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A FURTHER EXTENSION OF THE LEIBNIZ RULE TO FRACTIONAL
DERIVATIVES AND ITS RELATION TO PARSEVAL’S FORMULA*

THOMAS J. OSLERY

Abstract. The familiar Leibniz rule for the Nth derivative of the product of two functions is

pu-x("

)D”“"uD"v. A generalization of this formula for fractional derivatives is given as
n

D*uv = Za( )D“"“"'VuD“””v, where o« need not be a natural number and 0 < a < 1. (The
an + y

special case, « = 1, appeared previously.) Further generalizations of the Leibniz rule are also given and
are derived from a generalization of Taylor’s series given previously by the author. It is shown that these
new series are generalizations of Parseval’s formula from the study of Fourier series. Finally, new series
expansions relating the special functions of mathematical physics are derived as special cases of the
generalizations of the Leibniz rule. These series include a generalized Dougall’s formula, several series
of the Cardinal type, and a series related to a problem of Ramanujan.

1. Introduction. The fractional derivative of order a of f{(z) with respect to
g(z) is written Dj,, f(z) and is an extension of the familiar derivative d’f(z)/dg(z)*
to nonintegral values of a. Fractional derivatives have been employed successfully
in finding solutions to ordinary [9], partial [6], [18], and integral [5] equations.
In these applications, the fractional derivative is advantageous because certain
critical operations which are not obvious in a classical formulation are suggested
by the notation itself. Consider, for example, the result

1‘ X a1 t B h-1 :1- X B a+ﬁ_1d
F(oc)F(B)L(x 0 L St — ™" dudt r(a+ﬁ)f0 f@0)(x = 1) ‘)

Re (x) > 0,Re (B) > 0.Inthenotation of fractional derivatives, this last result reads
D:*D.f(x) = DS f(x),

a result which students of the calculus would guess.

Fractional derivatives are also of value in exploring the properties of the
higher transcendental functions. Consider the known, but not commonly seen,
formula for the Bessel function of order v:

Jv(z) — (22)_V7I— 1/2Dz—2u— 1/2 ES_Z
z

When vis —1/2, —3/2, —5/2, - - -, this formula shows that J(z) is an elementary
function. Since J,(z), and many of the important special functions, can be repre-
sented as fractional derivatives of elementary functions, it seems reasonable that
important properties of the higher transcendental functions could be derived
from a knowledge of rules for manipulating fractional derivatives. This observation
has appeared previously [7], [9], [11], [12], [13], [14]. The author’s papers [11],
[12], [13], [14], [15] have been concerned with extending familiar rules for
derivatives from the elementary calculus (chain rule, Leibniz rule, Taylor’s series)
to the higher calculus of fractional derivatives.

* Received by the editors October 14, 1970, and in revised form February 12, 1971.
+ Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12181.
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2 THOMAS J. OSLER

As early as 1859, George Boole [2, Preface] wrote : ““This question of the true
value and proper place of symbolical methods is undoubtedly of great importance.
Their convenient simplicity—their condensed power—must ever constitute their
first claim upon attention.” It is in this spirit that the Leibniz rule from the element-
ary calculus is extended in this paper and used in conjunction with fractional
derivative representations of the special functions. In this way the ““‘simplicity and
condensed power” of the fractional derivative notation is exploited.

We list below successively more complex extensions of the familiar Leibniz
rule,

N IN
DNuv = ) ( )DN’"uD"v.
n=0\N
Extension 1. If « is not a natural number, the Leibniz rule admits the simple
generalization

1.1 Diu(z)p(z) = ), ( )D‘;‘_"u(z)D'z'v(z)

o
n=0 n

which was known to Grunwald [8] as early as 1867. Other authors have also
considered this formula [1],[11],[12],[15],[16], [19]. A simple derivation employ-
ing complex variable techniques and Taylor’s series is given in the author’s
expository paper [15].

Extension 2. Equation (1.1) has a disturbing feature. If we interchange u and
v, the formula remains unchanged on the left side, while on the right side this is not
obvious since u is differentiated fractionally and v is differentiated in the usual
elementary sense. A generalization of (1.1) in which the interchanging of u and v
appears permissible on both sides is

o0

(12 Diun(a) = Y, (n N y) D2~ u(z)DZ "0(2),

n= — oo

where

(a) 3 Do + 1)
Bl T—p+ HIB + 1)

and y is an arbitrary real or complex number. This series was first published by
Watanabe [19] in 1931. The region of convergence of the series in the z-plane
was first determined by the author [11], [12].

Extension 3. Our next extension shows that we can also differentiate frac-
tionally with respect to an arbitrary function g(z), and even more, the sum need
not be over the integers n, but can be over a times n,where0 < a < 1:

n= — o

< a - - an
(1.3) Di,u(z)v(z) = ) a(an N V)D;(z)‘"‘ "u(z) Dy "u(2).

This result is new.
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Extension 4. By introducing the function 0((; z) = (g({) — g(2))q({), we can
generalize the previous result to

DrouuD) = Y a( * )D:;)“"”[u(zm(z)“"”]

n=—w \an+7y
(1.4)

: D‘;?J y[l’(C)Og(()(C ;z)g(Q)~ 1]

k)

{=z

whereagain0 < a < land yisarbitrary. This new result can be simplified provided
(g~ '(0)) = 0as

Digaen = % af " JDi o)
(1.4a) e )

. panty—1 —an—y
Dt [dg(z)q(z) :|

Extension 5. The product uv can be replaced by a general function of two
variables. This leads to the generalization

a — - « a—an—y,.an+
5) Dg(z)f(z, z) = "zz_w a(an + y) Dg(é),g(i)y !

LS, D05 2)q ()™ g ()~ 7]

>

&=z
(=z
where again 0 <a <1, and 60((:z) = (g({) — g(2))q({). Here the Dif . f(£,0)
means operate on f(&, () with D}, holding ¢ fixed followed by D5, holding {
fixed. If we set f(&, ) = u(€)v({) in (1.5), we obtain (1.4). If, in addition, f(¢, g~ 1(0))
= 0, (1.5) simplifies to a form corresponding to (1.4a):

o0

o
o _ a—an—y,ant+y—1
Dy f(z, )= a(an +y)Dg(e:>,g<¢>
n

="

(1.5a) L& D@01 )

&=z

{=z

The special case of (1.5) in which ¢({) = 1 and a = 1 (and thus 0,,((; z) = 1) was
given by the author in [11], [12]. All the preceding generalizations of the Leibniz
rule are special cases of (1.5).

While derivations of special cases of our generalized Leibniz rule (1.5) have
been given previously, the derivation presented in this paper is not an extension of
previous methods. An entirely new technique is employed based on the author’s
previous generalization of Taylor’s series to fractional derivatives [14].

The relationship between the generalized Leibniz rule and the familiar Parse-
val’sformula[21, p.37] from Fourier series is examined. We discover the interesting
fact that Parseval’s formula is a special case of the Leibniz rule in much the same
way that a Fourier series is a special case of a Laurent series.

The paper concludes with an examination of several infinite series expansions
derived from (1.5) by introducing specific functions for f, g, q, 0, and specific
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parameters for «, y, and a. These series which relate the higher transcendental
functions show one way in which fractional derivatives can be exploited in the
study of the special functions.

In summary, then, this paper contributes the following items in mathematical
analysis:

(i) The generalization of Leibniz rule (1.5) as well as its special cases (1.3),

(1.4), (1.4a), and (1.5a) are new.

(i1) The derivation of the generalized Leibniz rule (1.5), based on a generalized

Taylor’s series, is new. (See § 4.)

(iii) The observation of the relation between the Leibniz rule and Parseval’s

formula is new. (See § 3.)

(iv) Several of the series expansions relating the special functions (see Table

5.2) appear to be new.

2. Fractional derivatives and special functions. In this section we review the
definition of fractional differentiation and give examples of common special func-
tions of mathematical physics represented by fractional derivatives of elementary
functions.

The most common definition for the fractional derivative of f(z) of order o
found in the literature is the “Riemann-Liouville integral” [4], [5], [6], [7], [8],
(9], [18]

DAf(2) = [(~a)"! f 0 — o dr,
0

where Re («) < 0. The concept of a fractional derivative with respect to an arbitrary
function g(z), D5, f(z), was apparently introduced for the first time in the author’s
papers [11], [12], while the idea appeared earlier for certain specific functions
g(z) in [6]. The most convenient form of the definition for our purposes is given
through a generalization of Cauchy’s integral formula. A thorough motivation
for the following precise definition is found in [11], [12].

DEFINITION 2.1. Let f(z) be analytic in the simply connected region R. Let g(z)
be regular and univalent on R, and let g~ '(0) be an interior or boundary point
of R. Assume also that {. f(z)g'(z)dz = 0 for any simple closed contour C in
R U {g~(0)} through g~ !(0). Then if o is not a negative integer, and z is in R, we
define the fractional derivative of order o of f(z) with respect to g(z) to be

" T+ 1 [ d
@1 Diw/(2) = TL—@)W.

For nonintegral o, the integrand has a branch line which begins at { = z and passes
through { = g~ '(0). The limits of integration imply that the contour of integration
starts at g~ '(0), encloses z once in the positive sense, and returns to g~ *(0) without
cutting the branch line or leaving R U {g~*(0)}. (See Fig. 2.1).

If o is a negative integer — N, ['(« + 1) = oo while the integral in (2.1) vanishes.
If we interpret (2.1) as the limit as o approaches — N, it then defines the derivative
of order —N, or perhaps we should say the “Nth iterated integral of f(z) with
respect to g(z).”
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Im(L)

Branch line for (g(C)-g(z))-“-I

/

7
/

/ - Re ()

FiG. 2.1. Branch line and contour of integration for Definition 2.1 of fractional differentiation

It is important to notice that with the restrictions on g(z) as given in Definition
2.1, the substitution w = g(z) maintains the equality D3, f(w) = Dg ., f(g(2)).
It is particularly interesting to set g(z) = z — a, for we find that

T + 1) (€7
22) D1 =12 f FOE =27 de.

While ordinary derivatives with respect to z and z — a are equal, (2.2) shows that
this is not the case for fractional derivatives, since the value of the contour integral
depends on the point { = a at which the contour crosses the branch line.

We also require fractional partial derivatives.

DEFINITION 2.2. Let f(z, w) be an analytic function of two variables for z and w
in the simply connected region R. Let g(z) be regular and univalent on R, and let
£~ 1(0) be an interior or boundary point of R. Assume also that j c Sz, wig'(w)ydw=0
and {. D%, f(z, w)g'(z) dz = O for any simple closed contour C in R U {g~'(0)}
through g~ '(0). Then if « and B are not negative integers, and z and w are in R
we write

D;ig),g(w)f(z’ w) = DZ(z)[DQw)f(Z, w)]
_ T+ DI +1) =" g'(¢)
(2.3) —4n? oo (8(0) — gl !

.f‘w” S, Og'(§) dE dl
10 (&0 — gw)f Tt
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Contour integrals of the type (2.1) occur often in the representations of special
functions. These are particularly convenient for use with the generalized Leibniz
rule (1.5). Fractional derivative representations of special functions are also found
in [11], [12] and can be easily constructed from the tables in [4]. A few examples

follow : 1-c
Fla,b;c;2) = F(?(Zb) Dbzl — 2)7e,
F(C)Zl_c a—=¢,z.a—
Fi(a;c;2) = ra > e’z 1,
Jiz) = o par129SE
v 2”\/; z Z
1 — 2\u/2
Py = LT E) ey 2y,

T T4 120

Having reviewed briefly the definition of fractional differentiation and its
relation to the special functions, we proceed to show a formal correspondence
between our generalized Leibniz rule and a familiar formula from the elementary
study of Fourier series.

3. The Leibniz rule and Parseval’s formula. In this section we formally
examine the special case of the generalized Leibniz rule (1.4). By holding z fixed,
and making a suitable change of variables, we shall see that Parseval’s formula
[21, p. 37], familiar from the study of Fourier series, emerges.

Let us begin by assuming that (1.4) is true. With g(z) = z we have

1 : = ) 4 o —an=y an+y
o s 1) 2w = ¥ po— oy D e )
! an+y —an—y—1 .
Tanty 1Pt Wo4© 0¢; 2)] L

where we recall that 0((; z) = ({ — z)g({) and 0 < a < 1. Making use of the contour
integral representation for fractional derivatives (2.2), we get

__I_J‘(Zﬂu(t)l?(t)dl__ i :_aJ*(z+)u(t)q(t)an+v dt
mido (t—z2fT' T, 4nt )y (t—zpmmt!

. f‘”’ o(0g(n)~ "7 10(t52) dt

(t _ Z)an+y+1

n= —oo

(3.1)

0

We now fix z and select the contours of integration appearing above to coincide
with the curve defined by |0(¢; z)] = |6(0; z)|; that is, the contour which passes
through the origin (in the t-plane) on which 60(t; z) has constant modulus. This
contour we assume is a closed curve which can be parametrized by the variable ¢
such that

(32) 6(t; z) = |6(0; z)|e,
with ¢y < ¢ < ¢y + 2. Using (3.2) to change the variable of integration from
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t to ¢ in (3.1), and writing u(f) = u[¢], - - -, we get

a ¢do+2mja

5 f(@)h(¢) d¢

2n Jy,

© a $o+ 2nja ang d a $o+ 2nja h o d
= 3 s [ e g [ e,

n=— oo bo

(3.3)

where we have set

1) I
@) = 0.6 2]

0 otherwise,

for o < ¢ < o + 2m,

and

H) = {v[d)]e“’w for ¢y < ¢ < o + 2w,

0 otherwise.

