has been studied in [11, [12]
where some sufficient, but not necessary, conditions for exponential stability
are given. These results can be deduced as easy consequences of the theory to be
developed here. For other Sobolev equations, including those with higher
order t-derivatives and especially the equation Autt
-+-C32/63y2, various asymptotic properties of solutions have been obtained in
[7], [9], [13]-[15]. Additional references may be found in the bibliographies of
the cited papers.

The outline of this paper is as follows. In 2 we present the requisite prelim-
inary material and briefly develop an existence and uniqueness theory of solutions
of (1.1), (1.2), both in the space Hzm() and in C2m+ P(’). The main results of the
paper are presented in 3 and 4. In the third section exponential stability with
respect to the 2m-norm is studied while 4 deals with exponential stability
with respect to the l. 12,+o-norm. There the principal result is that exponential
stability with respect to this norm is equivalent to exponential stability with respect
to the II" 2m-norm. In the last section we apply our results to the case where the
boundary conditions (1.2)are the Dirichlet conditions.

2. Preliminaries and existence of solutions. Let f be a bounded open set in
R" with smooth boundary (to be made precise) and x denote a variable point in
f. We write D c/cxi D rr , (,’1 "’2 D for any multi-integer
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02, 0n) 0 0, and I1 x + 2 + -+- 0n" Let / be the differential
operator

(x, O) m,(x)O
11 2m

with complex-valued coecients defined in and let {B} be the boundary
system defined by

Bi(x, D) b(x)D, j= 1,..-,m,

with complex-valued coecients defined on . We shall always assume {B}7
is a normal system of respective orders mg 2m 1. Thus mg m if j k and

is noncharacteristic to Bg at each point. We impose the following smoothness
conditions.

(So) is a bounded domain of class Cem. The coecients in .,/are of class
C() and those in Bg of class c2m-m().

Following Agmon 1], we call the boundary value problem (, {Bg}, ) a
regular elliptic bouary value problem if the above conditions hold and if:

(i) is elliptic in and satisfies the roots coition there.
(ii) At each point of, the operators Bg}7 satisfy the complementing coition

with respect to the operator g.
Throughout this paper we shall assume (, {Bg), ) is a regular elliptic

boundary value problem.
Hem() will denote the Hilbert space consisting of the subclass of functions

in L2(O) whose distributional derivatives of orders 2m belong to L:(), with
the norm

fIlu m ID’ul ax
1l=<2m

The LZ(O)-norm is denoted by I" II. Let Hzm(; {Bj}) be the closed subspace of
Hzm() which is the closure in Hzm() of functions u in cZm() which satisfy

(2.1) Bju 0 onO, j m.

For regular elliptic boundary value problems the following a priori estimates
are valid for all u Hzm( Bj})"
(2.2) u 2m C(llul + Ilull),

where C does not depend on u. If in addition ull > 0 for all u Hzm(; {Bj}),
u 0, then (2.2) holds even if the term llu is omitted.

Conversely, if {Bj} is a normal system of boundary operators of respective
orders mj 2m 1, if the smoothness conditions (So) are assumed and if (2.2)
is known to hold for all u C2() which satisfy (2.1), then necessarily the ellip-
ticity, roots and complementing must hold; that is, (, Bj}, ) must be a regular
elliptic boundary value problem [2, 10]. We shall have use for this fact in ff 3.

We denote by M the unbounded linear operator in L2() defined by
o(m) H2( Bj}) and Mu ( D)u( for u D(M). M is densely defined
and it follows from (2.2) that M is closed, has finite-dimensional null space and
closed range. If the spectrum of M is not the whole complex plane, i.e., if the resol-
vent R(2, M) exists for some 2 2o, then since R(2o, M) is compact it follows that
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R(2, M)exists for all 2 except a discrete sequence of eigenvalues of M. In general,
however, one cannot exclude the possibility that the spectrum of M is the whole
complex plane. We therefore assume the following condition.

Spectrum condition. Zero lies in the resolvent set of M.
If the spectrum of M is discrete, the spectrum condition can be satisfied by

replacing M by M + k with some suitable constant k. Necessary and sufficient
conditions in order that the spectrum of M be discrete are given in [1].

Next we define the differential operator 50 by

50(x, D) ((x)D
[[-<2m

with complex-valued coefficients of class C(). The corresponding realization
of 5 in L2(f) is denoted by L. Thus

D(L) H2m(f; {BS} ), Lu 50(’, D)u( for u D(L).

It is now easy to prove existence and uniqueness of strong solutions of (1.1),
(1.2), satisfying a prescribed initial condition u(x, 0)= Uo(X), that is, functions
of class C’(R +, H2m( {Bj}) satisfying Mu, Lu 0 for all => 0 and u(0) Uo.
In fact, since zero is in the resolvent set of M the estimates (2.2) hold without the
term lul, Applying these estimates to M-1Lu for u D(L) we obtain

IM-aLull2m CllLul <= Cxllu
Thus A M-1L is a bounded linear operator on the space H2m(; {Bj}) and
therefore generates the group {etA. < < + } ofbounded linear operators
on that space. The existence of a unique strong solution of (1.1), (1.2) with a
prescribed initial value u(0)= u0 H2m(; {Bj)) follows immediately by setting
ti(t)-- ctAblo

The existence of solutions of (1.1), (1.2) in cZm+P() can be deduced in a
similar way under slightly stronger smoothness assumptions. For 0 < p < 1,
c2m+P() is the Banach space of functions u of class cZm() whose derivatives
Du of order 2m satisfy a uniform H61der condition in f with exponent p. The
norm in C2m+ P() is

lulz,+p- IOulo / sup
Iou(x) Ou(y)l,

1l<_2m X yl p

where Ivlo max Iv(x)l and the supremum is taken over I1 2m and x, y in
with x - y. Let c2m+"(; {Bs}) be the closed subspace of c2m+"() consisting

of those functions which satisfy (2.1). Suppose the smoothness condition (So) is
replaced by the following one.

(S,) f is a bounded domain of class C2m+v. The coefficients in . are of
class C"() and those in B of class C2m-mj+ P(").

Then the following a priori estimates hold for all u cZm+o(; {Bj})"
< C(lul + lulo)(2.3) lUl2m+p

with C independent of u.
Now let and /r denote the restrictions of L and M, respectively, to

C2"+’(; {Bj}) and assume the coefficients of 50 are of class CP(). , and
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are unbounded operators in CP(f). Moreover Mu 0 implies u 0 since zero
is in the resolvent set of M. Thus (2.3) holds with the term lul o omitted. If we show
that the range of/ is all of CP(), it will then follow from (2.3) that /f-
is a bounded linear operator on Czm+P(’{Bj}) and, therefore, u(t)= et’iu0
provides the unique solution in class C’(R +, cZm+o()) of (1.1), (1.2) with the
prescribed initial value u(O) Uo C2m+ P(; Bj}). (e is therefore the restriction
ore’ to cZm+’( {Bj}).)

To show that M maps onto C(O) we employ the following regularity result
of N. Ikebe [5] (cf. [2, Appendix 5]).

THEOREM 2.1. Suppose (,/, Bj} ) is a regular elliptic bouMary value problem
satisfying the smoothness conditions (Sp). If u e Hzm( {Bj})and ,u e C(O), then
u cm+(; B}).

It follows from this result that M- maps C"() into C2+(; {By}), that
is, M maps onto C"(fl).

We summarize the existence theory in the following.
THgORgM 2.2. Suppose that (,g, {Bj}, ) is a regular elliptic bouMary value

problem satisfying the spectrum coMition and that the coefficients d of belong
to C(). Then A M-L is a bouMed linear operator on Hzm(; {Bj}) aM, jbr
any Uo in this space, u(t) etauo is the unique solution in C’(R +, H2([))) of (1.1),
(1.2) satiqfying u(O) uo.

Suppose in Mdition (So) holds and dmCO(fl). Then the restriction to

C2+(;{B/}) of the group {eta. - <t< 4} is a group {etA <t

< + } of bouMed linear operators on C2+p(; {By}) aM, for any uo in this
space, u(t) e’AUo is the unique solution qf(1.1), (1.2) in C’(R +, cZm+"()) sati,fying
u(O) Uo.

3. Exponential stabili ofsolutio HZm(). In this section we give necessary
and sufficient conditions in order that the group {en-’:- < < +} of
bounded linear operators in H2(fl; {By}) satisfy

with positive constants a and C; here IletM-1Lll2m denotes the norm of the operator
etM-IL. We assume throughout this section that (#, {Bj}, f) is a regular elliptic
boundary value problem satisfying the spectrum condition. Since we shall have
to deal with the formal adjoints of 5 and ,/// we suppose in addition that the
coefficients d and m are of class cll().

The key to our results is the following (more or less) well-known criterion for
exponential stability of a group generated by a bounded operator. For complete-
ness we include its simple proof.

LEMMA 3.1. Let A be a bounded operator on a Banach space. In order that
there exist positive constants a and C such that IletAll =< Ce--"’, > 0, it is necessary
and sufficient that the spectrum ofA lie in the open left hall-plane.

Proof. The operator eta may be represented as the Dunford integral

etA= ;v etZR(2 A) d2
2rti



630 JOHN LAGNESE

where R(2, A) is the resolvent of A at 2 and F is a rectifiable Jordan curve, oriented
in the positive sense, surrounding the spectrum of A. Let o(T) denote the spectrum
of a linear operator T. If o(A) lies in the open left half-plane, it follows easily
from the Dunford integral representation of eta that e’ta[[ Ce -at, > O.

Conversely, suppose this inequality holds. We apply the spectral mapping
theorem to the effect that

a(etA) eta(a).

Since eta is >= the spectral radius of CtA, we have for > 0,

Ce-"t etA sup 12[ sup eiRe

Aa(e #r(A

so that the spectrum of A lies in the open left half-plane.
Denote by LW* and * the formal adjoints of and /, respectively, and

by L* and M* the L2() adjoints of L and M. Since (/, Bi}, fl) is a regular elliptic
boundary value problem, it is well known that M* is the L2() realization of the
regular elliptic boundary value problem (/*, {B’},n), where {B}’ is the
system ofboundary operators adjoint to {Bi} relative to #/with respect to Green’s
formula. (See, e.g., 3, 81.) Thus D(M*) H2m(n; {B})and M*u /*(., D)u(.
for u D(M*).