We recognize (3.3) as Parseval’s formula [21, p. 37].

Now consider an analytic function w(t) expanded in a Laurent series w(t)
= Z a,(t — z)". If we restrict ¢ to the circle z + |z|e'?, the Laurent series becomes
the Fourier series w(z + |z[e'?) = ) a,|z|"e™?. Note the similarity between this
and the previous calculation, in which we held z fixed and examined u and v on a
particular closed curve in the t-plane. In fact, if 0(t;z) = t — z, the contour of
integration defined by (3.2) is identical to the circle on which the Laurent series
was just examined. We conclude that by holding z fixed, the generalized Leibniz
rule reduces to Parseval’s formula in the same way that Laurent’s series reduces to a
Fourier series. Thus our extended Leibniz rule is a generalization of Parseval’s
formula.

4. The extended Leibniz rule. In formally examining the special case of the
extended Leibniz rule (1.4) in the previous section, we have seen that it is related to
the Parseval’s formula familiar from the study of Fourier series. We now proceed
to derive the extended Leibniz rule rigorously. We shall see that the derivation of
the Leibniz rule follows from the generalized Taylor’s series in much the same way
that the Parseval’s relation follows from the Fourier series.

We begin by stating and proving the special case of the extended Leibniz
rule in which g(z) = z.

THEOREM 4.1. (i) Let R be a simply connected region in the complex plane having
the origin as an interior or boundary point.

(i) Let f(&, {) satisfy the conditions of Definition 2.2 for the existence of
D22 f(&, ) and D% f (z, z) for &, {,and z in R.

(i11) Let 0((;z) = ({ — 2)q({) be a given function such that q({) is analytic for
{ e R,and q({) is never zero on R.

(iv) Assume that the curves C(z) = {{|0((; z)| = |0(0; z)|} are simple and closed
for each z such that C(z) = R U {0}. Assume also that each curve defined by
{{10(; z)| = const.} interior to C(z) is simple and closed.

(v) Call § = {z|C(z) = RU{0}}.
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Then for ze S,0 < a £ 1, and all a and y such that (ano—tl— y) is defined,

X o
Dife.z) = Y a( )Du
@.1) == \AM Y

[A(E 005 299 7q(0) ™ 7" lgmg=2
where 0,(; z) = dO({; z)/d(.

Proof. The C(z) are the curves in the complex {-plane which pass through the
origin, over which the amplitude of 6({; z) is constant. For example, if 6((; z)
= { — z, then C(2) is the circle centered at { = z passing through the origin. By
restricting z to S (described in (v)), we insure that the curves C(z) are contained in
the region R U {0} on which (¢, {) is sufficiently regular for manipulations which
follow. In particular, f(, {) can be expanded in a generalized Taylor’s series for
{ € C(2) in powers of 0((; z) since (ii), (iii) and (iv) are all that is required for its
validity [14]. We obtain
& aDE (&, 00485 2)q(0) " =g (€ — 2™

1.9 = ,,;:‘OO C(an +y + 1)

Multiply both sides of this last expression by I'(a + 1)(¢ — z)7*"'/(2xi) and set
{=2¢:

Fla+ 1) f(£,90) _ i al (a0 + l)q(é)an+y
W= Dlan + y + 1)2mi(¢ — zr~ o7 +!

2ni (& —zptt
“DETLLE, OOLL; 2)9(0) T =

(4.2)

Since (4.2) converges for £ on the curve C(z) in the complex &-plane, we can inte-
grate both sides along the contour C(z) with respect to & starting and ending at
¢ = 0. Itis clear that we can integrate term by term along the contour C(z), since
(4.2) is really a Fourier series in the variable ¢ when we replace 6(¢; z) by |6(0;
z)le:

l"(ot—l—l)J‘ f(&,8dé i al'(e + 1)
2ni Je (& — 2t 2 Tan +y + 1)2mi
J‘ g™ DA, 00LL5 2™ =, dé.
C(z)

(é — Z)a—an—y+1

Comparing the integrals above with the definitions of fractional differentiation
(2.2) and (2.3) we see at once that the generalized Leibniz rule (4.1) is obtained.
Equation (4.1) can be simplified to

= \an +y

(4.3) D3 f(z,2) = i al * )Dé,?‘""y“"‘”_l[fg(é,C)[q(i)/q(li)]“””]lg=g=z

if we add the restriction that f (&, 0) = 0.

COROLLARY 4.1. With the hypothesis of Theorem 4.1 and f(&,0) = 0, the rela-
tion (4.3) is valid.
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Proof. Comparing (4.1) and (4.3) it is clear we must show that

E = Di et f(E, OBLL; 2)g(E) ™ q(0) ™" emem.
= Di " T fUE, OLa@)/a@1™ Ny =.-
The left-hand side of this last relation can be written as

[(an + s 1) ‘z”fé 00(C 2) dC
21i H(C Z)an+y+1

E — Dg—an—y[q(é)an+y

&=z

using (2.2) and (2.3). Integrating by parts we get

B

&=z

r z*)
E= D%‘_“”_Vliq(é)"”” (a;n—: L fo JdE, C)H(C;Z)_a"_ydC]

where the jump term vanished because f(&, 0) = 0. Rewriting this last integral using
the definitions of fractional differentiation (2.2) and (2.3), and 6({; z) = ({ — 2)q({),
we see at once that the corollary is proved.

We complete our derivation by extending the Leibniz rule to the case in which
we differentiate with respect to an arbitary function g(z).

COROLLARY 4.2. Assume the hypothesis of Theorem 4.1 and the additional
conditions

(i) g(w) is regular and univalent for we g~ *(R),

(ii) F(s, 1) = f(g(s), g(1)),

(iii) E(s; w) = 6(g(s); g(w)) = (g(s) — gW)Q(s),

(iv) q(g(s)) = Q(s).

Then
a < « a—an—7y,an
Dg(w)F(W’W)= _Z a(an+y)Dg(S),g(t)y’ o
(4.4) o
d=(t; w
[ (5. 1) d(() )Q(S)“"”Q(t)“‘"‘y“l]

forweg™(S),0 < a < 1,and all o« and y for which ( (:' ) is defined.
an + y

If in addition we have
(v) F(s,g~'(0)) = O,
then (4.4) can be simplified to

o _ - o a—an—y,an+y—1
Dg(w)F(W’ w) = n=z_w a(an + y)Dg(S),g(t)y !
[6F(s )

og(t)

Proof. The proof of this corollary follows at once upon replacing z by g(w) in
Theorem 4.1 and Corollary 4.1, since D} f(z) = D%, f(g(w)).

4.5)

[Q(s)/Q()) ™" y]

S=t=w
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Remark. In Theorem 4.1 and the above corollaries, the Leibniz rule is valid
for all « and 7y for which

@\ T + 1)
(46 (an+y)_F(oc—an—y+1)F(an+y+1)

is defined. Since I'(z) is analytic except for poles at z = 0, — 1, —2, ---; and since
1/T°(z) is entire, the only values of « for which (4.6) is suspect are o« = — 1, —2, —3,
-+ . It is well known that when o is a negative integer, a = 1, and y = 0, the bino-
mial coefficient (4.6) is defined ; however, if o is a negative integer and y # 0, then
(4.6) is not defined for every integer n. A glance at (4.2) shows that the troublesome
['(« + 1) appears in the numerator on both sides of the equation. If we divide both
sides of our Leibniz rule by I'(ax + 1), this difficulty disappears. Thus we conclude
that the restrictions on « and y for the validity of the generalized Leibniz rule are

o

needed only because the notation ( ) is convenient. When we use the Leibniz

an + 7y
rule in the next section, to derive series expansions relating the special functions, we
will divide by I'(@ + 1) and conclude that restrictions on « and 7y are unnecessary.

We have completed our rigorous examination of the generalized Leibniz
rule, and now turn to examples of infinite series relating special functions which are
derived from it.

5. Examples. Before ending our discussion, it seems appropriate to examine
direct consequences of our new formulas. We select specific functions for f(&, (),
g(2), q(0), and specific parameters for a,y and a in our generalized Leibniz rule
(1.5). A list of the selections is given in Table 5.1. The fractional derivatives encount-
ered can be computed with the help of the extensive table in [4, vol. 2, pp. 181-200]
and also with the short table of fractional derivative representations for special
functions in [12, p. 668]. The results of this simple procedure appear in Table 5.2. A
similar table, restricted to the special case of (1.5) in which g({) = 1 and a = 1,
appeared in [11], [12]. The notation for the special functions used is that of
Erdélyi et al. [3], [4].

We call particular attention to the following series from Table 5.2.

Extension of Dougall’s formula. Series 9 is a generalization of “Dougall’s
formula™ [3, vol. 1, p. 7]. Dougall’s formula is the special case of series 9 in which
a=1.

Series of the Cardinal type. Series 2 through 8 are of the Cardinal type [20, pp.
62-71]. A Cardinal series gives the values of a function f(a) when the values of
f(a) are known only at o = an + 7y, where 0 < a < 1 and y are fixed and n = 0,
+1,42,---. If we set u(z) = 1 in (1.3), we obtain

gayDiyuz) & asinm(a — an — y) g(2)" "D "u(z)

(z)
(5-1) T + 1) _,,;_oo (o — an — ) r(an+gy+ 1)

Thus if f(«) is of the form

_ 8(2)'Dyy1(2)
S = T+ 1)
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TABLE 5.1

Choices for functions and parameters in the generalized Leibniz rule (1.5) from which the
series in Table 5.2 are derived

S;' (‘fs 10 4(0) g(z) * ¥
1 e et z N=123-- 0
20 -9 1 z B-C y
3 ! 1 z A—-B A-C
4| (cos{)/C 1 z? —v—1/2 —-12-B
51 (cosh)/¢C 1 22 —v—12 -1/2 - B
6 (sin {)/¢ 1 z% —v—1/2 —-1/2 - B
7 (sinh ¢)/¢ 1 7% —v—1/2 —-1/2 - B
8| (1—-¢% 1 1—z v+ b
9 | gprc-apatn-2 1 z A+C=-2 A—1

10 [EY1 =& e -k 1 z b+B—-d—-D B-D

L (1 L AL z C—-A-1 C -1

12 eAe T BLeP -1 et z o 0

13 gt {+ A z o 0

14 | gAmes CF+ P* z o y

15 | ¢Aige exp(() | z o Y

16 EABY Flay, -+, a,; 1 z o y

by, b3 0)

then (5.1) yields the Cardinal series

0

5 asin (e — an — )
"= o —an—y)

flo) =

f(an + v).

A problem of Ramanujan. The series 12 is a generalization of the series

o (4 D)"(ze )
o) = ey DT
n=0 n:
considered by Ramanujan [17, p. 332, Question 738]. Ramanujan set as a portion
of a problem the demonstration that ¢(z) = 1 for 0 £ z < 1. This problem can be
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Series expansions derived from the generalized Leibniz rule

TABLE 5.2

Note: Unless otherwise stated, 0 < a < 1 in all series

Series .
No. Series Expansion
N [N
booNATE = ( )(A By (= Bup T N = 1,2,3 -,
n=1\HN a=1
) n,F (A, B;C;z2) - sin((an + y + C — B)n),F,(A,B;B —y — an;z)
al(COrB—-C+1) ,~Z, (an+y+C—Bl(an+y+ 1)I(B—y—an)’
Re(z) < 1/2, 0 < Re(B)
3 mFi(A;Byz) i sin((an + B — C)n),F,(A;C — an;z)
al(BN(4 —B+1) ,“~_ (an+B—Clan+ A — C + DI(C — an)’
Re(4) >0
4 Fo) = al’(1/2 — v)(z/2)*"8 = sin((an + v — B)n)%_a,,(z)fi)“"’
W2 (an+v—B)l(an— B+ 1/2)\2
through
7 where #, = J,,I,,H and L, respectively, for series 4, 5, 6, and 7
g nPY(z) & sin(an+y —v—pm) P (1 - z)‘a"+v-v—u)/2
ar(v+u+1) ,=, (an+y—v—p Tan+y+ D\l +z ’
—1 <Re(v), 0<Re(z)
9 I'NA+B+C+D-3)
alA+C— 1A +D—-HI(B+C— )[(B+ D 1)
- i !
2. T(an + A)(an + B)I(C — an)['(D — an)’
1 <Re(B+C), 1<Re(A+ D), 3<Re(4+ B+ C+ D)
10 I'b+B—-1),F(e+E,b+B—1;d+D—1;2)
al'ld + D — )I'(b + B — d — D + 1)[(b)[(B)
- 2Fi(e,b;d + an;z),F|(E,B;D — an;z)
ne—wan + B— D + D(an + d)T'(b — d — an + 1)[(D — an)’
0 <Re(b), 0<Re(B), 1/2>Re(z), 1 <Re(b+ B)
E(C+D—-A—B—1)2,(C+D—A-By2; —z*
11 I(C+D—A—-B-1),F,
(D — B)/2,(D— B+ 1)/2
al'(C — A)I(C — B)[(D — A)I(D — B)
E,C—-B,D—A; -z
3F2
_ o D +an,1 — B —an
w2 T(an + C)T(an + D)I(1 — A — an)[(1 — B — an)’
0<Re(D—-A), Re(C—B), 1 <Re(C+D—-A4—-B)
© (—a), F,(P;P —a+n;(4+C
12 ,FI(P;P—a;(A—B)z)=e"‘C (=), Fy( o+ n;( n)z)

a=1

+B)z
,EO (P —a)n!(Cn + B+ C) "z

in(1.5),

Re(P) > 0

e—Cz)—n’
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TaBLE 5.2 (Cont.)

S:}'(i:s Series Expansion
1 1 i Qm)!(—a),(—Az)z + A)"*",F\(—n,B; B — a + n; —z/A)
27 5 (B — a),(n)? |
a = 1in(1.5)
14 I'(4 + B)
al'(4 + B — o)[(a + HI(A(B + 1)
[—an—v,A/k,(A+1)/k,~~,(A+ k — 1)/k; — 2%/P¥ ]
- i U antA+y—ayk, (antA+y—a+ )k, -, (an+A+y—at+k—1)k
—,,=_(l, Ian+y+ Ylan+A+y—-a)[(a—y—an+ DI'(B—y —an + 1)
[an + 7y, B/k, (B+1)/k, -, (B+ k — 1)/k; —z"/P"]
K (B —an—y + 1)k, -, (B—an —y + k)/k ’
—1<Re(4), 0<Re(B), k=1,2,3,--
5 I'(A + B)
al'(A + B — )T(e + DO(A)(B + 1)
v |:B/k, (B + Dk, -, (B +k— 1)/k; —(an + y)z* ]
o LB —an—y+ Dk, (B—an—7y+ 2k, -, (B—an— 7y + Kk

LS  Tan+ A+y—olan+y+ D@ —y —an + DI(B —y — an + 1)

[A/k, A+ Uk, -, (A4 + k — V/k; (an + )2t }

K an Aty —a)k, an+A+y—oat Dk, o, @antA+y—at+k— 1kl
—1<Re(d), 0<Re(B), k=1,2,3,--

T4 + B), F [A+B,a1,~~,a,;z ]
16 + r s
Ay B—a, by, b,

al(A + B — a)[(o + )I(A + DI(B)

B,a, -,a,;z
hd 'HFSH[B—))—an,bl,“‘,bs]
=,,:4wl“(an+v+ Dlan + A —a+ 9+ D@ —y —an + DI(B — y — an)’
—1 <Re(4), 0<Re(B)

solved easily from series 12 if weseta = —1,B=0,C = 1,and 4 = P + 1 and
obtain
Fi((P; P+ 1;(P + 1)2)
2 !
e i (n + D)(ze™?)" n!
5 n! (P + 1),
where Re (P) > 0. If we could set P = 0 on both sides of (5.2), we would answer

Ramanujan’s question at once since ,F,(0:c:x) = 1. However, the restriction
Re (P) > 0 does not permit us to set P = 0. Instead, we show that for fixed z,

Fi(P;P+n+ 1;P+n+ 1))
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0 < z < 1, the series (5.2) converges uniformly in P, for 0 £ P < 1. This uniform
convergence permits us to let P approach zero term by term in (5.2) and thereby
solve Ramanujan’s problem. As n approaches infinity, for fixed z,0 < z < 1, and
all Psuchthat 0 < P < 1,

Fi(P;P+n+1;(P+n+ 1)2)

) PP + 1)
=12 P[l"z(P+n+1)

11—z

z 2
( ) +0(|P+n+1|_2)],
[3, vol. 1, p. 280]. Thus

n!

is bounded and the series (5.2) converges uniformly in P, for 0 < P < 1, by the
familiar test of Weierstrass. Thus we have shown that ¢(z) = 1 for 0 < z < | and
have answered Ramanujan’s question.

Note on restrictions in Table 5.2. The restrictions obtained from the hypo-
thesis of Theorem 4.1 for the validity of the series in Table 5.2 are sometimes too
strong. Consider, for example, series 9. It is known that only the restriction
Re(4 + B+ C + D) > 3 is necessary. The restrictions Re(B + C) > 1 and
Re (A + D) > 1 are not needed and emerge from item (ii) of the hypothesis of
Theorem 4.1 in which we require that D¢} f(&, () be defined. Since Table 5.2 is
provided to illustrate our general expansions, all restrictions emerging from the
theorems of this paper are listed.

6.1. Concluding thoughts. In 1695 Leibniz [10], in a letter to J. Bernoulli,
expressed his interest in the fact that the binomial series

N

(A + B)N — z (]Z)AN—an

n=0
and the rule for the derivative of a product

NN
Dy = ) ( )DN‘”uD”v
n=0 \N
look so similar:
“There are yet many things latent in these progressions of summation and
differentiation, which will gradually appear. There is thus notable agreement

between the numerical powers of binomial and differential expansions ;and I believe
that I do not know what is hidden there.”

Bernoulli answered: “Nothing is more elegant than the agreement which
you have observed between the numerical power of the binomial and differential
expansions; there is no doubt that something is hidden there.”

Indeed the giants of analysis were correct. At the time of these letters, Newton
had invented an extension of the binomial theorem to fractional powers, but the
extension of the product rule had to await the invention of the fractional calculus.
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Furthermore, the binomial series admits the generalization [14]

(6.1) (4 + By = f

a( Aa—an—yBan+y
n=—oo an + Y ’

where 0 < a < 1 and |4/B| = 1. Equation (6.1) resembles our generalized Leibniz
rule (6.2):

(6.2) Duv = ) a( )D““’""uD‘"‘”u.

n=-o \an +y

Moreover, (6.1) is a special case of the generalized Taylor series from which (6.2)
is derived in this paper. Thus a reason for the similarity in the two series is made
evident.

It is already clear, however, that even further results ““lay hidden.” The
Leibniz rule for functions of the operator D more general than D* was given as
early as 1930 by Emil Post [16]. Undoubtedly Post’s form of the product rule can
be generalized to reveal further connections prophesied by Leibniz.

Acknowledgments. The author wishes to thank the referees for several
remarks which have improved the paper and for the reference to Ramanujan’s
problem. Thanks are due to Professor Joaquin B. Diaz of Rensselaer Polytechnic
Institute for informative discussions concerning the Cardinal series.
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SCHUR’S THEOREM FOR HURWITZ POLYNOMIALS*
NORMAN LEVINSON?t aNp RAY REDHEFFER}

Abstract. This paper contains a short proof of a theorem of Schur which may be used to decide
recursively whether or not a given polynomial is a Hurwitz polynomial. The analysis is based on a new
equivalence theorem for Hurwitz polynomials which has independent interest.

A polynomial with complex coefficients
f@)=ayz" +a;z" '+ - +a, ay#0,

such that all its zeros lie in the left half-plane, is said to be a Hurwitz polynomial.
Let

(1) S*@) = (=1)f(-2),
so that
) f*@) = ao2" — a2 4 a2 — - 4 (= 1)a,.

The following theorem is a reformulation of a theorem of 1. Schur [3].
THEOREM 1. Let ¢ be a complex number such that Re ¢ > 0. Then if f of degree
n 2 2is a Hurwitz polynomial, so is the polynomial f| of degree n — 1, where

J1(2) = f(@)[ao(z — ¢) — a,] = fH(D)[aoz — ¢) + a,].

Moreover, Re (a,/ay) > 0. Conversely, if Re(a;/ay) > 0 and f, is a Hurwitz poly-
nomial, then f is a Hurwitz polynomial.

By repeated use of this theorem with convenient choices of ¢, the problem of
deciding whether a polynomial is Hurwitz is reduced to the determination of the
signs of a sequence of complex numbers (of the form a,/a,). The procedure can
easily be programmed on a computer.

A special case of Schur’s theorem in which ¢ = a,/a, is proved in Fuchs and
Levin [2]. A generalization of Schur’s theorem due to Benjaminowitsch [1] asserts
that f(z) and f;(z) have the same number of zeros in Re z > 0, whether or not they
are Hurwitz.

Our objective is to get a short proof of Theorem 1 by use of Theorem 2 below,
which is very easy to prove, but seems not to have been stated heretofore. The
method also applies to Benjaminowitsch’s generalization, though details are not
given here.

LEMMA. Let C = Cy denote the semicircular contour z = Re, —n/2 <0
=< /2, together with the segment —R < y < R of the imaginary axis. Let K = Ky
be any continuous curve joining z = 0 to z = 1. Suppose p and q are polynomials
such that, for some arbitrarily large R,

3) Ip(z) + Agq(z)] > O, (4,2)e K x C.
Then p and p + q have the same number of zeros in the right half-plane.

* Received by the editors August 19, 1970, and in revised form April 7, 1971.

t Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massa-
chusetts.

1 Department of Mathematics, University of California, Los Angeles, California 900124.
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For proof let K be given by z = A(t), 0 < t £ 1, where A = Ay is continuous
and A(0) = 0, A(1) = 1. If R is any value for which (3) holds, the integral

1) = BN f P'z) + Al1)q'(2)
27i Je p(z) + At)g(z)
is a continuous function of ¢ which is integer-valued and hence is constant. Thus
I(0) = I(1). But I(0) is the number of zeros of p within C and I(1) is the number of
zeros of p + ¢ within C. Since R can be arbitrarily large, the result follows.
THEOREM 2. Let A(z) =az™ + ---, B(z)=pz" + ---, Clz) =yz" + --- be

polynomials of degree m, m, and n, respectively, where the leading coefficients o, ,
and y are not zero. Suppose

) |AGy)l > [BGy)l, — —o0 <y <o,

and suppose ay + By # 0. Then if either of the polynomials
A(z)C(z),  A(z)C(z) + B(z)C*(2)

is Hurwitz, so is the other.
For proof, apply the lemma with p = AC and q = BC¥, so that

pz) + Aq(z) = (ay + ABP)z"*" 4 -
Let K of the lemma be any curve which lies in the disk |z| < 1 and avoids the point
z = —ay/By. Then
loy + ABYl = 6, AeK,

where 6 > 0 is constant. This shows that p + Aq satisfies the hypothesis of the
lemma on the curved part of Cy for all sufficiently large R. Since (1) gives

) ICAy)l = [C*iy)l,  —o0 <y <o,

any imaginary zero of C is also a zero of C*, and hence is excluded if either of the
polynomials considered in Theorem 2 is Hurwitz. Thus (5) and (4) give

IpGy)l > lq(iy)l, —00 <y <o0.

Since |4 £ 1 on K, this shows that p + Agq satisfies the hypothesis of the lemma on
the straight part of C. Thus Theorem 2 follows.

The following deduction of Theorem 1 from Theorem 2 is based, in part, on
[1]and [3]. If f(z) is Hurwitz, then Re (a;/a,) > 0, since —a,/a, is the sum of the
roots. For the rest of the proof it is convenient to assume a, = 1, which is permis-
sible because dividing f by a, has the same effect as dividing f; by a,a,. Hence, we
can take a, = 1, Rea; > 0.

When a, = 1, an elementary calculation gives

filz)=9z""t + .., wherey +j = —(c + &)(a, + a,),
and hence f; has degree n — 1. By (1) it follows that
(6) (fg)* = f*¢*, (f+g*=/*+2g%
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where the first of these relations holds for all polynomials f and g and the second
holds if f and g have the same degree. By (6),

1@ =" +¢+a) - fz+c¢—ay).
This and the original equation for f; (with aq = 1) can be solved for f to give
—(c+0)a +a)f(@) =+ ¢+ a)filz) +(z —c+a)fi(.
We use Theorem 2 with n replaced by n — 1 and with
Aizy=z+ ¢+ a,;, Blz)=z—c+a;, C(z)= fi(2).
From Re ¢ > 0 and Re a,; > 0 follows
|[Re A(iy)| > |Re B(iy)|, Im A(iy) = Im B(iy),

and hence |A(iy)| > |B(iy)|. Since ay + fy =7y + § # 0, Theorem 2 shows that
f(z)is Hurwitz if and only if (z + ¢ + a,) fi(2) is Hurwitz. The latter is Hurwitz if
and only if f(z) is, since Re (¢ + a,) > 0. This completes the proof.
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TRANSFORM METHODS FOR OBTAINING ASYMPTOTIC
EXPANSIONS OF DEFINITE INTEGRALS*

FRANK STENGERY

Abstract. With the condition [ |dh(1) < oo, asymptotic approximations are obtained to the
integral [ f(f)dh(At) over the real line R as 1 — oo, (a) by approximating h(x) = [ e™ dh(r) in a
neighborhood of x = 0 and (b) by using a basis {{,(t)}i-,, where in contrast to the usual case ()
need not be equal to t*7!.

1. Introduction. In this paper’ we derive some new methods of obtaining
asymptotic approximations of integrals of the form

(1.1) I(f,A) = f f(t) dh(At).
R

In (1.1) R denotes the real line, A is a large parameter, f € C(R), that is, fis
continuous and bounded on R, and h(t) is of bounded variation on R.

In most applications dh(t) = e dt, or dh(t) = {0 if t <0; t* ‘e 'dt if
t > 0}, where o > 0. In these cases the usual procedure is to expand f(t) in a
power series in ¢t about t = 0 and to perform termwise integration. In the general
case this usual procedure fails to yield an asymptotic approximation to arbitrary
high order of accuracy when:

(a) fonly has a finite number of derivatives at t = 0;

(b)

(1.2) W = f =1 dh(r)

exists only fork = 1,2, ---, n;

(c) it is not possible to obtain g, explicitly.

A new approach is given for approximating I(f, 1) by use of Fourier trans-
forms h of dh, that is,

(1.3) h(x) = f e~ dh(t).

Instead of proceeding in the usual manner, that is, expanding f at t = 0 and per-
forming termwise integration, we approximate A(x) in a neighborhood of x = 0.
In this way we obtain a class of asymptotic approximations, including that obtain-
able by expansion of f at t = 0 and termwise integration. We thus propose to
overcome partially the difficulties (a) and (b) above by use of Fourier transforms
whenever it is possible to express fi(x) explicitly.