THEOREM 3.1. In order that the spectrum of.M-1L lie in the open left ha!J-
plane thefollowing are necessary and sufficient" For each 2 with Re 2 >= 0,

(3.1) (,a 2/, Bj), )

is a regular elliptic boundary value problem.

(3.2) Re (u, u) < [lieu 2 ul ]Im (Wu, //{u)12] 1/2

H mI ; 0.

(3.3) Re (Se*u, ,/*u) < [ll*ull2ll,/*ull z ]Im (*u, ,/*U)12] /2

for each 2 with Re2 >_ 0 and all u H2m(ff2; {C}), u O, where {C}]’ is any
system ofboundary operators adjoint to Bj}’ relative to 2,////.

It is easy to check that the boundary system {Cj}]’ {Bj YB}’ is adjoint
to {Bj}’ relative to 5 -2,/, where {Bj}7 and {Bj’}]’ are adjoint to {Bj}
relative to 5 and .g, respectively, with respect to Green’s formula. As is known,
any other such system {C}’ is equivalent to {Cj)7, that is, H2m(ff2;

COROLLARY 3.1. Suppose (5 -Z/, {B/}, ) is a regular elliptic boundary
value problem whenever Re 2 > 0 Then etM-’r < Ce -at

2m > O, if and only if
the eigenvalues of each of the eigenvalue problems

(3.4) 2’u 2-// O, U H2m("; {Bj}),
(3.5) C*u I,/*U O, U H2m(-, {C}}),
lie in the open left ha!l-plane.

Corollary 3.1 is an immediate consequence of the following lemma and
Theorem 3. l.
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LEMMA 3.2. Condition (3.2) is equivalent to the condition that the eigenvalues of
(3.4) lie in the open left ha!(-plane. Condition (3.3) is equivalent to the condition that
the eigenvalues of(3.5) lie in the open left ha!l-plane.

Proof. We prove only the first statement of the lemma. The second is proved
in a similar way. Suppose (3.2) holds and 2 is an eigenvalue of (3.4.).Then (3.2)
implies

Re 2 < (1212 IIm/12) 1/2 IRe 21
so that Re 2 < 0.

Conversely, suppose the eigenvalues of (3.4) all lie in the open left half-plane
and suppose (3.2) is violated, i.e., equality holds in (3.2) for some u Hzm( Bj}),
u 0. Then for such a u,

Lu IIMul[ >= I(Lu, Mu)l [(Re (Lu, Mu))2 -t- (Im (Lu, Mu))2] 1/2

liEu Mu

that is, I(Lu, Mu)l Lul Mu This implies Lu 2Mu for some complex 2
which satisfies, by assumption, Re 2 < 0. But since equality holds for u in (3.2) we
obtain

Re 2 (IXI 2 -Ilm ,12) 1/2 IRe 21,

a contradiction.
Theorem 3.1 and Corollary 3.1 can be greatly simplified if we restrict ourselves

to absolutely elliptic problems. A regular elliptic boundary value problem
(A, {/j}, ) is called an absolutely elliptic boundary value problem if the boundary
system Bj} ’ has the property that the complementing condition is always satisfied
no matter what the elliptic operator A of order 2m may be (subject to the roots
condition if n 2). The Dirichlet problem is an example of an absolutely elliptic
problem. Several other examples may be found in [1-l. The algebraic structure of
all absolutely elliptic boundary value problems was determined by H6rmander 4]
who was the first to introduce this class of operators.

TI-IEOREM 3.2. Suppose for each 2 with Re 2 >= 0, (L-’ -2/, {Bj}, f) is an
absolutely elliptic boundary value problem and that there is a real number 0 0())
such that

5’(x, ) 2////’(x, ) ei0(3.6) (- 1)"lW’(x ) /{’(x )l
4:

for all real n-vectors and x. Then ett-’[J2m =< Ce- if and only if (3.2) is

satisfied or, equivalently, the eigenvalues of (3.4) lie in the open left half-plane.
COROLLARY 3.2. Suppose for each 2 with Re 2 0, 2////is strongly elliptic

in and that (L 2//g, B}, ) is an absolutely elliptic boundary value problem.
Then the conclusion of Theorem 3.2 is valid.

Proof of Theorem 3.1. Necessity. If the spectrum of M-L lies in the left
half-plane, afortiori the eigenvalues lie there. As M- is a bounded operator from
L2() onto H2m( Bj}), for f L2() the equations (M- L )u M- fand
Lu 2Mu f are equivalent. Consequently the eigenvalues of (3.4) also lie in the
left half-plane. Inequality (3.2) therefore follows from Lemma 3.2. Suppose
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Re 2 >__ 0. Then M- 1L 2 maps H2m( Bj}) onto itself and for all u in this space,

11(M-L- A.)ull2,. cxllull2,..

It follows that the range of L 2M is all of L2() and

(3.7) I1( )ull Cxllullzm, u HZ"(f; {B}).
Since the ellipticity, roots and complementing conditions are necessary for the
validity of (3.7) we conclude that (50 2//, Bj}, f) is a regular elliptic boundary
value problem. Therefore (L 2M)* is the LZ(f) realization of the regular elliptic
boundary value problem (&a, ,///,, {C}, f), where {C}}]’ is adjoint to {Bj}T
relative to 50 2#. If 2 is an eigenvalue of(3.5) having nonnegative real part, then
(L ,M)*v 0 for some v Hz"(fL {C}), and so for all u Hzm(f {Bj}),

(Lu ,Mu, v) (u, (L M)*v) O.

If Re 2 >= 0, the range of L M is all of L2(), and so v =- 0. Condition (3.3)
therefore follows from Lemma 3.2.

Sufficiency. Condition (3.1) implies that for Re 2 >= 0, L 2M is a closed,
densely defined operator having closed range in L2(). Thus to complete the proof
we must show that for such 2 the null space of both L 2M and (L 2M)* is
{0}. However this follows from (3.2), (3.3), Lemma 3.2 and the fact that (L 2M)*
is the L2() realization of the problem (5* ,///*, {C}, f).

Proof of Theorem 3.2. We have only to prove the sufficiency part. If (3.2) holds,
then for Re 2 >= 0 the null space of L 2M is {0}. Since (50 2///, {B}, f) is an
absolutely elliptic problem, condition (3.6) implies that the spectrum of L 2M
is discrete and consists solely of eigenvalues of finite multiplicity. This has been
proved by Agmon [1]. Since zero is not an eigenvalue of L 2M it must therefore
be a point of the resolvent set. Thus L 2M maps HZ"(f; {Bj}) onto L2(f) in a
one-to-one way for each 2 with Re 2 >= 0, as was to be shown.

Proof of Corollary 3.2. We may suppose 50 L///is normalized by

(3.8) (- 1)" Re [50’(x, ) 2#’(x, )] >_ 6112’’
for all real n-vectors and x f, where 6 6(2) > 0. But (3.8) implies

cos {arg (-1)"[50’(x, )- L/C/’(x, )]} >= e > 0

for all such and x, that is, (3.6) is satisfied for each 0 q (-n/2, n/2).
Remark. If //and 50 are given in divergence form

(3.9) #(x,D)= D(mt(x)Dt),

(3.10) 5e(x, D) D(((x)DI),

the smoothness assumptions on the coefficients stated at the beginning of this
section may be replaced by" m,t and e,t are of class CI’I() f’l CItl(). All the results
of this section remain true with no change in their proofs.

4. Exponential stability of solutions in C2m+p(). In this section we assume
(M/, Bj}, f) is a regular elliptic boundary value problem satisfying the spectrum
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condition and conditions (Sp) of 2. In addition we require the coefficients e and
m, to be of class CI’1 +p(). Under these conditions we study exponential stability
ofthegroup {e‘i" < < + oe ofbounded linear operators in C2m+(; {Bj}).
We recall that / is a bounded linear operator on cZm+o(; {Bj}) defined by
A -1, where .r and are the restrictions of M and L, respectively, to
C2m+p( {B2}).

In what follows, a, , C and ( will denote positive constants and ]etA]zm+,
the norm of the operator etA

THEOREM 4.1 [e’Zl < e-nt, > 0, if and only if IletAll2m < Cc -at, > 02m+p

< e-nt, the following are necessary andTHEOREM 4.2. In order that le’12,,+
sufficient"
(4.1) For Re

is a regular elliptic boundary problem.

(4.2) Re (50u, /u) < E[[50ul121lgut[ 2 IIm (50u, u)12] 1/2

for all u c2m+p(; {B2}), u 0.

(4.3) Re (50"u, /*u) < [l150*ul121 /*ul] 2 IIm (50"u, g/*u)12] /2

for each 2 with Re 2 >= 0 and all u C2m+ P( C}), u i O.
The system {C} ’ in (4.3)is the same as in 3.
COROLLARY 4.1. Suppose (5 2/, Bj}, f) is a regular elliptic boundary value

problem whenever Re 2 > 0. Then le’al < e- if and only if the eigenvalues of2m+p

each of the problems

(4.4) 50u ’g’U O, U . c2m+p(; {Bj}),
(4.5) 50"u ,’t’t(SU O, U c2m+p(, {C}),
lie in the open left half-plane.

Proof. Just as in Lemma 3.2, we see that conditions (4.2) and (4.3) are equivalent
to the condition that the eigenvalues of (4.4) and (4.5) lie in the left half-plane.

For absolutely elliptic problems we have the following.
THEOREM 4.3. Suppose for each ), with Re 2 __> 0, (50 2//, {Bj}, f) is an

absolutely elliptic boundary value problem satisfying (3.6) Then le’l < e-nt
2m+p

if and only if (4.2) is satisfied or, equivalently, the eigenvalues of (4.4) lie in the open
left half-plane.

COROLLARY 4.2. Suppose for each 2 with Re 2 >__ 0, 50- 2// is strongly
elliptic in and that (50 2//g, B2}, ) is an absolutely elliptic boundary value
problem. Then the conclusion of Theorem 4.3 is valid.

Proof of Theorem 4.1. Suppose etallZm Ce -at, > 0, so that the spectrum of
A lies in the left half-plane. If Re 2 => 0 and f C(), there is a unique u e Hzm(
{B}) satisfying (50- 2//)u f. But (50- 2//, {B},f)is a regular elliptic
boundary value problem (by Theorem 3.1) and satisfies the conditions of Theorem
2.1. Thus u eCZm+(; {Bj}). Since _r maps cZm+(; {B}) boundedly onto
C() it follows that 2 is in the resolvent set of A. Thus the spectrum of lies in the
left half-plane.
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Conversely, suppose this condition is satisfied. As in the proof ofTheorem 3.1,
one finds that for Re 2 >= 0, the range of 2r is all of CP() and

> ClulI( ,)ul +, bl C2m + P(’ Bj}).
These inequalities imply that (Se- 2/, {Bj}, f) is a regular elliptic boundary
value problem. We now apply Corollary 3.1 to obtain the desired result. If Re 2 >__ 0
and 50u L////u 0 for some u Hzm(; {Bj}), another application of Theorem
2.1 gives ucZm+’(; {Bj}), i.e., (--2)u 0. Thus u-= 0. If (L*-2///*)v

(L M)*v 0 for some v Hzm(f {C}), then for all u cZm+o( {B}),
0 (u, (L M)*v) (u /lu, v).

Since the range of is dense in L2(), we conclude v 0.

Proof of Theorem 4.2. If [etA[ < c-t, then IlCta Zm < Ce-"t so that2m+p

(3.1)-(3.3) hold, and, afortiori, (4.1)-(4.3).
Conversely suppose (4.1)-(4.3) are true. We show that (3.1)-(3.3 also must hold.

The desired conclusion then will follow from Theorems 3.1 and 4.1.
If Re 2 __> 0, condition (4.1) and Theorem 2.1 show that the eigenvalue prob-

lems (3.4) and (4.4) are equivalent. Consequently, (4.2) implies (3.2). Moreover
(L 2M)* is the L2() realization of the problem (5a* /*, {B ,Bj}, f),
where {Bj} and {B’!} are adjoint to Bj} relative to 5 and /, respectively, with
respect to Green’s formula (see the paragraph following Theorem 3.1). The coeffi-
cients in this problem also satisfy the conditions of Theorem 2.1 by virtue of the
smoothness assumption (So) and the conditions imposed on (, and m at the
beginning of this section. Consequently, for Re/ >= 0 solutions of the eigenvalue
problem (3.5) belong to cZm+’( {C.}) so that the problems (3.5) and (4.5) are
equivalent for such 2.

Proofof Theorem 4.3. This result, and its corollary, follow easily from Theorem
4.1 and the results of 3.

Remark. If ///and 5 are given in the divergence forms (3.9) and (3.10), the
conditions on the coefficients stated at the beginning of this section may be re-
placed by’ mt and et are of class CI1 + P() f’l C Itl + P().

5. Example. Suppose /and 5(’ are given in the divergence forms (3.9) and
(3.10) with coefficients rn, and # of class CI’I+()f’] Clal+’(), where fl is
assumed to be of class C2m/ o. We assume also that //is formally self-adjoint and
elliptic in f, that 5a is strongly elliptic there and that these operators are normalized
by

(- 1)"+ /’(x, ) C0ll 2m, (- 1) Re "(x, ) Clll zm

for x f, 4: 0, where Co and C are positive. Then according to Garding’s
inequality there are positive constants kL, KL, kt, and Kt such that

Re(&/"u,u)>_ KL u 2
m- kL lU 2,

(5.2) (u,u) -Kllull zm + kllull z

for all u c2m() satisfying on c3f the Dirichlet conditions

(5.3) Bju -)J- au 0, j 1,2, ..., m.
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(5.4)

Set k max (kL, kM) and consider the equation

cu
(dd k)-;: (50 + k)u 0

in the cylinder f x [0, oe), together with the boundary conditions (5.3) on the wall
of the cylinder. We show that the conditions of Corollary 4.2 are satisfied for the
operators5 + k, /{ k and the boundary operators Bj (c/c3n)- 1, j 1,..., m.

TI-IEOREN 5.1. With the assumptions of this section, let u(t) etAu(O) be a solution

of (5.3), (5.4)in C’(R /, C2m/ o()). Then

u(t) 2m Ce-"t lu(0) 2m, > 0,

and

< e-tlu(O)lzm+o > 0,lu(t)12+o

with positive constants a, 8, C and C.
Proof. (i) (/g k, (c3/c?n))- }, f) is a regular elliptic boundary value problem

satisfying the spectrum condition. In fact, the roots condition holds since the
coefficients of g are real. Also, the Dirichlet boundary conditions satisfy the
complementing condition no matter what the elliptic operator of order 2m may be.
In addition, the Dirichlet boundary operators are self-adjoint, that is, the system
of boundary operators adjoint to {(c3/c3n)-1}" relative to any elliptic operator of
order 2m is again the Dirichlet system. Since /// k is formally self-adjoint, it
follows that the L2(f)-realization Mk of the boundary value problem (# k,
{(c3/cn)J- 1}7’, f) is a self-adjoint operator, Mk M’. From (5.2) it follows that the
null space ofM is {0} and, therefore, zero is in the resolvent set of M.

(ii) For Re 2 __> 0, ((50 + k)- 2({- k), {(?/c3n)J-1}, f) is an absolutely
elliptic boundary value problem. To prove this we have only to check the ellipticity
and roots condition. But for Re 2 >_ 0 we have

(-- 1) Re (50’(x, ) 2//’(x, )) _> (C1 + (Re )Co)]l

>__ Cll2,

that is, (50 + k) 2(# k) is a strongly elliptic operator in f. As is well known,
strong ellipticity implies the roots condition.

Let L be the realization in L2() of the regular elliptic boundary value
problem (50 + k, {(?/c3n)- 1}, f).

(iii) The eigenvalues of the problem

LkU 2MkU 0

lie in the open left half-plane.
In fact, suppose 2 is an eigenvalue of (L 2MK)u 0. From (5.1) we have

0 < Re (LkU, u) (Re 2)(mku, u).

Thus Re 2 < 0 on account of (5.2). Theorem 5.1 therefore follows from Corollary
4.2.
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Remark. In the special case where

/(x, D)
i,j -- mi(x) m(x), m(x) > O,

and (mij) and (eij) are real, symmetric, positive definite matrices, Theorem 5.1
applies with the constant k 0 in (5.4), and we obtain the main result of [12].
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CHARACTERIZATIONS OF a-TYPE ZERO POLYNOMIAL SETS*

ARUN VERMA]

Abstract. In this note two characterizations of a-type zero polynomial sets are obtained. These
characterizations are generalizations of two known results for the Appell polynomial sets.

1. Rainville [1], generalizing the well-known classification of simple poly-
nomial sets like Appell, Sheffer A-type rn (for details see Sheffer [2]), introduced
a-type m classification of simple polynomial sets as follows"

Let {p,(x)} be a simple set of polynomials that belongs to the operator
q d

J(x,a)= T(x)ak+, = D 1- [xD + fli- 1], D =_

k=0 i= dx

(i.e., J(x, a)p,(x) p,_ l(x)), where fli are constants not equal to zero or a negative
integer, and Tk(X are polynomials of degree __< k. We say that this set is of a-type
rn if the maximum degree of Tk(X is m, rn 0, 1, 2, ....

Rainville [1] has shown that the simple set of polynomials p,(x) associated
with the operator J is of the a-type zero if and only if p.(x) has a generating
function of the form

p.(x)t" A(t) oFq[ ;(fla);xH(t)],
n--O

where

J(H(t)) H(J(t)) t,

A(t) , a,t", ao 4: O,
tl-0

H(t) h,t"+1 ho v 0

(A(t) is called the determining function of {p.(x)} .)
It is clear from the definition that if q 0, then a-type zero polynomial sets

are of the Sheffer A-type zero, which in turn incorporate the Appell set of poly-
nomials.

Furthermore, we know that the necessary and sufficient condition for a
given simple polynomial set {p,(x)} to be of Appell type is that there exist a
sequence of constants a, such that

p,(x) a,_ kxk.
k=0

In this note it is intended to prove a similar characterization for a-type zero
polynomials. The note is concluded by mentioning a characterization of a-type

* Received by the editors March 23, 1971, and in final revised form January 31, 1972.
? College of Arts and Sciences, Pahlavi University, Shirsz, Iran. Now at Department of Mathe-

matics, Lucknow University, Lucknow, India.
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zero polynomials in terms of Stieltjes integrals analogous to the one proved by
Sheffer [3] for Sheffer A-type zero polynomials.

2. We use the following notation" [a]o 1, [a], a(a + 1)... (a + n 1);
a] 1, [a]" a(a 1) (a n + 1); n 1,2, (at) denotes a sequence of
r numbers a l, a2, "’’, ar and [(br) + al, -I= [bs + a], and

[b + (at)I" H [b +

3. Let a D 1= [xD + fli 1]. Then

7
k+ 1xn In]k+ 1In + (flq) I]k+ Ixn-k-I

Let {p,(x)} be a simple polynomial set of a-type zero and let

J(x, ) a+
k=O

ao 1, be the operator associated with this set. If we put p,,(x)
C(n, n)= 1/[1],[(/q)]", then we have

n-1 n-l-1

J(x,a)p,,(x)= Z x’ [k + + 1]k+’[k+(flq)+
(3.1)

l=0 =o

n-1

p,_,(x) C(n , )x’.
/=0

Now if we set

and use the fact that

D(n, k) [1][(q)]C(n, k),

D(n, n) [1],[(q)],C(n, n),

\- oC(n, k)xL

a,C(n, k + 1 + 1)

k=0,1,...,n- 1,

and equate the coefficients of x on both sides of (3.1), then we obtain
n-l-1

a,D(n, k + + l)= D(n- 1,1),
(3.2)

=o

1=0,1,2,...,n- 1, n= 1,2,

A1,

A,.,s ailaiz ai, ki,., r=2,3,-..,s+ 1,
(3.4)

with

where ao 1, D(n,j) 0,j > n and D(n, n) 1.
Let {kl} be a sequence of arbitrary numbers. Then the general solution of

(3.2) is given by
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where ’ means the sum over those r- numbers ai{az,a3, ..., as-r+3}
and one number ki {/Co, kl, .’., ks-r+ 1} for which the sum of the suffixes equals
s+r-1.

,-1 ahNh, where a0 1 and N is the n nIn order to prove this let A, h o
matrix with entries on the first superdiagonal and all other entries zero. Clearly
A, is a nonsingular matrix because it is an upper triangle matrix with entries
on the principal diagonal. Further, let

bn_ {D(n- h, h),D(n- h, 2- h),..., D(n- h, n- h)} T,
h=0,1,...,n,

where D(n- h, j), j -1,-2,..., h, are new quantities which together
with D(n h, j), j >_ O, satisfy

(3.5) D,_ A,D,_+ 1.