* Received by the editors June 2, 1970, and in revised form April 16, 1971.
+ Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
! The results of this paper were first announced in [1].
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Even if it may not be possible to express y, explicitly, it may be possible to do
this for

(1.4) W(d) = f u(t) dh(id)

when k = 1,2,3, --- . We describe a procedure which, under suitable conditions
on the y,, enables us to use the sequence {v,(4)} to obtain an explicit asymptotic
approximation for I(f, 4).

Handelsman and Lew [2] are currently studying the use of Mellin transforms
for approximating integrals of the type (1.1). In their work, the residues at the
poles of the Mellin transform of h(t) determine the coefficients of the asymptotic
expansion of I(f, ). We also mention the recent work of Jones [8] which has
appeared since the present work was first submitted, and which also makes it
possible to handle the difficulties of the type (b) mentioned above.

2. The use of Fourier transforms. Let 1 denote the class of all functions g(7)
of bounded variation on R, that is,

@) V) = | lagto] < o,
R
and let W denote the isomorphic class of all transforms § of dg defined by
22) 80 = | e dgto
R

Let CP(R) denote the class of all functions whose pth derivative is continuous and
bounded on R.

Recently [5] the author showed that if

(23) 8(x)

(i ey =70

for all |x| < 2, where &, 6 € W, then for every f € CY”(R) N C(R), we have

(24) f £(0) dg(2e) = 02"

as A — oo. This result leads us to the following theorem.
THEOREM 2.1 (Approximation theorem). Let h, , 6 € W, and let

(25) h(x) — 8(x) = x"8(x)

for all x in the interval (—s, s), where s > 0. Then

(2.6) j f(t) dh(it) = f S () dg(it) + O(A™")
R R

asn — oo, for all fe C(R) N CY(R).
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Proof. Let us set H(x) = h(sx/4), G(x) = 8(sx/4), K(x) = 6(sx/4). Then clearly
H, G and K € W, since, for example,
4
dh( t) f \dh(r),

3 o ixt 4t
(2.7) H(x) = h(Z) = JRe dh(?)
(2.8) H(x) — G(x) = x”(%) "k(x)

and therefore,

for all |x| < 4. Let us write the right-hand side of (2.8) in the form

2.9) x"(Z)n Rx) = (1 — e—ix)"(ﬁ)"(Z) "Ri).

The function x"/[1 — e~ *]"(s/4)" is clearly infinitely differentiable on the interval
[—4,4], and since any twice differentiable function of compact support is in W,
there exists an element &, € W such that

X s\
(2.10) (W) (Z) = 64(x)
for all |x| < 4. Furthermore, by the ring property of W we have &,(x)K(x)e W
Consequently, by (2.5), (2.6) and (2.7) we obtain

(2.11) ff dh(m) ff (4&) (4;1)-”

as 4 — oo, which is equivalent to (2.6).
COROLLARY 2.2. Let h, g, h and § be defined as in Theorem 2.1. If

(2.12) h(x) = 8(x) = x"[p(x) + q(xD)]),

where p and q are power series in x that converge in a neighborhood of x = 0, then
(2.13) J f(t)dh(At) = f Sf(t)dg(At) + O(A™"), A— 0,
R

for all fe C(R) N CL(R).

Proof. Clearly x coincides with an element of W in some interval (—s, s),
s > 0. Furthermore, since |x| e™** € W, it follows that k(x)/x| e** € W, where k is
any twice differentiable function defined on R such that k(x) = ¢ on (—s,s),
k(x) =0 on R — (—2s,2s). This function k satisfies k(x)x|e ** = |x| on the
interval (—s, s). The remainder of the proof of Corollary 2.2 now follows from
Theorem 2.1.

3. A more general basis. Let us set
(3.1) = ) = [ 4 anan
R

fork =1,2,3,---,and let v,(1) be defined by (1.4).
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DEeFINITION 3.1. A set of n functions v, ---, ¥, is said to have Property A,,
if given any polynomial P(t), there exist constants ¢, - - - , ¢, such that
(3.2) P(t) = ) cahult) = O(")
k=1
ast — 0.

THEOREM 3.2. Let ¢(t) be any function such that

n—1

(3.3) o(t) = Y at* + 0"

k=0

ast — 0,wherea, # 0 fork =0,1,---,n — 1. If the n numbers b, - - - , b, are dis-
tinct, then the sequence {{,}i—, with y,(t) = @(b,t) has Property A,.
Proof. It suffices to show that given any polynomial

n—1
(34) Pn—l(t) = Z pktks
k=0
there exist constants ¢, - - -, ¢, such that
3.5) P, y(0) = Y cplbyt) = O(t")
k=1
ast — 0, that is,
n—1 n n-—-1
(3.6) Yopti— ) Y cqabit = 0"
j=0 k=1j=0

as t — 0. This equation will be satisfied if the ¢, can be chosen such that

n
(3.7 Y. cbl = pjla;, j=01,---,n—1.
k=1

The system (3.7) is a Vandermonde system whose determinant is not zero. Con-
sequently ¢, - -+, ¢, are uniquely determined.

THEOREM 3.3. Let {,}i~, have Property A, and let t,, --- , t, be any set of n
distinct points on R. Then there exists a positive number A, such that whenever
A > Ay, then the determinant of the n x n matrix? [Wlt;/4)] is not zero.

Proof. Let the n x n matrix [b;;] be determined such that

(3.8) [t 1] = (bl ¥i0)] + [e40)],
where ¢(t) = O(t")ast — 0,j = 1,2, -- -, n. Then we have
(3.9) (™71 = bWt/ D] + [e(t/A)].

Since ¢,(t) = O(t") as t — 0, we have det [,(t,/1)] = O(1™ ") as 1 — oo. The deter-
minant of the matrix on the left of (3.9) satisfies

(3.10) det [1=1/4971] = 27"+ D12 deg [¢i 1],

2 The notation [a;;] denotes a matrix with i, jth element a;;; the notation [b;] denotes a vector
with ith element b,.
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Hence,
(3.11) det (b ] [Yulty/A)]) = 27" D2det [¢~1](1 + O(A 1)),
which implies that det [b,;] # 0, and det [i,(t;/4)] # O for all A sufficiently large.

4. Quadrature schemes. Let numbers p, k =1, 2, ---, n, be defined by
(1.2), and let us set u = (u,, - -+, u,)", where the superscript T denotes the trans-
pose of a vector. Let the points ¢, , - - -, t, € R be distinct and letw = (w,, - -, ®,)"
be the solution of the system of equations

(@) [ 1w = a.

Then we have

n

4.2) f P(t) dh(t) = ). w;P(t))

R j=1
for every polynomial P(t) of degree n — 1 in t. Depending upon the choice of
{t;}5- 1, (4.2) may be exact for all polynomials of degree m — 1, where n < m < 2n.
If we let P(f, t) denote the polynomial of degree n — 1 which mterpolate% fat the
points ¢, - -, t,, we have

n

4.3) P(f,0)dh(t) = ), w;f(t).
R

j=1

The reader should consult Davis and Rabinowitz [4] for further details concerning
the construction of quadrature schemes.

Now suppose that fe C (R) N C{(R). Then the following result established
in [5] is valid.

THEOREM 4.1. Let f € C (R) N CY(R). Then

n

(4.4) f @ dht) — Y w,f(t/3) = 00" as i— .

j=1

Now let {i/,}7—, have Property A, and let v = v(1) = (v,, -+, v,)" be deter-
mined so that

(4.5) [t/ =

where v = (v, ---, v,)T and v,(/) is given by (1.4).

THEOREM 4.2. Let {y,}7-, have Property A, and let [y, (t) = (1 + [t|")e(1),
where @(t) is a nonnegative function such that [gpe(t)dh(At) = O(1) and
[Rlt"p(t)|dh(At) = O(A™") as & — co. If f € C(R) N CYAR), then

n

(4.6) f feydh(ar) — Y v, f(t;/2) = O(A™").
R j=1
Proof. Suppose that for any polynomial P of degree < n — 1 we have

n

@) [ Poanio = 3 vpeyn = 06

3 The polynomial P satisfies P(f,t}) = f(t;) for j = 1,2,---, n
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as 1 — oo. Let P(f;,t) be the polynomial of degree n — 1 which interpolates f(¢)
at the points t;/4,j = 1,2, ---, n. We shall also assume without loss of generality
that the numbers ¢, - - -, t, are the same as those in (4.4). If (4.7) holds, then

n

Rf (t/2)dh(t) = 3, v;f(t;/2)

= L [F(W/2) = P(fi, 0] dh(t) — 3. v f(t;/2) = P(f;, t)] + OA7").

j=1

(4.8)

But since P(f;,t;) = f(t;/4), and

n

49) f P 0 dh(0) = S w,/(t)/2),

j=1

where w; is defined as in (4.4), the left-hand side of (4.8) is bounded by the right of
(4.6).

It remains to show that (4.7) holds. To this end we recall from the property
of the y, that there exist constants ¢, - - -, ¢, such that for all te R, A > 0,

n

4.10) |P(t/A) — Z Y t/A £ Klt/A"p(t/4),

where K is a constant. Also, we have

@.11) S e A0 = 3 v S e (i),
k=1 ji=1

R j=1

so that the left of (4.7) is equal to

f l:P(t/i i t//l:l dh(t)

(4.12) ) -
- kZ vk[P(tk/l) -y C,-l//j(tk/i)] = 0(4™"),

provided that v, = O(1) as 4 — oo. Let us set T = [t~ '/A'" '], = [Y(¢;/4)], and
B = [by;], where b,; is defined as in (3.8),

p= f (ot ) dhGir), v = f WD), -, W(0)” dh(id).
R R
Then
(4.13) Tw=pu, yYyov=yv,
and from (3.9),
4.14) T=B8By+¢,

where |l¢| = O(A™"), || - || denoting any suitable and compatible matrix norm
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corresponding to a vector norm. From (3.8) we also have

“.19) M=m+ﬂ,ﬂ=J%mw“JMVMWL
R

and so ||n|| = O(4™"). Eliminating  in the second of equations (4.13) we get
(4.16) B YT —ev=B"'(u—n)),
which, in view of the first of equations (4.13) and the above bounds on ¢ and #,
yields
4.17) v=w+9,
where ||5] = O(A™ 1) (since ||w| = O(1)). This completes the proof.

5. Examples. In this section we illustrate the application of Corollary 2.2
and Theorem 4.2. One application has already beenAmade in [5]: corresponding to
numbers t;€ R we found numbers w; such that h(x) — z;f=1cuj e'* = O(x") as

x — 0.
Consider the following two integrals:

(5.1) H@MzLﬂwHMWO
and*
(5.2) Mmszfw+owwx
where

o= [
(53)

t . 2
un:%ﬁ F%ﬂ du.

We shall apply Corollary 2.2 to determine the asymptotic behavior of one of H or
K from the other,’ as 1 — oo.
Using the notation of (1.3) we have

h(x) = e ¥,
G4 Y AU if x| > 2,
M”_{l—ﬂn it |x < 2.
Thus
(5.5) h(x) — 1 = |x|p(x) + x*q(x),

k(x) = 1 = |x|p,(x),

* The function U(¢, ) = H(¢, 1/n)is a harmonic function which has the property that U(&, ) — f(&)
as # —» 0" at each point of continuity of /. The integral (5.2) is analogous to Féjer’s integral in the
theory of Fourier series.

5 The functions H and K are also related in [7, pp. 28-30], through Cauchy’s singular integral.
However, the order relations obtained here are more accurate than those in [7].
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and also

h(x) — 2k(x) + 1 — 3x? = |x°p(x) + x3q,(x) or
(5.6)

h(x) — 2k(x) + 4(e™ + e ™) = [x|*p3(x) + x3¢5(x),

where the p’s and ¢’s denote power series in x that converge in a neighborhood
of x = 0. More generally, if real numbers a,,a,, -, a, are chosen such that
0<ay <a,<-- <a,, then we have the system of linear equations:

1 1 e 1 A, 1
1 | 1 L
o a a |7 ]

(5.7) ; 1 ! = .
a a
1 1 1

arln— 1 arzn— 1 az— 1 Am
The system (5.7) is obtained if we set
(5.8) Y Ajem = (1 — |x]) + &(x),

i=1

where ¢(x) = O(|x]™) as x — 0, and equate equal powers of x on each side. It is
easily seen that either

(5.9) g(X) = X"pa(x) or &(x) = |x|"qu(x),

where p, and g, are power series in x that converge for all finite x.
By Corollary 2.2 we thus have from (5.5) that

H(u,2) = f(u) + 0O(A™1),
K(u,2) = fu) + 0(A™ )
as A — oo if fe C¥(R) N C{(R). Similarly, using Corollary 2.2 on (5.6), we get

(5.5a)

(5.6a) H(u, ) = 2K(u, ) — 3[f(u + 1/2) + f(u — 1/1)] + O(A™?)

as 1 — oo, provided that f'e C (R) N CY(R). Finally, Corollary 2.2 applied to
(5.8) and (5.9) yields

(5.8a) {"; H(u, a;4) + O(4™™)

as A — oo, provided that f e C,(R) N CY(R). Note that while we have not been
able to express explicitly the coefficient of 47! in either of the equations (5.5a),
the representation (5.6a) enables us to side-step this problem, since the coefficient
of 2= ' in H(u, A) is the same (whatever it may be) as that in 2K(u, 1).
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Forexample,ifa > 0,Im z,,Im z, < 0, the integral (5.2) with f(¢) = (t — z,)™*
-(t — z,)”* seems difficult to evaluate. However, using residues, we can evaluate
(5.1) to obtain

1 Adt
H =
(u, 2) nL U+t —z)u+t—z,)(1 + 123

(5.10)
1

W+ ifA — 2,0 + i/2 — z,0"
By use of (5.8a) and (5.10) we can therefore obtain an approximation to
sin At\? Adt
A (At —z)u+t— z,)"

(5.11) Ku,2) = l—f
TJR
for which the error is O(A™™) as 4 — oo.

We mention that the device used to obtain (5.8a) generalizes the procedure
used to derive the Romberg integration method [6]. These approximations are
quite remarkable; moreover, attempts to obtain them by expansion of f about
t = 0 and by use of termwise integration have proved unsuccessful.

5.2. An example using a more general basis. Let v, o and f be real, and let
B > 0. Let us start with the well-known identity

(5.12) fo e P (ar) dt = (B* + az)“”[mgm—wj

and note by Theorem 3.2 that the sequence {e "'};_, has Property A, (defined
in Definition 3.1), provided that the y, are distinct. Takingy, = 1,7, = 2, ¢, = 1,
t, = 2, we obtain w,, w, by solving the system

o

—1/a —2/a
(5 13) 1/0( ¢ ¢ @1 — {[OC2+(1+OC)2]1/2+O(

}v [0 + (1 + 2] 12

o
—2/a —4/a
e e w
: {[ocz +(2+ 21" +a

Applying Theorem 4.2 with ¢(t) = €' we find that if f € C,(R) N C(R), then

}v [0 + (2 +ap) 172

(5.14) f " ae o) f(0) dt = o, f(1/0) + w3 fQ/2) + ¢,
0

where

(5.15) e=0@" 3% asa— co.

6. Summary. In this paper we have developed two different methods of
obtaining an asymptotic approximation to the integral

6.1) H(f.J) = f £(6) dh(io),
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where h is of bounded variation on R, and for purposes of this summary, f is
infinitely differentiable and bounded on R.
The first method depends on knowing

K(f,2) = f 10 dk(),

62) h(x) = fR e~ dh(t) and

k(x) = J e dk(t),

where k is also of bounded variation on R. If we can furthermore find constants

O<a,<ay---<a,and 4,,4,, -, A, such that

m x"p(x)
(6.3) h(x) — Y Ajk(x/a) =14 or

=t |x|"p(x),

where p is twice differentiable in a neighborhood of x = 0, then
(6.4) H(f,2) = )Y AK(f, a;2) + 01"

j=1
as A — oo.

The second method of approximating (6.1) depends on being able to express
explicitly the integrals

(6.5) vid) = f Y (t) dh(At),
R
where the functions y;, j = 1, 2, ---, m, have the property that given any poly-
nomial P there exist constants ¢,,¢,, ‘- -, ¢, such that
(6.6) P(t) = Y. cp (1) = O(™)

Jj=1

ast— 0.1f0 < t, <t, <--- <t,,wecan then also solve the system of equations
(6.7) Wit/ A)]w = v

for the vector w = (wy, ---, w,)", where v = (v;,v,, ---, v,)". We then have the
approximation

m

(6.8) H(f,2) = Y w;f(t;/A) + 007"

j=1

as . — 0.
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LIE THEORY AND GENERALIZED HYPERGEOMETRIC
FUNCTIONS*

WILLARD MILLER, JR.f

Abstract. In this paper the foundations are laid for a study of generalized hypergeometric and
G-functions based on the representation theory of Lie groups and algebras. It is shown that many
fundamental series identities and Mellin-Barnes integrals for these functions can be derived simply
and elegantly using group theory.

Introduction. In this paper we define a Lie group G, , which is closely related
to the differential recurrence formulas for the generalized hypergeometric functions
»Fq. Then we demonstrate that the representation theory of G, , yields significant
information about the properties of the ,F,.

In §§ 1 and 3 the Lie algebraic techniques described in [1] are applied to
compute basic addition theorems and generating functions for the ,F,. Weisner’s
method [2] figures significantly in this approach. In §2 Vilenkin’s method of
integral transforms [3] is applied to derive some Mellin—Barnes integral representa-
tions for the G-function G711

Here, the emphasis is on the group theoretic methods themselves, and no
attempt is made to list all possible special function identities obtainable by these
methods.

The techniques of this paper also apply to G-functions. In a future paper we
shall discuss the insights into Mellin—Barnes integrals for general G-functions, and
integrals of products of G-functions which are provided by group theory.

1. The group G, ,. Let 4, be the (2(p + ¢) + 1)-dimensional complex Lie
algebra with basis #;, %;,j = 1,---, p, , 7,k = 1,---, g, and ¥, and nonzero
commutation relations.

[‘%7‘@1']:'@1‘, [%mgk]: ——gk’
(L.1)
[ = [Fe V] = 7.

All other commutators between basis vectors are zero. The connected, simply
connected complex Lie group G, , with this Lie algebra consists of elements

gy b 175,80 = exp Y a g + Y b2, + c“V) exp (Z 0+ Y cm),
(1.2) J k ] !
aj;, by, c, Vi» &eC,
with group product
gla;, b, ¢5v;, €glas, b, €575, &)

1.3
(1.3) — gla, + dje, by + b c 4 et Sy 4y g 4 &),

* Received by the editors March 31, 1971, and in revised form May 20, 1971.
+ Mathematics Department, University of Minnesota, Minneapolis, Minnesota 55455. This
research was supported in part by the National Science Foundation under Grant GP-20871.
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32 WILLARD MILLER, JR.
The identity element is g(0,0,0;0,0) = e and
(1.4) g—l(aj’ by, c;v, &) = gl—ae™, —bye, —ceT T 8, =75 =&

A simple model of %, , is given by the generalized Lie derivatives

0
R; =1, S;j=ti—+uao;, o;eC, j=1,---,p,
ot;
1 0
(1.5) L, =u; !, n=uké;_+ﬁk, B.eC, k=1,---,q,
k

V:tl'”tpul'”uqa

acting on the space %, , of analytic functions f(t, -+, t,, Uy, - -+, ug) = f(t;, uy)
which are defined for all nonzero values of t; and u,. A basis for #, , is provided
by the functions

(16) fMj,nk(tj’ uk) = ['I;“ e t';Pu’il o o uzq’
where the m; and n, run over all integers. The action of the operators (1.5) on this
basis is
m; ifj#7,
R"fm~n =fr'r’|«na Vﬁ:{ ! o -
J jslk Jfk J mj'+1 lszj,
ijmj,nk = (mj/ + ij’)fmj,nk’
(17) Lk(fmj,nk =fmj,ﬁk’ ﬁk = {

nifmj,nk = (nk' + Bk’)fmj,nkﬂ
mej,nk =fmj+ 1,m+1-

Expressions (1.7) define an algebraic representation p(a;, f) of 4, , on F, .
Here p is reducible but not completely reducible. Due to the isomorphisms
plo, Bi) = p(o; + a;, B + by), where a;, b, are arbitrary integers, we can make
the restrictions 0 < Rea; < 1,0 < Re , < 1. Note the identity

n, if k # K,
ne —1 ifk =K,

(1.8) C=RR,---R,— VL,L,--- L, =0.

Using standard Lie theory techniques we can extend the Lie algebra repre-
sentation p(a;, B) to a group representation of G, , on &, , (see [1]). The induced
group action is defined by operators T(g) such that

(1.9) [T@)S )t ) = exp[Y ajt; + Y byfu, + cty -+ tyuy -+ u,
+ Z“ﬂ’j + Z ﬁkék]f(tjeyja ue®),

feZ,,. These operators necessarily satisfy the group homomorphism property
T(g)T(g") = T(gg.
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We define the matrix elements T(g)"" of T(g) with respect to the basis

fmj,nk by '
(110) T(g)fmj,nk = Z’ T(g)ﬂizﬁ m’j,ni
or
exp[Y ajt; + Y b/ + ctyug+ Y ay; + Y Bl
(1.11)

gy (et = Y T(g)';iﬁﬁ";t'l"'* el

mj,nj
Expanding theleft-hand side of (1.11)ina power series and computing the coefficient
of t7t - -+ uja we find

T(g)nink = exp (Z yio; + my) 4+ Y ElBi + nk))
J k

p q am}—mj
1.12 . . 1 ;
(112 [,-ll,kﬂl BT, — m) + DI — m, + nk))]

o Fymj—mi 1 —m + my; —cby - byflay -+ ay)).

See [4] or [5] for the definition of ,F,. Note that the matrix elements are polynomials
in a;, b, and c. (If the parameters m;, m}, n,, n; are allowed to take complex values,
the right-hand side of (1.12) is an entire function of these parameters. The matrix
element is equal to this entire function evaluated on the integers. Thus, (1.12) is
zero whenever m; — m; < 0 for some j.)

Since the operators T(g) define a representation of G
obtain the addition theorem

g WE immediately

(1.13) T(gg)mme = Y T(g)yie T(g)mx

ik M jNx mjnk
M Ny — o

valid for all g, g’ € G, ,. Substitution of (1.3) and (1.12) into (1.13) leads to a wide
variety of identities for the generalized hypergeometric functions.

Let #(G, ,) be the space of all entire functions f(g) defined on the group G, ,.
The right regular representation ¢ is defined on this space by

(1.14) [6(g)/1(g) = f(gg), &8€G,, feF(G,,.

It is easy to check that ¢ defines a representation of G, ,. Moreover, for fixed
m}, n; the subspace of #(G, ,) spanned by the functions

(115) fmjnk(g) = T(g)m:i;, — 0 < mj’nk < + o0,
transforms according to the representation p(x;, ;). Indeed, (1.13)-(1.15) imply

(1.16) [6(2) frumd () = funm88) = . T(& i frr wil8)-

M ;N
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Using standard techniques in Lie theory [1, Chap. 2], we can compute the

Lie derivatives corresponding to the representation ¢
0 0 0 0 0

1.17 R. = yf*, S.::-, L, = *ék—, T, = —, V = 7’1+'“+§q_'
(1.17) IT %y Ty T Tabe R @, ¢ 2c
It follows that the operators (1.17) and basis functions (1.15) must satisfy relations
(1.7). It 1s a straightforward (though tedious) computation to verify that these
relations imply the following identities for the F,:

(z—Z + mj,)qu(mj;nk;z) = m;, F(;; ny; 2),

d
d . . ~ .
(1.18) ZE + e — 1) Fym;ing; 2) = (e — 1), F(m;, fiy; 2),
ml Y mp
. F n . _ 7 F . 1' 1. .
dZ p q(mpnksz) n1"'nqp q(mj+ snk+ ,Z)

Here 1i1; and iy are given by (1.7) and m;, n, take on all integer values such that the
polynomials ,F(m;;n,;z) are defined. These three relations are obtained from
the operator identities for R;, L,, V, respectively. Relation (1.8) implies the
differential equation

d d d| d d
1.1 — vl z— — |z — 1) = —
(1.19) {(Zdz + ml) (Zdz + mp) dz(zdz + ny 1) (Zdz + n, 1)}

pFmjsn;z) =0
for the generalized hypergeometric functions.

Now that we have obtained these identities for integral values of the para-
meters, we can easily verify from the power series definition of ,F, that they remain
valid for complex m;, ny, zif p < q + 1,(|z| < 1ifp = g + 1). This in turn suggests
another model of p(x;, 8,). Namely, we set

0 0

0z ‘ot;
(1.20) L——u"z£+T—1 T—u—(a—+/3
. k — Yk az k ’ k — kauk k>
0
Vo=t ug

It follows from our previous identities that the operators (1.20) and the functions
LCmy + oy) -+ T(m, + a,)
F(ny + By) - Tlng + By

. . m m n n
Fmy 4 g + B et - Ut - uge

fMjnk(Z’ tjs uk) =
(1.21)

define a model of p(a;, B;) for p < g + 1. (Here, for simplicity, we consider only the
case p < q + 1 so that f,,,.(z,t;,u,) is an entire function of z. Also we require
0<Rea;<1,0<Ref, <1)
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The Lie derivatives (1.20) define a local multiplier representation of G, , on
functions f(z, t;, u;). This action is determined by operators

[Q(2)f1(z, t;, u) = exp (Z Vi + Z EiB)
-H(l —ait)" [T + by/u )1

7 (z+cty - u)(I + by/uy) -+ (1 + byjuy) te
' (1 —ayty) - (1 — a,t,) 1 — ayt;

JJ

(1.22)

5 (uk + bk) e'{k:I,
lat] <1, |bju <1, geG,,.
The matrix elements
(123) Q(g)fmjnk = Z, T(gmﬁ:lt mjnj
mj,ni

for this model are necessarily identical with (1.12). Thus, substituting (1.12), (1.21)
and (1.23) and simplifying, we obtain

I

Jrk

I'(m; + o) £ .
1+0b met Pr—1
[F(nk + B (1 — a‘tj)"'i”j( )

J

) 4ty u)(l + byfuy) --- (1 + by/uy)
.qu(mj+OCj,nk+ﬂka (I —agty) -+ (1 —apt,) )

(124 = Yy J[|Hmite) aji g
minic= =0 jk | T(m + By) b "™(m; — m; + DI'(1 — ny + ny)
e =i h
'qu(mj —mil =+ "k;m_q)
cpFym 4 ayin + By 2), lat| < 1, |by/ul < 1.

If g = exp (a%,), this formula reduces to the well-known expansion

-0 . . z
(1 —a qu(O',OﬂjaBkam)

)

" T(c + h)
!(1—‘7—qu(0 + haaj;ﬁk;z)a |a| < la

)
=2
h=0

Byl

where o, a;, B are noninteger complex numbers. Similarly, if g = exp (b.Z,), the
formula reduces to

(1 + by~ F (057, Bys z(1 + b))

= LT -y AT B ) bl <1,
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For g = exp (¢7") we have

pFd@3 Bisz + ¢) = i c* [W:l
h=0

W d | T@)T(By + h)

o F (o + by B+ hiz).