This is (3.2) together with a recurrence formula for the new quantities
D(n h, j), j _< O.

It follows from (3.5) that

(3.6) /5, (A,)-"/)0.
Now choosing D(0, h) k_ arbitrary for h 1, 2, ..., n, we have

(3.7) bo {k,_l,k,_2, ..., ko} T.
Further, since

n-1

A, I + ahNh,
h=l

where ! is the n n unit matrix, we have

(3.8)
n-1

E ahNh
h=l

Now we expand the last power by means of

(3.9)
n-1

E ahNh
h=l

l+h2+"’+ht+j-Ial ahahz
I=0

where ’ is extended over all combinations of integers hi,h2,... ,h, with
2 _< hm =< n 1, taking the order into account and not excluding the cases with
equal entries.

Then substituting the value of (7,-1 ahNh) from (3.9) in (3.8) and in turn
using this value of (A,)-" and (3.7) in (3.6) we have the desired solution for
D(n, n j).

It may be remarked that in (3.3) all the terms have nonnegative powers of al
because those with negative powers are multiplied with binomial coefficients
equal to zero.
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Thus we have shown that if the set {p,(x)} is of the a-type zero, then p,(x)
must have the form"

(3.0) p.(x)
( k) ,-,)].k=O -ks=O -]]-ks r,s,

where the Ar,s are given by (3.4).
Conversely, if p,(x) is given by (3.10), then working backwards it is easy to

see that {p,(x)} is of the a-type zero. Hence we obtain the following theorem.
THEOREM 1A. The necessary and sufficient condition that the simple polynomial

set {p,(x)} be of a-type zero is that there exist sequences of constants {kl} and
{aj} such that p,(x) is expressible as (3.10).

It might be of interest to note that if instead of (3.9) we use the expansion
n-1

Z ahNh
h--1

n-1, ( ai,ai’" ai)N,
s=j

where 1 is extended over all combinations of integers il,i2, ..., ij with

=< im =< S j + such that the sum of the suffixes equals s and not excluding
the cases with equal entries, and the same procedure as that for Theorem 1A
is adopted, then the following characterization for a-type zero polynomials is
obtained.

THEOREM lB. A necessary and sufficient condition that the simple polynomial
set {p,(x)} be of a-type zero is that there exist constants {kt} and {aj} such that
p,(x) is expressible as

x"-’
p.(x) -y[n]"’

[1]j :j
kl s(Elilai2 aij)"

Setting q 0 in the above theorems we obtain an explicit representation for
Sheffer A-type zero polynomials.

4. We conclude the note by mentioning a characterization of a-type zero
polynomial sets analogous to the one proved by Sheffer [3] for Sheffer A-type
zero polynomials.

THEOREM 2. A simple polynomial set {p,(x)} is of a-type zero if and only if
there exists a function fl(t) ofbounded variation on (0, ) such that

(i) b, t" dfl(t) exists for n O, 1, 2,...,
(ii) bo # O,
(iii) p.(x) S,(x + t)dfl(t),

where oFq[. ;(flq); xH(t)] =o B,(x)t" and J(H(t))= H(J(t))= t, J being the
operator associated with the polynomial set.

The determining function is then

A(t) ff oF[ (flq) xH(t)] dfl(t).

The proof runs on exactly the same lines as that of Sheffer [3] for A-type
zero polynomials and is omitted.
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A CONCAVE PROPERTY OF THE HYPERGEOMETRIC FUNCTION
WITH RESPECT TO A PARAMETER*

JOSEPH B. KADANE]-

Abstract. The hypergeometric function is shown to be logarithmically concave in integer values
of one of its parameters. The methods used are probabilistic.

THEOREM. Let m, and g be positive integers satisfying 3 <=i + <_ g, and
let z be a negative real number. Then

{2Fl[-m,i’g’z]} 2 > 2Fl[-m,i + 1;g;Z]EFl[-m,i- 1;g;z].

We first establish the following lemma concerning the evaluation of the
generating function of the negative hypergeometric distribution.

()

LEMMA.

b+j-j 1)(k+a-j-lk_j
2Fl[-k,b;a + b;1 s]

for all positive integers k, and all real s, and positive real values ofa and b.
ProofofLemma. Skellam [2] has shown that if X follows a binomial distribu-

tion with parameters p and k, and if p is integrated with respect to the normalized
beta function

pb- 1(1 p)a- dp
B(a, b)

then the unconditional distribution of X is negative hypergeometric, that is,

(b+j-1 {k+a-j-1)/ a+b+k- 1)Pr{X =j}
J k-j k

The left-hand side of (1), denoted below by I, is then the probability generating
function of the negative hypergeometric distribution. Thus

I o(sx) Op{(sXlp)} p(1 p + ps)k

B(a, b)
[1 p(1 s)]ap-1(1 p)"-ldp

2Fl[-k,b;a+ b;1-

See [3, p. 20]. This proves the lemma.
Proof of Theorem. The essence of the proof is to use two theorems proved

elsewhere [1], one on the existence of a probability distribution with a certain
property, the other giving an inequality relating to such a distribution.

Received by the editors October 19, 1971, and in revised form February 22, 1972.

" Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

642



THE HYPERGEOMETRIC FUNCTION 643

Lets= 1 +z,h=g- andn=rn+g- 1. Theorem 3 of[1] states that
there is a probability distribution F such that ai,,, the expected value of the ith
largest of a sample of size n drawn independently from F, satisfies

ai., s- for all i, 1 =< =< n.

By use of a standard recurrence relation, quoted in [1, (4)], the expected value of
the ith largest of some smaller sample of size h can be deduced as follows" For
l<=i<=g<=n,

n-h

ai,h 2
j=O

i+j--1

J

j=0 -h-j

--j-i

-h-j

i+j-1

J
si+J- / l

/ h

si-a 2Fl[h- n,i ;h + 1; s]

on using thelemmawithk= n- h,b /anda= h- i+ 1.
s- for all n, thenTheorem 4 of [1] states that if a,,

2
ai,h>ai-,hai+,h for/=2,...,h- andh__<n- 1.

Applying (2), we obtain

s2-Z{2F[h- n,i;h + 1;1 s]} 2

> si-E{2Fl[h- n,i- 1;h + 1;1 s]}si{2F,[h n,i+ 1;h + 1;1 s]}.
The theorem now follows by substituting for h, n and s.

Remark. An analytic proof of the theorem has been shown to the author
by Dr. Tyson of the Center for Naval Analyses.
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A NEGATIVE DEFINITE EQUILIBRIUM AND ITS INDUCED CONE
OF GLOBAL EXISTENCE FOR THE RICCATI EQUATION*

R. S. BUCY AND J. RODRIGUEZ-CANABALf

Abstract. The domain of global existence for the Riccati equation is shown to include a cone with
vertex at the negative definite equilibria and containing the positive definite equilibria, under regularity
conditions.

We consider the autonomous matrix Riccati equation

(1)
dP/dt FP + PF’- PH’HP + GG’,

Po=F,
where 1F e M,,,(R), H e M,,,(R), G e M,,r(R), F F’ e M,,,(R) (Ml,m(R) is the set
of x m matrices with real coefficients). Equation (1) arises in the linear filtering
problem (see ]1]) with the physical constraint F positive semidefinite (i.e., F > 0).
Our purpose in this note is to show that solutions of (1) globally exist in a certain
region of F’s larger than the cone ( of nonnegative definite matrices, where we
established global existence previously in [1]. We shall find it necessary to assume
that the triple (H, F, G) is completely controllable and completely observable.
The applications which motivated consideration ofthe global existence problem for
F ’ was a study of the conjugate point structure of a Jacobi accessory problem
related to min-max control (see [3]).

Our method consists ofshowing that (1) possesses a negative definite equilibria
P_ and employing a rather simple comparison theorem of Reid to show solutions
of (1) exist for F P > 0, a cone (_ containing C as -P_ is positive definite.
It is shown by more intricate arguments in [3], that for F C_ solutions of (1)
have finite escape time. Further, P_ S- with S, the positive definitive matrix

-1 -1used in [2], to show that the infinite lag filtering error is (P + + S) with P+ the
positive definite equilibrium of (1), the Wiener filtering error covariance matrix.
Also, as is noted in [2], S- has physical interpretation as the steady state error
variance of the estimate of the present state given future observations.

Results. We will assume the (H, F, G) completely controllable and com,-.

pletely observable and denote this assumption by A. The following theorem then
holds.

TJEOREM 1. Suppose A holds. Then (1) has two equilibria P+ and P_ with

P+ and -P_ strictly positive definite. Further, with

-F’ H’H
H=

GG’ F

Received by the editors November 2, 1971.
-Department of Aerospace Engineering, University of Southern California, University Park,

Los Angeles, California 90007. This work was supported by the U.S. Air Force, Office of Aerospace
Research, under Grant AF-AFOSR-71-214 and the U.S. Army Research Office under Grant
DA-ARO-D31 124-71-637.
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(2) A(H) 0
p_

(3) (- P+, I)A(H) 0,

where det(2I H) (- 1)’A(2)A(-2) with A(2) a Hurwitz polynomial.
Proo.f. The existence of P/ in the interior of C is implied by the results in [1,

Chap. 5, and the Bass-Roth theorem [1, p. 105] implies (3). Consider the system
(G’, F’, H’) it satisfies A1 and hence, as before, the equation

(4) F’S + SF- SGG’S + H’H 0

possesses a unique positive definite solution S. This solution S determines P_ as
S- 1, and from (4), P_ is an equilibrium solution of(l), which is negative definite

by construction. Now the Hamiltonian associated with (G’, F’, H’) is
-F GG’

H* H’ so that
H’H F’

det (2I H*) det (2I H)

and A is the same for H as for H*. Now the Bass-Roth result applied to H* gives

S, I)A(H*) 0

or

as S is positive definite or

(I, S-)A(H*) 0

A(H*)’ 0
p_

but A(H*)’ [A(H’)]’ A(H) so that (2) holds.
Remarks. The Bass-Roth type results (2) and (3) allow explicit determination

by linear equations of P+ and P_ or equivalently S. As mentioned in the introduc-
tion, S has important filtering applications and interpretations, see [2]. Note that
P_ is the unique negative definite equilibrium of (1) as S is the unique positive
definite solution of (4). Now our main results have the following form.

THEOREM 2. Suppose A1 holds. Then the solution of (1), n(t, F, to), exists for
all > o when F (7_ {F Mo,,(R)[F F’, F + S- >_ 0}. Furtherfor F _,

n(t,F, to) >_ P_ _S-1.

Proof. We note that P_ is a solution of (1) and that F >_ P_. Now, since A1
ho|ds the comparison theorem of Reid implies our result (see Reid [4, Corollary
p. 198 or Lemma 2.3]).

Remarks. Notice that Theorem 2 is a remarkable generalization of the one-
dimensional situation, where (1) has the form

dP p2
(5)

dt
2fp

r
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with r and q positive, and C_ is the half-line (r(f- x//f2 + q/r), ). Further
solutions of (5) for (r(f x//f 2 + q/r), ) escape to infinity in finite time, and
this also generalizes (see [3]). Theorem 2 can be interpreted to imply that a certain
variational problem is free of focal points for certain end conditions.

Conclusions. We have shown that in a completely controllable and completely
observable system the associated Riccati equation possesses exactly one positive
definite equilibrium P and exactly one negative definite equilibrium P_. Further,
the cone C_ induced by P_ has the property that the set (t, _, to) is bounded
below by P_ in the ordering of C for all > to. In a future paper, we shall discuss
the equilibria of (1) which are neither positive nor negative definite.

Add in revision. After’ this paper was submitted the authors noted that
Theorem 1 was independently discovered by Willems in [5. One of the referees
also pointed this out.
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PERTURBATIONS IN NONLINEAR SYSTEMS*

NOAL C. HARBERTSONf

Abstract. If a certain system of nonlinear differential equations has a bounded solution x(t),
then for the same system subject to a small perturbation the existence of a solution y(t) which lies
"close" to x(t) is established.

1. Introduction. In [7] May has shown that if a certain nonlinear system of
differential equations possesses a solution x(t) bounded on the entire real line,
then the same system subject to a small perturbation has a solution y(t) which is
"close" to x(t) on the entire real line. The method used to prove this involves
first finding (using hypotheses called (H1)) a solution y(t) of an improper integral
equation and then showing (using rather restrictive additional hypotheses called
(H2)) that y(t) was a solution of the perturbed differential equation. The objective
of this paper is to prove the same result using only hypotheses (called (H)) which
are weaker than (H1) and an alternative method of constructing y(t). In our con-
struction of y(t) we do not employ an improper integral equation. We do show,
however, that if(H x) holds ((H) implies our (H)), the y(t) obtained by our procedure
satisfies the improper integral equation used by May. We also discuss the relation
between our results and earlier work by Marlin and Struble [6 and Fennell and
Proctor [3] on perturbed systems similar to ours.

Our proofs utilize the Schauder-Tikhonov theorem, a generalization of the
variation of parameters formula, and techniques similar to those introduced for
linear systems by Brauer and Wong [1] and Hallam and Heidel [4]. Fennell and
Proctor [3] have also used similar methods in treating nonlinear systems.

2. Preliminary considerations. Consider the differential equations

(1) x’ f(t, x),

(2) y’ f(t, y) + eg(t, y).

We assume f and g are continuous n-functions defined on R x f, where f is an
open connected subset of R". In (2), e denotes a nonnegative scalar parameter.
We also assume that fx(t, x)= (c3f/cx)(t, x) exists and is continuous on R x f.
Forto e R, c e fL the solution x(t) of(1) that satisfies x(to) c is denoted by x(t, to, c)
The principal matrix solution (t, to, c)= (cgx/#c)(t, to, c) is the solution of the
linear variational equation

Z’ fx(t, x(t, o, c))Z,

which satisfies q)(to, to, c) I, where I is the n x n identity matrix.
Let D be a bounded subregion off such that the closure ofD is contained in f.

If x(t)is a fixed bounded solution of(l)defined on R that lies in D and has no limit

* Received by the editors August 31, 1971, and in revised form January 5, 1972.- Department of Mathematics, Fresno State College, Fresno, California 93710. This work was
supported by the U.S. Army Research Office, Durham.
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points on the boundary of D, then there exists a d > 0 such that

{Xo’lXo x(t)l =< d for some R}
_

D.

If m is a natural number, we denote by cg the set of all continuous n-functions
defined on [-m, m], and define the space 5 by

5m {yCm’lY(t) x(t)l __<-- d,-m =< =< m},
with the sup norm. (We use to denote any appropriate vector or matrix norms.)

We suppose that (1) may be written as a pair of uncoupled equations

(3)

(4) xl fz(t, x)),

where ft is a k-function, fz is an (n k)-function, x a k-vector and xz is an (n k)-
vector. With similar notation we can write (2) as

(5) Yl f(t, y) + egg(t, y),

(6) Yi f2(t, Y2) + eg2(t, y).

We assume that, for arbitrary to R and z (z, z2) D (again z is a k-vector and

z2 an (n k)-vector), the solutions x(t, to, z) and x2(t, to, z2) of (3) and (4) exist
and are defined on the half lines [to, ) and (- , to] respectively. We also assume
that f can be factored in the form f f f2, where f is a subregion of real
k-space and fz is a subregion of real (n k)-space. Furthermore we suppose that
x(t, o, z) f) for >_ o and x2(t, o, z2) f2 for _< o. It follows that the
solutions ep(t, to,Z1) and @2(t, to, Z2) of the linear variational equations cor-
responding to (3) and (4) exist and are defined for to and =< to respectively.

Finally, we make use of the following hypotheses.
(H) There exists a positive constant J such that for every natural number m

we have

y(s))g(s, y(s))ds < J for >= >__ -mm

and

O2(t, s, Y2(s))g2(s, y(s)) ds <= J

and for all y(t) (y(t), y2(t)) e 6em.

for -m <_ <_ m

sup ly(t) x(t)l d.
teR

Proof. For simplicity we take the case f(t, x) f(t, x) and omit subscripts.
Using the Schauder-Tikhonov theorem (see [2]) we first show that there is a function

Ym e ,, which is a solution of (2) on [- m, m]. Note that Se with the sup norm is a

3. Existence of solutions of (2) "close" to x(t).
THEOREM 1. Let x(t) be a fixed bounded solution of (1) defined on R that lies in

D without limit points on the boundary of D and let (H) hold. Then for e <= d/J there
exists a solution y(t) of (2) defined on R such that
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convex space and consider the transformation - defined on 5 by

(7) -y(t) x(t) e (t, s, y(s))g(s, y(s)) ds.

Since e __< d/J we have from (H) and (7) that

(8) I-y(t)- x(t)l <= e ((t, S, y(S))g(S, y(s)) ds <_eJ <_d

for -m < N m. If y(t), z(t) 5m, then

[(I)(t, S, y(s))g(s, y(s)) (t, s, z(s))g(s, z(s))] as

(9) <__ e [o(t, s, y(s)) o(t, s, z(s))]g(s, y(s))

+ (t, s, z(s))g(s, y(s)) g(s, z(s))] as

From the uniform continuity of tI)(t, s, w) on I-m, m] -m, m] D and the
uniform continuity of g(s, w) on I-m, m] D it follows from (9) that - is a
continuous mapping on 5 Thus (8) and (9) together imply that - is a continuous
mapping from 5 into 9,,. We also have that the functions in the image set
are an equicontinuous family. To prove this let tl, t2 [-m, m] and (without loss
of generality) suppose 2 Using (7) we may write

Iy(tl)- -Y(t2)l <-Ix(t)- x(t2)[ + e (t2, s, y(s))g(s, y(s))ds

(tl, s, y(s))g(s, y(s))ds

<= IX(tl) X(t2)l + e, IO(tl, s, y(s))g(s, y(s))l ds

+ e I[O(tz, s, y(s)) O(t, s, y(s))]g(s, y(s))l ds.

Again using the uniform continuity of I) and g and the uniform continuity of x(t)
on [-m, m] it follows easily from this last inequality that the image set 5 is an
equicontinuous family. From the Schauder-Tikhonov theorem we conclude that
there exists at least one fixed point y,,(t)of- in 5. Accordingly, there is a y,,(t)
that satisfies

(10) Ym(t) x(t) e tI)(t, S, Ym(S))g(s, Ym(S))ds

for -rn __< __< rn. Equation (10) is a generalization of the well-known variation of
parameters formula, and it has been shown (see [6] for example) that since y(t)
satisfies (10) it is a solution of the differential equation (2) on [-m, m].

We now construct a sequence of solutions of (2) that converges uniformly on
compact subsets of R. For any natural number M consider for [-M, M]



650 NOAL C. HARBERTSON

the sequence {Ym(t)}m;M of fixed points (and therefore solutions of (2)) given
by (10). Since x(t) is bounded on R it follows from (H) and (10) that {Ym(t)}2_ M is
uniformly bounded on [- M, M]. Since each Ym(t) is also a solution of the differen-
tial equation (2) it follows that {Ym(t)}2=M is an equicontinuous sequence for
e[-M,M]. From Ascoli’s theorem there exists a subsequence {Ym(t)}2,=’ Of

{Ym(t)}2_M that converges uniformly on I-M, M]. By considering the sequence
{Yml(t)} ,.1 =M +1 we can construct by the same procedure a subsequence {Ym2(t)} m2
of {yml(t)}ml=M+l that converges uniformly on the interval [-M- 1, M + 1].
Furthermore, it is obvious that {yml(t)}ml=l and {ym2(t)}m.=l both converge to the
same limit on the interval [-M, M]. In fact, by induction we can construct for
each natural number a sequence {Ym,(t)}2,= of solutions of (2) which converges
uniformly on [-M- 1, M + 1] and with the property that {ym,_l(t)}m_l= and
{ym(t)}mz=l converge to the same limit on [-M + 1, M + 1].

Now define y(t) on R as the limit as m tends to infinity of the diagonal sequence
{Ymm(t)}m= 1" It is clear that for in any compact subset of R the diagonal sequence
converges uniformly to y(t). It follows that y(t) itself is a solution of the differential
equation (2) on R. We also have

and for e [-m, m],

SO

y(t) x(t) lim EYm.,(t) x(

sup [y(t) x(t)l <= d.
teR

Thus we have proved Theorem 1.

4. A comparison of (H) and (H 1) and a theorem concerning an improper integral
equation. Let denote the continuous n-functions defined on R and define

o {y ’ly(t) x(t)l d, R}.