Setting t; = €%/, u, = ', multiplying both sides of (1.24) by e™ ™t ...
e~ Na% and integrating we obtain

1 J~2n ”.J~2n l_[ ei(mj—Mj)(Pjei(”k“Nk)ek(‘l + bke—iﬂk)nk+ﬁk—l
(2n)p+q 0 o ik (1 —_ aje"/’j)mf+af

(z 4+ ce@FFON (1 + bre ) - (1 + be )
P q(}’l'lJ + oy + ﬁka (1 — alezq)l) L. (1 _ apelqu)

(125)  do, - dp,do, - do,

_ l—[r(Mj + o)) T(ny + ) afti™™ 1
ik Tm; + o)) T(N, + B) by me I'imj — M; + DI'(1 — N, + n)
__Cb ;--b
‘qu‘mj—Mj;l_Nk+nk;al-l-.a 4
14
pFdM; + 0o N + By 2), laj <1, |b <1.

The method of Weisner [1], [2] can also be used to derive identities for the
,F,from (1.20)and (1.22). For example, we search for a simultaneous eigenfunction
h(z,t;,u,) of the commuting operators R,,S;,2<j=<p,T;,1 £ k < g, which
satisfies Ch = 0 (see (1.8)):

Rh=h, Sh=oh, 1Zj<p-1,

(1-26) Th=fBh, 1<k<gq, Ch=0.

(For simplicity we set «; = ff;, = 0 in (1.20).) The general solution of the first
p + g equations is

(1.27) h(z,t;,w) = r(z/t)exp (—t, V5 - el - ule,
where r is an arbitrary function. Requiring Ch = 0 we obtain
(1.28) r(x) =, F (o5 Bi; x)

as the only solution bounded in a neighborhood of x = 0 for general complex
aj7 ﬁk .

The function [Q(g)h](z, t;, u,), g € G, 4, is also annihilated by the operator C
and can be expanded in a Laurent series in terms of ¢,, -+, t,,u;, ---, u,. The
coeflicients in this series are necessarily of the form ,F:
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p—1 q

[T =a)™ [T+ byu)™ " exp (=1, ")

j=1 k=1

(Z/tp +cty - ip A uq)(l + bl/ul) cee (1 + bq/uq)
(I —ayty) (1 —ap_qt,—y)

= Az_o 2 Jmpmpn8)

. . - - n
'qu(aj + mj’ _mp’Bk + nk’z)triu e t';:glltp mpu';l e uqqa

(129) : p—qu aj;ﬂk;

latj <1, 1=j<p—1, |bjud <1.

(Indeed, the term J(g, z)t}* - - - uje in this expansion is annihilated by C and is a
simultaneous eigenfunction of the S; and T,.) Setting z = 0 on both sides of this
identity we obtain the generating function

r—1 q
[T —=ae) 1A+ by/u)* ' exp(—t, ")
j=1 k=1

TP S 1+b,/u)---(1 +b./u
(1.30) 1 Fy O‘j;ﬂk;c 1 p o U ug) - ( o)
(1 _altl)"'(l _ap—ltp—l)
= ZO Z jm,-,mp,nk(g)tr?l et t’;:‘i_llt;mpur?l e u;q
mj=0 m=—o0

for the j,, .(g). Here we assume |ajt| < 1, |by/ul < 1. Comparing this expression
with (1.24) we find

p—1 I'(m, I(Bs m,-bk—nk
@ = 11 11 [r( (m + ) (B )]

j=1k=1 “j)r(nk + BII(1 — mj)r(l —
__.cbl e b (_l)mP

4F,l—-m:;1 —n,; 4 .

rot q( s 27 e a1~-ap_1)1“(mp+1)

In the case g = e, (1.29) simplifies to

m

T
oo, —m;ﬁk;Z)*n;.

(1.31) e o1 Foloy; s —21) = ) ,

3
i M8

It is easy to obtain many similar identities by considering [Q(g)h](z, t;, u;) in
regions where g is bounded away from e, e.g., |ajt;] > 1. We shall present some
examples of such identities shortly.

The above analysis can be generalized through the construction of a simul-
taneous eigenfunction h(z, t;, ) of the commuting operators S;,1 <j <p';
R,p+1Z1p;T,,12k=q;L;,q +1=i= qwhich satisfies Ch = 0:

Sh=oh, 1<j<p, Rh=h, pP+1=I1=p,
(1.32)
Tth=ph, 1=k=q, Lh=h, ¢d+1=i=<q, Ch=0.
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(Weseta; = o; = B, = 0, f; = 1in (1.20).) Here p’ can take values 0, 1, - - -, pand
q' can take values 0, 1, - - - , q. (For simplicity we require p’ < ¢'.) For fixed p’ and
q' the solution h of equations (1.32) bounded near z = 0 for arbitrary complex
o;, By is, to within a multiplicative constant :
h=r z expy sy + - +u,—tyhy — =t
[p,+1...tpuq,+1...uq q+1 1 Pl

(133) . t"{l e [:x’w’ufl e ugfl’
r(x) = p/Fq/(aj; Bk;x)'

Again the function Q(g)h is annihilated by C and can be expanded in a Laurent
series in ¢y, ---, u, such that the coefficients in the expansion are of the form

qu:
p’ q
[T —ap)y ™ [1 A~ byu)h!
j=1 k=1
CeXp (= tphy = = gy o Uy
F <o:; B z + ct t
L , ’ , C MUy v U,
LA J k tp‘+1‘”tpuq’+1”'uq 1 i 4
(1.34)

(=) (- a,,ft,,')-l(l N Z—) (1 " ’L)}

1 uq’

jmj my,ny n(g)

= Z LLELR 2L F (o + my, —my; B +ng,n; + 15 2)
mj,mi, N, i F(ni + 1) P J ;

AR

lait] <1, |byul < 1.

We can obtain a simple generating function for the j,,, m, u. (&) by setting z = 0
in (1.34). Comparing this expression with (1.24) we find

. _ po4 (m; + )T (B)aj b, ™
]mj’m"nk’m(g) B [11;11 IEI F(aj)r(nk + BII(1 — mj)r(l - "k)]
(1.35)

—chy by B (—1ym
-I,/Fq,(—mj;l—nk;#)

ay - Ay )=y Llmy + 1)

if n; = 0for all i. Moreover, a more careful analysis shows that (1.35) is valid even
if some of the n; are negative.

Ifp’ = p,q = q, these expressions reduce to (1.25). If p’ = ¢’ = 0, they reduce
to (1.11), (1.12).
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We can consider many more identities of this same type by considering
Q(g)h for g bounded away from e. For example, let p'=p, ¢ =¢q and
g =exp(l-2,). Then

z
Q(gh = [1,/(1 = 1,)I*, F q(“f, %5 i 1—“_7)
(1.36) ,
. t°1“ e tzp_—llu/{l . ug,,.
If t,| > 1, then
[6,/(1 = t)]* = (= 1)*(1 — t, 1)

so we can expand (1.36) as a power series in ¢, '. The coefficient of ¢,™ in this
expansion will be a multiple of ,F (a;, —m; B, ; z):

— —ZT
(1 —_ "L') aPqu(aj,ap;ﬁk;_‘“l _ "L')
(1.37)

w
= Z jm'qu(aja_m;ﬁk;Z)Tma |T|<1, thp—l
m=0

Setting z = 0 on both sides of this equation we find

T, +m)
Im = Foym!

2. Vilenkin’s method. We apply Vilenkin’s integral transform method as
set forth in [3] to compute some Mellin—Barnes integral formulas for the hyper-
geometric functions. Let D,, be the subdomain of R, consisting of points
(¢;, ) such that 0 < t;, u, < oo and let 9, , be the space of infinitely-differentiable
functions on D, , with compact support. Finally let G, , be the (2(p + q) + 1)-
dimensional real Lie group defined by (1.3) where now the parameters a;, by, ¢, y;, &,
are all real. Then the operators T(g), (1.9) define a representation T of G}, on

‘@P‘I
If f (¢, w) € 2,,,, we define the Mellin transform #(z;, 4;) of f by
F(Tp A) = f/%f(fj, )
2.1) - f f Pl e g i e - du,
0 0

It is well known that
f(tjs uy) = M~ l'g;(tja uy)

ﬁk ioo

1 pjt+ico 6k+1oo B

curPeugte dry o dd

q°

where the p + q constants p;, §, are any real numbers.
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The operators T(g) induce a representation S on the space of Mellin trans-
forms, defined by

(2.3) S(g) = MT(g) M.

Thus, if & = _#f is a Mellin transform, then S(g).# is the Mellin transform of
T(gy

1 _
S@FIe ) = G | Jdm duy e

pjtico 6k+mo
T(g)f f Wt U %dvy - do

pj—io Yo —iwn

(2.4)
.

If the 2(p + g)-fold iterated integral is absolutely convergent, we can interchange
the order of integration and write

q-

pjtico pd+ico
@9 BeF = [ [ KEy e Foue)dy o do
pj—io

Ok —ioo
Thus S(g) is an integral operator with kernel function
e YL, e—iqwq

(2 ¥
.f: ...f: exp[Y ag; + 3 by

+Ct1 tpul uq + Zaﬂ)} + Zﬁkik]

.t"’ll""l_l u;q_“’q_ldtl oo du

K(gQTj, Ak;vj’wk) =

(2.6)

"
In particular, (2.5) and (2.6) are valid if the group parameters satisfy any of the
following conditions:

(@) a;<0;c=0,all j,k

() a,=0,a;<0,1<j<p—1;b <0,allk;c <0.

(€) a;j<0,allj;b,=0,b,<0,1<k=<qg—1;¢<0.

(d) a, < 0; all other parameters zero.

(¢) b, < 0;all other parameters zero.
In the last two cases the integration is carried out over only one variable. For
example, in case (d) with g = g(0, a,,0,0;0, 0) we have

pptico
@7 [S@F ()t 4) = f - K(gs 7,5 vp)F (@5, v, s ) dv,y
pp— i
Re (7, — p,) > 0, where
(*ap)vp_tp

1 * a Tp~Vp—
(2.8) K(g;t,;v,) = Z_ﬂfo ertrgr T, =

Re (7, — v,) > 0, and I'(z) is the gamma function [4].
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Since the S(g) define a representation of G’
addition theorems

K(gg';stj, Avs i AW

1.q» the kernel functions satisfy the

q

(29) pjtioco pdtioco
=f f K(g:tj, A v, 0)K(g s vy, 04 5T, A dvy -+ do
pj=—ioo

O —io0

provided the integral converges absolutely. Rather than compute the kernel
functions (2.6) directly we shall obtain them indirectly through the use of (2.9).

Consider g(a;, by, ¢;0,0), where a; < 0,b, < 0,c < 0.Theng = g,g, = g,g;,
where

gl = g(O,ap,0,0;0,0),
g2 = 8(a;,0,by,¢;0,0), 1gi1gp—1.

The kernel function for g is given by (2.8), and it follows easily from the definition
of the gamma function that

vp—t,, r—1 gq

K(gz;rj,,lk;vj,wk) == F(Tp - p+q n 1‘[( a)t” Tt —vp

2.10
( ) '(—bk))"‘_w"Jrv”—t"F(vp - Tp + Tl - V[)F(TP - vp + wk - ik)’

Re(r, —v,) >0, Re(v,—1,+717—-v)>0, Re(r,— v, + w,— 1) >0.
Then (2.9) yields
K(g;Tjalk;r‘lh ;c)

(=)™ yFiop-1 g ) )
- W( a,)® - 11:[1 kl':'ll (—a)> "(=b T (x, — 5)
(2.11) T(s — T)(s — 1, + M)(T, — s — 1) : . q( o) g,
1

Retr, >y >Re7,, Re(r,— ) >y >Rel(r,~n),
m=7t-1, Mk = A — A
Thus, the kernel function is a G-function,

K(g;tj, Aks Th A

(=07 (—a) T (— gy
@i (= b7 (= b

(2.12)

.Gat L M(_l)pwﬂ L= +1,1-n,+71,
pqt1 al'“ap rp_ﬂl,...,rp_'uq,‘[p

>

a linear combination of g + 1 hypergeometric functions ,F, (see [4] or [5]).
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Formulas (2.9) now yield a variety of Mellin—Barnes integrals for the
G4'\h. For example, if g, = g(a;,by,¢;0,0), g, = (a},0,0;0,0) with a; <0,
by <0,c<0,dy =a<0,a;=0forj=2,-.-, p, then the relation

g(aj + a}’bk,c;o’o) = 8182
implies
(“11 _ a)tp~n+t’1
'Gq+1’p 1 q _1 ptq+1
P»q+1((a1+a)a2”.a( )

1 y+ioo . L ,
=5 (—a)> " (=a)" " T(s — 17)

1—’71+Tp,"',1‘"’1p+fp)

p Tp =M Ty T B Ty

T 2mid, i
(213) atLp Cbl"'bq (_1)p+q+1
pgt1 alaz...ap
1—t1+s+1p,1—112+1p,---,1—np+t,,)ds
Tp = Hist s Tp = Uy Tp ’

Ret] <y <Re(t; — ).
We omit the routine listing of these formulas.

3. Generating functions. Here, we further demonstrate the power and
simplicity of the Lie algebraic method by explicitly computing three identities of
a different type than those obtained in § 1.

We choose the generators of %, , in the form

0 0 0
s = [ = 1. —_ f— 1S 'S .
SJ tlatj’ RJ tl(zaz-'-t]ﬁtj)’ <j<p
0 a 0 0
(3.1) Tk:ukﬁ—uk’ Lk=uk1(z—52+uka—uk—1), 1<kZq,
0
V= tl M tpul qug,
and let
(3.2) C=RR, ---R,—VL,L,--- L,

For our first example we require that h be a simultaneous solution of the
equations

(S1+S2)h=ah, S]h:a}h’ j=3’...,p,
(3.3) (R, + Ryh =0, Toh=ph, k=1,---,q,
Ch=0.

(Here[S; + S,,R; + R,] =R, + R,s08, + S, leaves the null space of R; + R,
invariant even though these operators do not commute.) The first p + g equations
imply

- T oA 403 o 1 q
Wz, tj,u) =1 ~— 1) af((—l——'c)z) 5% - eyl
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where © = t,/t,, and Ch = 0 implies

zT oo+ 1 4zt
— |\ = F |- ——— B ———],
f((l _ _C)z) p q(za 2 >3, s apa.Bka (1 — 'C)Z)

unique to within a multiplicative constant. Expanding h(z, t
find

j» Uy) in powers of © we

. o o+ 1 —4zT
(1 -1 qu(E’T’ “jZﬁk;(l—ch)
34 s
(3.4) = Zocn,,Fq(—n,oz + n,0;; By 2)T",
p—1=<q, K<l
The constants ¢, can be evaluated by setting z = 0:

Tl +n)
“ = Ten
see [6, p. 137].
In our second example we look for a solution & of the equations

R\ Roh=h, Sh=oh, j=3,---,p,
(3.5 (S, — Sph=oh, Tth=pBh, k=1,---,q,
Ch = 0.

Note that the operators R;R,,S; (3 = j = p), S; — S, and T, commute with one
another. The first p + ¢ conditions are satisfied by

h(z,tj, ) = oF (o + 1;0k(ze)t; % - - 2t - - - ubs,
where © = t7't; 1. The requirement Ch = 0 implies
k(x) = - 2Fgl05 By x).

Expanding & in a power series in T we find
(3.6)  oF (x + 1§T)p—2Fq(O‘j§ﬂk§ZT) = Z Cn'qu(—na —o — n,aj§ﬂk§2)'cn~
n=0
To make sense of this expansion we must require p < g + 1. The series converges

foralltif p < ¢ + landfor |zt < 1if p = g + 1. To compute the ¢, wesetz = 0:

L T+
" allo+n+ 1)

For our final example we compute a solution of the equations
(V+R)h =0, (S, —S)h=—ah, 3Zj=p,
(3.7) (S, — Toh= —Bh, 1<k<q, Sih=ah,
Ch = 0.
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Here, [S;, V+ R,] = V+ R, so the null space of V' + R, is invariant under S,.
The first p + g equations are satisfied by

h(z, tj,u) = (1 + z) k()i - - toruft - - uffx,
where 17! = t,t5 -+ t,u; -+ u,. The requirement Ch = 0 implies

k(t) = JFp— (=P + 1; —o; + 1;(=1)*" 7).
Expanding h in a power series in T we obtain
(1 + 2z F (=B + 15 —o; + 1;(—1)1""7)

(3.8)

0
= Y ¢, Floy, —=n,a; — n; B — n; 2",
n=0

lzt] < 1.
To compute the ¢, we set z = 0:

_ (=)= By + n + Dl(—a; + 1)

n (=B, + DD(—o; + 1 + 1)

The above examples illustrate the simplicity of our Lie algebraic method.
Once the method is understood it is straightforward to derive a great variety of
generating functions for the ,F, . Furthermore, the method permits the classification
of known generating functions in terms of eigenvalues of operators formed from
the generators (3.1). (Indeed, an examination of the right-hand sides of the expan-
sions (3.4), (3.6) and (3.8) and use of recurrence relations (1.18) lead easily to the
eigenvalue equations (3.3), (3.5) and (3.7), respectively. Similarly, other known
generating functions can be classified in terms of eigenvalue equations.)

This method reduces the search for generating functions to the computation
of solutions of systems of partial differential equations. In practice such systems
may be difficult to solve. (This is the case with some very complicated identities
such as those found in [5, vol. 2, p. 2].) Nevertheless, once an identity is discovered it
can be fitted into the Lie algebraic classification system.
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ASYMPTOTIC SOLUTIONS OF A 6TH ORDER DIFFERENTIAL
EQUATION WITH TWO TURNING POINTS.
PART 1: DERIVATION BY METHOD OF STEEPEST DESCENT*

B. GRANOFFf anp N. BLEISTEIN{

Abstract. Asymptotic expansions of the basis solutions of the equation
(D? — a2k?)*u — k°xu = 0, k>1,

are derived by the method of steepest descent. For o # 0, there are two turning points, at x = 0 and
x = —aS. All previous results pertain to the case where o = 0, in which case there is one turning point
at x = 0. The derivation of the asymptotic expansions of a basis set for each of the three x-intervals
formed by the turning points yields a set of WKB connection formulas. Uniformly valid asymptotic
expansions are given for x in the neighborhood of the turning point x = —o°.

1. Introduction. The ordinary differential equation
(1.1 (D? — 0?k?u — k®xu =0, k>»1 (D=d/dx),

arises in the stability analysis of viscous flow between rotating cylinders; see, for
example, Meksyn (1946, 1961), Chandrasekhar (1954, 1958), and Duty and Reid
(1964).

In this paper we shall derive the asymptotic expansions for k > 1 of the basis
solutions of (1.1). Previously obtained results correspond to (1.1) with « = 0, in
which case the equation has one turning point at x = 0. For a # 0, (1.1) has two
turning points,at x = 0and x = —a®. The derivation of the asymptotic expansions
of a basis set for each of the three x-intervals formed by the turning points yields a
set of WKB connection formulas. The results of Meksyn and of Duty and Reid
correspond to our asymptotic expansions for the intervals —oo < x < —a®
and 0 < x < co. We further obtain asymptotic expansions which remain uni-
formly valid for x near —a®.

We briefly describe, in § 2, the derivation of the integral representation of the
solutions of (1.1). In § 3, we describe the deformation of contours of integration
onto paths of steepest descent (Jeffreys, 1962). The results of the application of
the method of steepest descent are summarized by means of tables in §4. The
determination of these paths of steepest descent for o # 0 is rather difficult, more
so than for o = 0. These paths were determined by computer. A program was
developed by N. Rushfield and run on an IBM 360. In § 5 we derive the uniformly
valid expansions for x near —a® by using the method of Chester, Friedman and
Ursell (1957) for two nearby saddle points. Asymptotic expansions uniformly
valid for x near zero are possible as well with the method of Bleistein (1967).

* Received by the editors December 7, 1970, and in final revised form April 29, 1971. This work
was supported in part by the National Science Foundation.

+ Mathematics Department, Boston University, Boston, Massachusetts 02215.

1 Mathematics Department, University of Denver, Denver, Colorado 80210.

! To identify with Meksyn replace a2k? and k® by A% and A°h, respectively ; with Chandrasekhar,
replace o2k?, k6, and —x by a?, a*T, and 1 + af, respectively; with Duty and Reid, replace a?k?, k®
and x by o2, a7, and z — 1, respectively.
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However, the results are given in terms of untabulated ‘“‘generalized Airy functions.”
We consider these results as nonedifying and therefore do not include them.

2. Integral representation of the basis solutions. In order to obtain the integral
representation of the solutions of (1.1) we assume that the solutions have the form

2.1 u(x) = f v(s) exp [ksx] ds.

The contour I is to be determined as well as the function v(s). Substitution of (2.1)
into (1.1) and integration by parts yields

(22) k° f [(s? — a?)v(s) + k™ 'v'(s)] exp [ksx] ds — k™ 1o(s) exp [ksx]|p = 0.
r

The integral in (2.2) vanishes if we set

(2.3) v(s) = cexp [—kp(s, 2)],

FI1G. 1
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where
@4 o= f (& — 0P de = 15T — 3% + o*s® — s,
0

In order that the “endpoint contributions” of the integration by parts vanish, we
require I to be an infinite contour with endpoints in the “valleys” of —s7;i.e., in
regions where Re s” > 0. The seven regions which have this property are given by

2
(2.5) U o<args < - 4 — n=0,1,---,6.

If we introduce the contours I',, I, - -- , I'; in Fig. 1, then from (2.1) and (2.3) we
find that the solutions of (1.1) have the form

(2.6) u,(x) = f exp {k[sx — p(s, ®)]} ds, n=1,2,---,7.

n

Of course only six of these solutions are linearly independent since ZZ.= , Un(X) = 0.

3. Asymptotic analysis. We now apply the method of steepest descent to the
integrals given by (2.6). If we set

(3.1) o(s;x, o) = sx — p(s;a),

where p(s; o) is given by (2.4), the saddle points are defined by the equation
0
(32) ¢ =L =x—(—a} =0

We first note that for x # 0 and x # —a®, (3.2) has six distinct solutions. The
turning points x = 0 and x = —a° divide the x-axis into three intervals, in each of
which the expressions for the saddle points take a different form. We denote these
open intervals by

D : —wo<x< —o°,
(3.3) D,: —-a®<x<0,
D,: 0<x< 0.

We have that
(3.4 P(ts;;x,00=0, j=1,2,3,

where the s; are given in Table 1.

When x = 0,s; = s, = s3 and the six distinct roots coalesce onto s = +a,
each of multiplicity three. The implications for the asymptotic analysis are that,
in both instances, simple saddle points have coalesced to yield higher order saddle
points. It is well known that the classical saddle-point method does not yield an
expansion which remains valid as x passes through either of these critical points.
We defer discussion of this problem to § 5 and consider for the present values of x
belonging to one of the three domains D_, D, D, .
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TABLE 1

The roots of x — (s* — ¢?)* =0

0= arg\/—~' < m,w = exp2mi/3

xeD_ i\/lxl”3 — o? —|x|"Pw? + o2 —|x"Bw + o2

xeD, V=B 2 VX Bw? + o2 V=B + a?

xeD, ﬁl'” T ol \/BJT/SE‘I a? N

It is always quite simple to determine the paths of steepest descent for ¢
locally, near the saddle points, by the use of power series. Indeed, for o = 0, the
essential features of these paths can be determined in the large. This is essentially
what was done by Meksyn (1961) and by Duty and Reid. For nonzero o, we find
these paths by making use of the following observations:

(i) For any x in one of the domains D_, D, D, , the essential features of the

descent paths remain unchanged.

(i) For any fixed o different from zero, say o = 1, (i) remains valid.

Observation (i) means that the connection of each saddle point in the finite
plane with the valleys at oo (i.e., with the sectors at oo in which the real part of
o(s; x, )decaysto — oo) via pathsof steepest descent remains essentially unchanged.

In order to verify this we first set u(o, 7; x, ) = Re ¢(s; x, o) and v(o, 7; X, o)
=Im ¢ (s; x,a), where s = o + it. For x in any closed interval bounded away
from the turning point, each saddle point is simple and its position is a continuous
function of x, as are the two local directions of descent at the saddle point. Further-
more, the paths of steepest descent from a saddle point are curves on which
v = const.; except at the saddle points, these curves have —Vu (grad with respect
to o, 1) as tangent. This vector and hence the curve v = const. is a continuous
function of x.

There are seven discrete valleys at infinity. A curve which depends con-
tinuously on a parameter x for all finite (o, 7) simply cannot have its endpoint at
oo “jump” from one valley to another. Therefore, each saddle point is connected
up in a unique way to another saddle point or a valley at co by paths of steepest
descent. This ultimately is what really matters since we seek to replace a contour,
with two endpoints in valleys at oo, with contours which are equivalent to it by
Cauchy’s theorem. This we can now do for some x in the prescribed interval.
Furthermore, as x varies from that value over the prescribed interval, the steepest
descent contours will vary somewhat, but still, the same deformation can be
accomplished; i.e., each curve I'; is deformed onto the same linear combination of
steepest descent paths from the same saddle points to the same valleys at infinity.
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The process breaks down when x attains a turning-point value. The reason is
that the turning points correspond here to the coalescence of two or more saddle
points into a single saddle point of higher order. A simple saddle point has two
steepest descent paths leading from it; two saddle points have four paths; but
when two coalesce to a saddle point of order two, this new saddle point has only
three steepest descent paths. One steepest descent path is lost in the coalescence
and this is a manifestation of the lack of continuity of this process as x passes
through the turning point.