The hypotheses (H1) used by May in [7] are as follows.
(H1) There exist functions JI(T, t) and J2(T, t) defined for T >= and T < t,

respectively, with the following properties"

and

(i) IcDl(t, s, yl(s))gl(s, y(s))l ds JI(T, t) for T __> t,

[Dz(t, s, yz(s))gz(s, y(s))l ds <= J2(T, t)

and for all y e . for 7’ <_

(ii) lim JI(T, t) 0 and lim J2(T, t) O,
T-* T--*

uniformly for in compact subsets of R.



PERTURBATIONS IN NONLINEAR SYSTEMS 651

(iii) There exists a constant J such that

Jl(t, t) <= J and Jz(t, t) <= J

for all R.
It is obvious that (H1) implies our (H) so we have an immediate corollary to

Theorem 1.
COROLLARY l. Let x(t) be a fixed bounded solution of (1)defined on R that lies

in D without limit points on the boundary of D, and let (H 1) hold. Then for e <= d/J
there exists a solution y(t) of (2)defined on R such that

sup lY(t) x(t)[ _<_ d.
tR

Proof. Since (H 1) implies (H) the proof in Theorem suffices.
We can also prove a theorem which relates our y(t) to the techniques used in

[3], [5], [7].
TI-mOREM 2. Let the hypotheses in Corollary hold. Then the solution y(t) of

(2) in Corollary satisfies the improper integral equation

y(t) x(t) do(t, s, y(s))g(s, y(s)) ds.

(In stating and proving this theorem we are still assuming that f(t, x) fl(t, x 1)
and omitting subscripts.) We know that the solution y(t) of (2) in Corollary is the
limit of the diagonal sequence {ym,,(t)}m 1, where each ym,.(t) satisfies (10) and the
convergence is uniform for in compact subsets of R. Since y(t) obviously lies in
,cT we know from (H 1) that the improper integral

(t, y(s))g(s, y(s)) dsS,

exists. We now show that

(11) lim do(t,s, ym,.,(S))g(S, ym,,(s))ds do(t,s, y(s))g(s, y(s))ds.

Given r/> 0 and for [-k, k], k an arbitrary natural number, choose T > k
such that J(T, t) < r//6. (This is possible since (ii) in (H1) holds.) For any m > T
we can write

t tdo(t, s, y(s))g(s, y(s)) ds do(t, S, ym.(S))g(S, ym,(s))ds

o(t, s, y(s))g(s, y(s)) ts + o(t, s, y(s))g(s, y(s)) cls

do(t, s, ym.(s))g(s, y.,.(s)) ds

<- J(m, t) + IO(t, s, y(s))g(s, Y(s))l ds

+ IO(t, S, ym(S))g(S, ym.,(s))l ds (cont.)
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+ [go(t, s, y(s))g(s, y(s)) go(t, s, ymm(S))g(S, y,.,(S))] ds

__< (m, t) + (T, t) + (T, t)

+ [go(t, s, y(s))g(s, y(s)) go(t, s, y,.m(s))g(s, Ym(S))I ds.

It follows from this last inequality, the uniform continuity of O(t, s, w) on [- T, T]
[--T, T] , and the uniform convergence of y.,.(t) on [-T, T] that there

exists a natural number M such that for m > M,

gO(t, s, y(s))g(s, y(s)) ds go(t, s, y,(s))g(s, y,,.(s)) ds < rl.

Thus (11) holds. From (10) and (11) we have for every e R (recall that k was
arbitrary in the proof of (11)) that

(12) y(t) x(t) go(t, s, y(s))g(s, y(s)) ds,

as was required. Equation (12) is of interest since it was used directly in the proofs in
[3], [6], [7]. In fact with his stronger hypotheses May in [7] was able to show that
every function y 5 that satisfies (12) is a solution of (2). (We would not expect this
result to hold with our weaker hypotheses.) A detailed discussion of (H 1) together
with some more "natural" conditions related to (H1) can be found in [6], [7] and
especially [5].

4. Theorem 1, Corollary 1 and the theorems in [3], [6], [7]. Theorem and
Corollary are very similar to results in [3], [63, [73. A comparison of the two
assumptions (Hi) and (H2) used in [7] with our (H) shows that we have substan-
tially improved on the results in [73. Comparison with the results in [33 and 63 is
somewhat more involved. In I3], [6] assumptions are made which imply that the
improper integral on the right-hand side of (12) exists and tends to zero for large t.
This would most commonly hold only if the perturbation term tended to zero for
large t. The assumption we have made in (H) clearly allows for truly persistent
perturbations which do not necessarily tend to zero. Ofcourse the stronger assump-
tions in [33, [6] also allow for truly asymptotic results while we can only show that
y(t) and x(t) are "close" in the sense defined in Theorem 1. Also, in [3], [6] the
differential equations considered do not explicitly contain the parameter in their
perturbation terms. We include the parameter e in our equation (2) since to assume
that solutions of (5) and (6) exist (see 2) on arbitrary half-lines would not be
reasonable without some compensating (generally small) parameter so that the
perturbations are not "too" persistent. Furthermore, it is not uncommon for
systems with a parameter to arise naturally or to have a parameter introduced by
some procedure (such as the method of averaging). Finally, we should comment
that the techniques used in obtaining our theorems are very similar to those in
[1], [3], 4]. The basic difference between all of these papers lies in the assump-
tions about the differential equations on which these techniques are used.
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THE BEHAVIOR OF OSCILLATORY SOLUTIONS OF
x"(t) d- p(t)g(x(t)) ---- O*STEPHEN R. BERNFELD’ AND JAMES A. YORKEr:

Abstract. Various quantitative properties of oscillatory solutions of the scalar second order
nonlinear differential equation x" + p(t)g(x) 0 are obtained under appropriate hypotheses on p and g.
In particular, letting {ti}f= 1, 0 < < ti+ 1, ti Zt as O, be the zeros of any solution x(t), we
obtain inequalities on j/def j’tt,,+ g(X(t))dt which yield asymptotic behavior on x(t). For example, it is

shown that limt_ j’og(X(S))ds exists and is finite" moreover, assuming an added growth condition on

g(x)/x, we have then that lim_ oX(S)ds exists and is finite.

1. Introduction. In this paper we investigate the behavior of oscillatory
solutions of the scalar second order nonlinear ordinary differential equation

(E) x"(t) + p(t)g(x(t)) O.

We always assume that solutions of (E) are unique (given X(to), x’(to)). Assume

(1.1) g:R- R is continuous and yg(y) > 0 for y - 0.

Moreover, we assume

p:0, ) (0, ) is piecewise continuous nondecreasing,
(.2)

p(t) ast---,.

A solution x(t) of (E) is said to be oscillatory if the set of zeros of x is a countable
sequence of points ti}iZ such that

< ti+ and -, as .
If in addition to (1.1) and (1.2) we assume

(1.3) G(r)o asr--,

where G(r)= .og(x)dx, then it is well known [2] that all solutions of (E) are
bounded and oscillatory.

For the second order linear equation

(L) x" + p(t)x O,

where p(t) satisfies (1.2), then it is well known that the amplitudes of any oscillatory
solution x(t) form a nonincreasing sequence and that ti+ ti -, 0 as -, ,
where once again x(ti) 0 (see [4, p. 226] and [7], for example). Using this, Hartman
[3, Cor. 3.1, p. 513-] has proved that lim,_,o.[ x(s)ds exists and is finite with the
assumption lirnt_ x(t) O.
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In Theorem 1 we obtain a useful description of the behavior of oscillatory
solutions of (E) on small intervals by using comparison-type techniques. These
methods are quite different from those used in analyzing (L) since we cannot use
the Sturm theorems. We show, in fact,

f
ti+ 12X’(ti + 1)1]2x’(ti)l > g(x(s)) ds >

p(ti) p(ti+l)

(thus implying ]j’,i+ g(x(s)) ds[ < I’+,; g(x(s)) dsl)

and
ti

lim g(x(s)) ds O,

where x(s) is any oscillatory solution of (E) whose zeros are {ti}, ti < ti+l. An
immediate consequence is that limt_ .[o g(x(s))ds exists and is finite. For g(x) x
we extend Hartman’s result the assumption "x(t) 0 as " is not needed. By
imposing additional restrictions on g we show in Theorem 3 that lim f x(s)ds
exists and is finite.

As mentioned before, for (L) it has been proved that if p C’ and satisfies
(1.2), then the values of Ix(t)[ at which x’(t) 0 of any oscillatory solution form a
nonincreasing sequence. Others later conjectured that if p is continuous, then all
solutions x(t) of (L) satisfy

(1.4) x(t)O ast.

Examples have since been given in [5] showing that (1.4) need not occur. It is in
fact quite easy to construct a piecewise constant p (dropping the continuity con-
ditions on p) in which p(t) as oe and such that there is a solution which
does not satisfy (1.4). Theorems have been proved for (L) (see [1, p. 88]) which
guarantee (1.4) by imposing various regularity conditions on p, which essentially
insure that p does not behave like a step function. Rather than imposing more and
more elaborate conditions on p, we shall change the manner in which all solutions
must approach zero. Namely for any L 1-function ’[0, ) --, R and any continuous
function y’[0, ) R we define a type of convolution operator for > 0,

(y * @)(t)= y(t + s)g/(s)ds.

If y is a bounded rapidly oscillating physical phenomenon, then one might
not be able to measure y(t) but one may be able to measure (y * O)(t) since we are
essentially smoothing y. (Of particular interest are those which are zero except
in a small neighborhood of zero and j’ 1.) We are then led to the following
definition of the asymptotic behavior of any function.

DEFINITION. A function y:[0, ) R is said to be weakly asymptotic to zero
if for every e L1([0, oo)),

y*O(t)O ast ,
where y * O(t) satisfies (1.5).
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In Theorem 2 we show that under conditions (1.1), (1.2) and (1.3), g(x(t)) is
weakly asymptotic to zero and that under more restrictive conditions on g each
solution x(t) is weakly asymptotic to zero.

For a survey of results see [8].

2. Results. We shall present our main results.
THEOREM 1. Assume conditions (1.1) and (1.3) and that p:[0, oo)--+ (0, c)

is piecewise continuous and nondecreasing. Let ti} o= 1, ti < ti + 1, be the set of zeros

of any solution x. Define

Ji g(x(t))dt.

Then the following inequalities are satisfied"

(2.1)
2[x’(ti)[ > IJ,I > 2[x’(ti+ 1)[

J,+ 1l < IJ,I.
P(ti P(ti+l

If in addition, (1.2) holds, then

IJil -+ O as i-+

COROLLARY I. Assume conditions (1.1), (1.2), and (1.3). Then .for every solution
x(t) of (E), limt_+ f’o g(x(s)) ds exists and is finite.

THEORWM 2. Assume conditions (1.1), (1.2) and (1.3). Then for every solution
x(t) of (E), g(x(t)) is weakly asymptotic to zero.

THgORM 3. Assume conditions (1.1) and (1.2) are satisfied. Assume g is an odd
function and g(x)/x is nonincreasing for x > O. Then for every oscillatory solution
x(t) qf (E),

(2.2) lim x(t) dt exists and is finite.
T-+

Remark. Every solution of

x" + p(t)x 1/(2n+ 1) O, n= 0,1,2,-..

where (1.2) holds, satisfies (2.2) since g(x) x 1/(2n+ 1) satisfies the hypotheses of
Theorem 3. For n 0 we obtain (L) which as we have mentioned has been analyzed
by Hartman.

Example 1. We now show that (2.2) need not hold without the hypothesis
used in Theorem 3 that g is odd. Define

X, X > O,
(2.3) g(x)

2x, x <= O.

Consider the equation

(2.4) x" + kg(x) O, x(O) O, x’(O) 1.

Let {ti} oo= o be the zeros of the solution x(t) of (2.4), where to 0. Then x(t) > 0
for (tzi, tzi + 1) and x(t) < 0 for e (t2i + 1, tzi+ 2). Moreover, an easy calculation
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yields the results

(2.5) x(t) dt 2/k, x(t) dt 1/k.
2i+1

We assume g satisfies (2.3) and construct a piecewise continuous function p as
follows. Let p(t) for [so, s2), where so 0 and s and s2 are the first three
zeros of the solution y(t) satisfying

y" + g(y)= o, y(O) o, y’(o)= .
Define p(t) + for [s2i s2i + 2), where s2i s2i + and s2i + 2 are consecutive
zeros of y(t) satisfying

y" + (i + 1)g(y) 0, y(s2i O, y’(s2i 1.

Sinces2i+2 Szi n(i + 1) -1/2 + n(2i + 2)-1/2, wehavei=o ($2i+2 Szi)- GO,

and hence p(t) is defined for e [0, ). Hence it follows that since y(si) 0 and
y’(si) for all i, y(t) satisfies

y(0) 0, y’(0)= .y" + p(t)g(y) O,

Using (2.5) we have

and

Then for any n,

fs$2i 2
y(t) dt

i+1

y(t) dt
s+l i+1

x(t) dt
i= o + 1’

so j’ x(t)dt is not finite. Of course, from Corollary we know g(x(t))at exists.
In fact, a calculation yields y g(x(t))dt O.

Remark. It is curious that the proof of Theorem (and all the results that
follow from it) use the assumption that solutions of (E) are unique and we do not
know if the results remain true without this assumption. We also do not know
any examples of p and g satisfying (1.2) and (1.1) respectively for which solutions of
(E) fail to be unique!

3. Proof of Theorem 1.
LEMMA 1. Assume conditions (1.1) and (1.2) are satisfied. Let x(t) be an oscillatory

solution of (E) and let {ti} = be the consecutive zeros of x(t). Then

(3.1)
Ix’(ti)[

tends monotonically to 0 as - GO.
p(t,)
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Proof Letting r(t) be any function we shall use the following Dini derivatives"

D + r(t) lim sup
h--,O

r(t + h)- r(t)

D-r(t) lim inf
hO

r(t + h)- r(t)

Since p(t) is a nondecreasing function, D-p(t) >= O. Define

where G(r) j’ g(u)du. Then

x’(t)x"(t) (x’(t))ZD-p(t)
D + V(t)

p(t) 2pZ(t) + g(x(t))x’(t)

-(x’(t))2D-p(t)
<_0o

2p2(t)

Since p is piecewise continuous and V decreases at the discontinuities of p it
follows that V is nonincreasing. Hence V(ti) is nonincreasing. From (3.2) and (1.2)
we have

x,(ti)12 V(ti
=2-3 -0 asi-.

P(ti)
We now prove two comparison results.
LEMMA 2. Let x(t) and y(t) be two C2-functions with

x(s,)
(3.3)

x’(s) o, y’(s) > o.
Assume x and y are strictly increasing on It a, sx] and [ux, sx] respectively with

(3.4) x(t ) y(u ,) o.
Assume x" and y" are negative on (t s] aM (u s] respectively. Moreover, assume

(.5) y"(u) < x"(t),

when (t, Sl) and u (ux, s) satisfy

(.6) x(t) y(u).

Then for such and u,

(.7) x’(t) < y’(u).

Furthermore,

(3.8) u > t a x(u) > y(u) for all u(u,s).

Moreover, if g is any function satisfying (1.1), then

(. g(x(tt t > g(y(s s.

(x’(t))
(3.2) v(t) + G(x(t)),

2p(t)
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Proof. Since x and y are strictly increasing with x(tl)= y(ul)= 0 and
x(s) y(s), there is a unique continuous differentiable one-to-one, onto mapping
T:[u, s ---, tl, sl] such that x(T(u)) y(u) for u u, sl]. We can in fact define

(3.0) T(u) x-((u)).
From (3.5) we have for u

"(u) < x"(T(u)),

and we first must show (3.7) holds; that is, for u e (Ul, sx],

(. 1) x’(r(u)) < ’(u).

For u s, (3.11) holds. Let u2 be the smallest number in [Ul, Sl] such that (3.11)
holds for ue(uz,s]. Ifu2 ul, then (3.11) is proved. Ifu2 Ul, then

x’(T(u)) ’(u).(3.12)

From (3.10),

so

d

du
d

(u) Yu x(r(u)) x’(r(u)) r’(u),

(.3) r’(u) x’(T(u))"

Using (3.12) we have T’(u2) 1, and defining

we obtain

A(u) x’(T(u))- y’(u)

A’(u2) x"(T(u2))T’(u2)- y"(u2)

x"(T(u2))- Y"(u2) > 0.

Since/k(u2) 0 and A’(u2) > 0, we have that A(u) > 0 for u e (b/2, u2 -+- ( for some
> 0; that is, x’(T(u)) > y’(u) for u e (u2, u2 + i]. But this is a contradiction since

(3.11) holds for u e (u2, s]. Thus (3.11) holds for all u
We now show (3.8) holds. Since x’ > 0 on It1, sa) and.y’ > 0 on [u, s] we

have from (3.11) and (3.13) that

(3.14) T’(u) > 1.

Then for u [u, sl),

S T(u)= T’(r) dr > dr s u,

thus implying u > T(u). In particular, U > t and since x and y are strictly in-
creasing, we have for u e [Ul, s),

x(u) > x(T(u))= y(u),

thus proving (3.8).
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We now show (3.9) holds. Observe

(3.15) g(y(u)) T’(u) du g(x(T(u)) d(T(u)).

Using (3.14) and (3.15), we have

g(y(u)) du < g(y(u)) T’(u) du

g(x(T(u)) d(T(u))

f
thus concluding the proof of Lemma 2.

LEMMA 3. Assume (1.1) holds and p:[0,) (0, o) is piecewise continuous.
Let x(t) be an oscillatory solution of (E) in which tl, t2 are two consecutive zeros of
x(t) with < 2 6/t/d x(t) > 0for t (tl, t2). Let s 6(t t2) be the point where the
maximum of Ix(t)l occurs. Let r:[tl,Sl] R be continuous. Assume there is a
unique solution yo(t) for
(R) y" + r(t)g(y) O, y(sx) x(sx), y’(s) O,

where r(t) >= P(S1) p(t). Let u be the first zero of Yo less than si and Yo > 0 on
(Ul, SlY. Then tl <= S and

(3.16)
x(t) >= Yo(t) for e [ux, s,

g(x(t)) dt >= g(yo(t)) dt.

Proof. For e > 0 let re(t r(t) + e and let Ye be a solution of

y" + re(t)g(y O, y(sx) X(Sl), y’(Sl) e.

On It1, Sl] and [ue, Sl] where ue is the first zero of Ye less than Sl, we thus have the
hypotheses of Lemma 2 holding. Hence,

t < u < S1, x(t) > ye(t) on [b/e, Sll(3.17)

and

ftS1 ;1(3.18) g(x(t)) dt > g(y(t)) dt.

Since yo(t) is the unique solution of (R) on [Ul,Sl] we have by continuous de-
pendence,

(3.19)
y(t) --, Yo(t) as e ---, 0 uniformly for e [ul, s,
U U as g 0.

By use of(3.17), (3.18), (3.19) it follows that (3.16) holds, thus concluding the proof
of Lemma 3.
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We are now able to prove Theorem 1.

Proof. Assume conditions (1.1) and (1.3) hold and that p :(0, ) - (0, ) is
piecewise continuous and nondecreasing. Let ti)= 1, ti < ti+ be the set of zeros
of any solution x. Define

Ji g(x(t))dt.

We prove

(3.20)
2lx’(t,)] > IJi[ >

2lx’(ti+ 1)]
p(ti) p(ti+ l)

by first showing

(3.21) g(x(t))dt >=
where si (ti, ti+ 1) and x’(si) 0. Define

gxt dt
si

r(t) p(2si t) for [ti, si).

From the monotonicity of p(t) we have r(t) >= p(t). Let yo(t) be a solution of

(R) y" + r(t)g(y), Y(Si)-- x,(si) y’(si)- O.

Note that if yl(t) is another solution on ti, s;], then Xo(t) yo(2S t) and Xl(t)
yl(2s t) are solutions of (E) with Xo(Si) xl(si) x(si) and X’o(Si) x’l(si) O.

Since solutions of (E) are unique, xo x and Yo Y l, so (R) has a unique solution.
Hence yo(t) satisfies the hypotheses of Lemma 3. Letting ui denote the first zero of
yo(t) less than si we have ui > ti and from (3.16) conclude

(3.22) g(x(t)) dt >= g(yo(t)) dr.

Moreover from the definition of r(t) and the uniqueness of solutions of (E) we have
yo(t) x(2s- t) for e [2s- t+, s]; thus u 2s- ti+ which implies
Si- Hi-- ti+ Si" Therefore,

fi ;tig(yo(t)) dt g(x(t)) dt,
si

and with the use of (3.22)we have proved (3.21).
We now prove (3.20). Observing that

[x’(ti)] [x’(si) x’(ti)[ x"(t) dt

p(t)g(x(t)) dt >= p(ti) g(x(t)) dt

and using (3.21) we have

2[x’(ti)[ >= p(ti) g(x(t)) dt + g(x(t)) dt
$i

p(ti)
t’+

g(x(t)) dt
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thus proving the first inequality in (3.20). The inequality is reversed for x’(ti+ 1);
that is,

t’

dt2]x’(ti+ 1)1 21x’(ti+ 1)- x’(si)] 2 p(t)g(x(t))

<= 2p(t + ) g(x(t)) <__ p(ti + ) g(x(t))

proving the second inequality in (3.20).
We now claim

(3.23) sgn Ji+ --sgn Ji,

(3.24) [Ji+ ]Jil,

(3.25) JiO asi

(using the additional hypothesis (1.2)), and hence, from the alternating series test,

i Ji exists and is finite, thus implying g(x(t))dt exists and is finite.
Since x(t) is oscillatory, g(x(t)) is oscillatory, and hence (3.23) holds.
From (3.20) we immediately obtain (3.24).
We need now only to prove (3.25). With the use of (3.20) and Lemma we

obtain
2lx’(t,)[

[Ji 0 asi ,
()

thus proving (3.25) which concludes the proof of Theorem and Corollary 1.
Remark. J. S. W. Wong has suggested an alternative proof of Corollary

which does not make use of Theorem 1. This proof uses an additional (stronger)
hypothesis that p is absolutely continuous. We now present his proof since the
techniques are of some interest.

Alternative proof. Divide the terms of (E) by p(t) and integrate the first term by
parts. This gives

(3.26) + pds + g(x(s)) ds O.
p o (s

From Lemma 1, Ix’(t)2/p(t)l is bounded by some number B, so x’(t)Z/p 2 tends
to 0 as . Therefore the first term of (3.26) tends to a constant as .
To prove the corollary, that limt_ j’ g(x(s)) ds exists and is finite, it is sufficient to
prove that the integrand, x’(s)p’(s)/p(s)2 in equation (3.26) is absolutely integrable
on IT, ) for some T. To see this, observe that

x’(s)p’(s)
ds<= B1/2fw p’(s)

B fo -3/2
p3/2(S-- ds /2 p dp <

,T

Therefore the result is proved.

4. Proof of Theorem 2.
LEMMA 4. Assume conditions (1.1) and (1.2) hold and that g is odd. Assume x(t)

is an oscillatory solution of (E) and let ti}= be the successive zeros of x(t). Let s
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be the point where the maximum of [x(t)l occurs on the interval (ti, ti+ 1). Then
IX(Si+ 1)1 IX(Si)I for all i.

Proof. Define

V(t) (x’(t))2/2p(t) + G(x(t)).

It was shownin Lemma that Vis a nonincreasing function. Hence V(si+ 1) --< V(si).
Since x’(si) O,

G(X(Si+ 1)) G(x(si)).

Using (1.1), and the fact that g is odd we have Ix(si+ 1)1 < Ix(si)l.
Remark. Using the proof of Lemma 4 observe that if(1.1) and (1.2) are satisfied

(without the assumption g is odd), then G(x(si+l))<= G(x(si)) implies Ix(si+2)l
<__ [x(si)[, so Ix(t)[ is bounded.

Proof of Theorem 2. Let x(t) be any solution of (E). From Theorem 1,

o g(x(t))dt < oo hence

(4.1) lim g(x(t+s))ds=0 for anyb>a>_0.

Moreover, since x(t) is bounded (as a consequence of the remark following Lemma
4) and g is continuous, there exists an M > 0 such that ]g(x(t))] __< M for e [0, ).
Let 0 be any function in LI[0, ). For any e > 0 there exists a > 0 such that

[O(s)[ ds <
4M"

On the interval [0, z] there exists a piecewise constant function/(t) such that

[0(s)- p(s)] ds <
4M

(see [6, p. 77]). Define p(t) 0 for > r. Hence,

fo I(s) ,(s)l as 10(s) ,(s)l as + 10(s)l as

_< +
4M 4M 2M

Thus,

(4.2)

g(x(t + s))O(s)ds g(x(t + s))(k(s)- t(s))ds

+ g(x(t + s))(s) as

_<- + g(x(t + s))(s)cls
-2

Since p(s) is a piecewise constant function there exists a finite number N of values
{Ci}/N: ofpon [0, r],anda set of{a,} +1 where0 al < < ai < < aN+l

z such that
p(t) Ci for lag, ag+ 1).
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Using (4.1), there exists T/}= such that

(4.3) Ci Ja g(x(t + s))ds < - fort > T/.

Let T max (T,,..., TN). For > T, we have, using (4.3),

g(x(t + s))lu(s) C g(x(t + s))ds
i=1

<= , C g(x(t+ s) ds
i=

From (4.2),

I(g(x) * q)(t)] ff dsg(x(t + s))q,(s) < fort> T.

we shall show

(5.2)

(5.3)

(5.4)

sgn Ui + -sgn

Ui+ll <= Uil,

UiO asi-+ ,
and thus conclude that x(t)dt exists and is finite.

Since x(t) is oscillatory (5.2) follows immediately.Assume is such that x(t) > 0
for (ti, ti + ).

We now prove (5.3). Define

r(t) p(t + (si+ si)) for [ti, ti+ 1.
For [ti, ti+ 1], let z(t) be a solution of

(Z) z" + r(t)g(z) O, z’(si) O, Z(Si) --X(Si+ 1)"

Since g is an odd function, and from the uniqueness of the solutions of (E),

(5.5) z(t) x(t + (Si+ Si)).

We now show that for as long as z(t) > 0 we have z(t) <= x(t) for [ti, ti+ 1].
From Lemma 4,

Z(Si) IX(S/+ 1)l <
Consider the two cases z(si) < x(si) and z(si) x(si).

ti+

(5.1) g X(t) dt;

5. Proof of Theorem 3.
Proof of Theorem 3. Let x(t) be an oscillatory solution;let {t/}?__, be the

successive zeros of x; and let Si(ti, ti+ 1) be those points such that [x(si)l is the
maximum of Ix(t)l for (ti, + 1)" Define

Hence, since ; is arbitrary, g(x) is weakly asymptotic to zero.
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Case 1. Assume z(si) < x(si). Define

r (x/z)’
hence,

(z,r/)’ (zx’ xz’)’

(5.6) zx" xz" -zpg(x) + xrg(z)

g(x) rg(z)xz -p--+

clef
There exists a 6 > 0 such that 0 < z(t) < x(t) for e J (si- 6, si + 6). Since
g(x)/x is nonincreasing,

g(z(t)) > g(x(t))
for 6 J,

z(t) x(t)

and with r(t) p(t) we have from (5.6),

(5.7) (z2q)’ => 0.

Since rl(si) 0 and from (5.7), we conclude

and thus

z2(t)rl(t) >= 0

z2(t)rl(t) <= 0

for (si, si + ),

for (s b, si),

rl(t) <= 0 forte (si- (5, si).

Therefore x(t)/z(t) has its minimum value at si at which x(si)/z(si) > 1. Thus,
as long as z - 0, we have that x(t) > z(t).

Case 2. Assume z(s) x(s). Let z,(t) be a solution of the system

z" + r(t)g(z) O, z’(si) O,

z(si) x(si) 1/n, n 1,2,

Byourpreviousargumentswehaveprovedthataslongasz,(t) > 0, then z,(t) < x(t).
By continuous dependence z,(t)--, z(t) uniformly for e [ti, ti+ 1]- Hence, for as
long as z(t) > 0, then z(t) <= x(t).

Hence, if a and b, a < si < b, are the first zeros of z less than s and greater than
s respectively, then ti =< a < b =< ti+ 1. From (5.5), z(t)= -x(t + (s+l si))
for all e [a, b] hence, b a t+ 2 ti+ 1, thus yielding

ti + 2 ti + - ti + ti"

Since x(t) >= z(t), we also have

x(t) dt >= z(t) dt x(t) dt
ti+

thus proving (5.3) for the case where Ui > O. Using these same techniques it
follows that (5.3) holds for Ui < O.

r/(t) __> 0 for [si, s / ),
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To prove (5.4) it is sufficient to show
ti + ti 0

since Ix(t)] is bounded. Define the extended real-valued function

h(t)=p(t), > O, # ti,
x(t)

and h(ti) . From the hypotheses on g there exists a B > 0 such that g(x(t))/x(t)
>= B. Then from (1.2), h(t) - as . For any integer k pick an integer I I(k)
so large that for >= I, h(t) >= k. Observe that x(t) satisfies

x" + h(t)x O,

x’(s,) O.
Let z(t) be a solution of

z" + kz O, z(s,) x(s,), z’(s,) O.
Since g(x)= x satisfies the hypotheses of the theorem and since h(t)>= k for

(t, t+ ), then from our previous analysis we may conclude that z(t) >= x(t)
for (t, t + ). If a and b are any two consecutive zeros of z, then from (5.8),

k-/2z b a >= t+ tt >- t+ t for/>=I.

Since k is an arbitrary positive integer, t+ ti 0 as ---, , thus proving (5.4),
and hence Theorem 3 is proved.

6. Concluding remarks. If in Theorem 3 the assumption "g(x)/x is non-
increasing" is omitted, then it may not be necessarily true that x(t)dt exists
and is finite. One does not expect the same "nice" behavior governing the zeros of
oscillatory solutions. However, on finite intervals it may be possible that x(t)dt
behaves well. In particular, one interesting open problem is whether under the
weaker hypotheses we have x(t + s)ds 0 as for any a > 0 (still assuming
g is an odd function).

It seems that our results can be extended to include the equation

(Y) (r(t)x’)’ + p(t)g(x) 0

under appropriate general hypotheses on r(t) by transforming (Y) back to (E).
Finally, it would be interesting to investigate the nonlinear equation

x" + f(t, x) O,

where f:[O, oe) x R [0, o) is continuous such that f(t, x)/ as --. o for
each x, xf(t, x) > 0 for all and x # O, and f(t, x) is an odd function of x for each t.
A natural problem then would be to find additional conditions on f(t, x) so as to
obtain results similar to those presented in this paper.
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