A program was developed by N. Rushfield and run on an IBM 360 to deter-
mine the steepest descent paths for

Pls; —8.,1) (Fig. 2),

o(s;8,1) (Fig. 4).
= \&\
N \ "

o, &
S
1:,,'{‘:{/4{{% S
N

FIG. 2. Paths of steepest descent for ¢o(s; —8, 1)
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FI1G. 3. Paths of steepest descent for o(s; —8/27, 1)

By comparing Fig. 1 with any of these figures we can immediately identify
the appropriate deformation of the contours I',,n = 1,2, ---, 7, onto paths of
steepest descent. For example, when x > 0, we use Figs. 1 and 4 to find that I'; is
deformed onto a descent path through s,, s3, s, and —s;. We note that the con-
tributions from s; and —s, are exponentially smaller than those from s, and s,
since the former lie on descent paths away from the latter. We shall call s; and —s,
recessive (for I';) and s, and s, dominant (for I';). For each of the contours I',, and
each of the domains D_, D, D, , we list the dominant and recessive saddle points
in Table 2. The asymptotic expansion of each of the functions u,,n =1,2,---, 7,
for each x-interval is given by a sum of contributions from the saddle points in the
corresponding dominant column of Table 2. When there are two or more entries
in a dominant position, we include contributions from each in order that six
asymptotic solutions remain linearly independent.
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o
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— Y

F1G. 4. Paths of steepest descent for ¢(s; 8, 1)

TABLE 2
Saddle points contributing to the steepest descent analysis of the contours
r,n=12-.--,7

xeD xeD, eD,

Dom Rec Dom. Rec Dom. Rec
I, S2 - S2 - S1552 —S1, 7S
I, Sy - S1552 bt S2 S3
r; 51,83 S, S3 — S5 —
Iy —S2,53 S5 —S3 =Sy, TS, 783 - -5 -
I's —S1, =S, —S3 =S - -5 -
Iy -5 — Sy, —S3 —5; — 53 -5,
I, —S3 —_ —53 — Sy, —S3 53, =S,
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4. The asymptotic solutions. In the following tables we list the leading terms
of the asymptotic expansions of the solutions u,,n =1, ---, 7, for each of the
domains D_, D, D . For future reference we exhibit the phase ¢(s; x, «) evaluated
at the saddle points in each of the three domains:

D_and D,: x < —a® —a®<x<0:

0, = g(Esixa) = £/~ X7 + o

4.1)
=S + P+ et + 380,

T, = @(£s,;x,0) = +/—|x|"Pw? + o?

=5+ St + Fix et + 58],

T3 = o(Es3;x,0) = £/ —x|"’w + o
[=G1x + xRt w? + X Pato + §20°0].
D,: x>0:

1o, = o(xs;5x,0) = £/Ix"* +o?

[5Ix] + Flx?Pa? — il ot + 580°],

£, = p(+5,:%,0) = +/I o + o

(4.2) [SIx] + xRt o? — S Pato + 55000,

+¢3 = @(Ls3;x,0) = +/|x"w? + o?

T8N + xR0t — Hix|Pate? + 48],

For simplicity we introduce the following notation to be used in Tables 3 and 4:

(43) m=/§m*%w“—ﬂ“ﬂ

(4.4) ay = /3T o ),
AR n
4.5) 0_ = Zarctan AT 4 20 0<0_ <§.

For use in Table 5 we introduce the additional notation:

(4.6) @=¢§m*ww+mmrw,
(47) N e e N R R

1/3
(4.8) 0, = :‘arctanz\zf_!l| 173 00, <m.
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TaBLE 3
Asymptotic solutions for xin D_:x < —a®

u; ~ a,exp [k(,o2 - z(g + 0_):|
n
U, ~ a, exp [kq)1 - 17‘}
Uz ~ a, exp [k(p3 - i(E - 9_):| — a, exp [k(pl i
6 4
n T
Uy ~ az{exp [—k(p2 + z(g - 0_)] — exp [k¢3 — 1(6 - 0_)]}

= 2ia, Im exp [~ktp2 + 1(% - 0-)]

us ~ a, exp |:——k<pl + lg] — a, exp [—k(,o2 + l(% — 0_”

Ug ~ a; exp [—kqo1 + lg:l

U; ~ —a,exp |:-—k(p3 + l(g + 0_):|

TABLE 4
Asymptotic solutions for x in Dy: —a® < x <0

=
[y

n
~ a, exp [k¢2 - i(§ + 0-)]

~ a,exp [ko,] — a,exp |:kqoz — l(g + 0_):|

vl o]
T | R

+ a, exp [-—k(p1 + lg:|

3
N

=
w

= a, exp |:—k(pl + lg:l + 2ia, Imexp [—k(,o2 + z(g - 0_)]

us ~ —a,exp | —ke, + 1(% - 0_)

_ . -
ug ~ —a,exp | —ke; + 1(3 + 0_) — a, exp [ke,]

U; ~ —asexp | —key + l(g + 0_)




54 B. GRANOFF AND N. BLEISTEIN

TABLE 5

Asymptotic solutions for xinD,: x >0

u, ~ azexp kp,] — a, exp |:k(p2 + 1(%! - 0+):I

u, ~ agexp | ko, +i(§—9+)]

i n
uz ~ as exp | ko; + i(—+9+”

| 6

i n
Uy ~ asexp | —ke, + lE:l

n

Us ~ —a, exp |:—k(p2 - l(g + 0+”

Ug ~ —d4 €Xp [—k(p3 - l(g — 0+):I

u; ~ —asexp [ke,] + a,exp [—k% - 1(13[ - 0+):|

Tables 3, 4 and 5 constitute the WKB connection formulas. When we set
o = 0, we recover Meksyn’s results (Meksyn, 1961). Appropriate linear combina-
tions of the functions u, - - - , u, with o = 0 will reproduce the results of Duty and
Reid as well.

Some explanation of the results contained in these tables is necessary. First
we note that, as expected, the coefficient a, which appears in Tables 3 and 4 becomes
infinite when x = —«®, ie., when +s, = 0. We shall deal with this in § 5. By
comparing Tables 3 and 4, we also note that the expansion of u, , for example, con-
tains a contribution from s, when x is in D, but does not contain such a term when
x isin D_. It would seem then that the expansion has a discontinuity at x = —a®
for no apparent reason. Of course this discontinuity is only illusory. The only real
discontinuity is in the deformation of I, onto the steepest descent paths. However,
for x in D _ there do exist descent paths (not of steepest descent) for I', which allow
us to pass through s, as well as s, ; i.e., we can add a contribution, —a, exp [k¢,
—i(n/3 + 6_)], to the result for u, in Table 3, thereby retaining a contribution
exponentially small compared to the term already appearing in the table. The only
advantage in doing this would be to eliminate a discontinuity in exponentially
small terms. In Table 4, the contribution from s, ultimately becomes dominant
as x increases and hence it must appear in this result.

A similar observation holds for other expansions throughout the tables.

5. Uniformly valid asymptotic expansions. We have previously noted that for
x = —a®, two saddle points coalesce. In this limit 4, is infinite and the expansions
of u,, uy, uy, us and ug given in Tables 3 and 4 are not valid. We obtain uniformly
valid asymptotic expansions for x near —a® by using the method of Chester,
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Friedman and Ursell (1957).% In particular, we introduce the change of variables
(5.1) o(s; x,a) = f2(x)t — t3/3.
Here ¢(s; x, «) is defined by (3.1) and (2.4) and, following CFU,

(5.2) flx) = {[%Q"Jl/s, —a® <x <0,

i3,'7, x < —of.

The effect of this change of variables is to map the contours I', onto the contours
L; of Fig. 5 as shown in Table 6.

27/3

Y
22#/3

F1G. 5. Image contours in the t-plane

2 We shall denote this paper by CFU hereafter.
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TABLE 6
Mappings induced by (5.1)

Range of x Contours in s-plane Contours in t-plane
—a®<x<0 r,+r, L,
I, +T, + T, L,
Ty +T, L,
x < —of T, L,
I+l +Ts—T,-T, L,
T, L,

For the two x-ranges, the pre-image of any L; is different. The effect of this
anomaly is much the same as that discussed at the end of § 4.

For x negative and bounded away from zero, the method of CFU gives the
following uniformly valid asymptotic expansions in terms of the Airy function
(see, for example, Jeffreys (1962)):

u, ~ 2ngok ™3 exp ["%] Ai[k?3f3(x) e~ 27113

(5.3
—a, exp |:k(p2 - l(% + 9_):'9
Uy ~ ——27‘Cg0k“1/3 exp [—i%] Ai[k2/3f2(x)e‘2"i/3]
(5.4)
+a, exp |:k<p3 - 1(% - 9_)],
Uy ~ 27tig0k“1/3Ai[k2/3f2(x)]
55
(5.5) +2iImexp[—k(p2 +i(%—6“):|,
us ~ —2mngok ™' exp [ig]Ai[kmfZ(x) o213
(5.6)
|
—a, €Xp |:"'k(P2 + l(g — 9_)] s
ug ~ 2mgok ™' exp [ig]Ai[kmﬁ(x) o2mil3]
(5.7)

—a, exp [—k<p3 + l(g- + 0_)].
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Here

(5.8) Yx) "

8o = 6x2/3(|x| 1/3 _ (12)1/2

We note that lim g, as x — —a® is finite and nonzero; indeed,

(5.9) limGg0 = (18a%)~ /6,

To obtain uniform asymptotic expansions for x near zero we would have to
apply the generalization of CFU described in Bleistein (1967). The Airy functions
of CFU are replaced by “generalized Airy functions.” The integral representation
of these functions is much like the Airy function itself, except that in the integrand
the cubic polynomial of the exponent is replaced by a quartic polynomial. Since
these functions are not tabulated, there seems to be no point in carrying out such
a uniform expansion.

Acknowledgment. The authors are grateful to E. Spiegel for bringing this
problem to their attention, to N. Rushfield for his fine computer work, and to R. A.
Handelsman for several helpful discussions on this problem.
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ON THE ASYMPTOTIC BEHAVIOR OF
FUNCTIONAL DIFFERENTIAL EQUATIONS*

T. G. HALLAMY, G. LADAS]{ anp V. LAKSHMIKANTHAM{

Abstract. A generalized asymptotic equivalence is established between the solutions of an un-
perturbed linear ordinary differential equation and a nonlinear perturbed functional differential
equation. These results extend and improve known results from ordinary differential equations.

1. Introduction. In this article we shall investigate some of the asymptotic
relationships between the nonlinear functional differential equation

(1 x'(t) = A()x(0) + f(¢, x,)

and the linear ordinary differential equation

2 V(1) = A@)y(@).

In equations (1) and (2), x, y and f are n-vectors; and A(f) is a continuous n x n
matrix that is defined on J = [0, c0). The symbol | - || will designate some con-

venient norm of a vector and its corresponding matrix norm. Let C* = C[[—1, 0],
R"],t = 0, where the norm of an element ¢ € C" is defined by

ol = max [(s)].

It will be required that fe C[J x C", R"]. For x € C[[—1, o), R"], the symbol x,
is defined by the relation

x(s) = x(t + s), —1<sZ0, teld,

and is called the past history of x at t. The terminology and notation used in con-
nection with the functional equation (1) may be found in [5, Chap. 6].

Our results establish that there is an asymptotic equivalence between equa-
tions (1) and (2) under some appropriate conditions.

The perturbation problems which we shall consider have analogues in
ordinary differential equations; in fact, the motivation for our work is contained
in the references [2], [3], [4]. When t = 0, system (1) is an ordinary differential
equation; hence, the results obtained here are extensions of the corresponding
results in the above papers. When 7 # 0, the perturbed equation (1) represents a
mathematical model closer to physical reality than the corresponding perturba-
tion without delay which was considered in [2], [3], [4].

2. Preliminary results. In this section, we shall give an apparently new com-
parison principle which relates the solutions of a system of functional equations

3) Z(t) = F(t, z)

* Received by the editors November 3, 1970, and in final revised form April 12, 1971.
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Department of Mathematics, Florida State University, Tallahassee, Florida 32306. The work of this
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1 Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881.
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to the solutions of a scalar functional equation
(4) w(t) = glt,u,).

This is a more general setting than the usual comparison principle [5, p. 6] in which
the comparison equation is an ordinary differential equation. In equations (3) and
(4), it is assumed that FeC[J x C",R"] and geC[J x C,,R,], where
C, ={ueCluz0},R, ={reRjr=0j}.

LEMMA. Let g(t,u) be monotone nondecreasing in u for each fixed te J; and

(5) IF(t, @) = g, [¢), (. p)ed x C.

Furthermore, for a given function uye C,, suppose that the maximal solution
r(ty, uo) of (4) with initial function u, at t = t, exists and is bounded on [t,, 0).
Then, any solution z(t,, ¢po) of (3) with initial function ¢, at t = t, satisfying
ldoll = ug satisfies the inequality

llz(to, Po) DI = r(ty, ue)(t), t2t,.

Furthermore, there exists a constant vector & such that lim,_,  z(ty, ¢po)(t) = &;
and, if

(6) l¢o(O)ll > 7o — u(0),

where r,, = lim,_, . F(ty, Uo)(t), then & is nonzero.
Proof. Define the function m by

m(t) = ||z(to, Po) (@), t
Then, the right-hand derivative of m(t) exists and satisfies the inequalities
m'y (t) < [1Z'(to, o) (D)
= (2, 2{to, po)l

é g(to ||Zz(t0s d’o)“)
< g(t,my), t=t,.

IV
S

From the definition of m, it follows that m,, < u,. The first conclusion of the lemma
now follows from Theorem 6.9.4 in [5].
An integration in (3) leads directly to

™) £ = hol0) + f " Fis, zto, bo)) ds.

to

To see that ¢ is nonzero provided (6) is satisfied, we obtain, from (7), that

12l 2 14O - f " FGs, 2to. dol ds

to

0

> | bo(0)] — f 805, ryto. tg)) ds

to

2 |do(0)]] — 7y + up(0) > 0.
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3. Asymptotic equivalence. We shall use the comparison principle of the
lemma to obtain an asymptotic correspondence between the solutions of (1) and
(2). The following two hypotheses will be assumed throughout the remainder of
the article. There exists a continuous n x n matrix, A = A(t), defined on [ —1, 00)
such that

) IA@OY@)] = 1, t = to,

where Y(t) is the fundamental solution matrix of (2) with Y(t,) = I. Let
geC[J x C,,R ], g(t, u) be monotone nondecreasing in u, u € C ., for each fixed
teJ, and

©) 1Y~ 1, d)l < g, 1A, (t,p)eJ x C".

THEOREM 1. Let the conditions (8) and (9) be satisfied. Furthermore, suppose
that the maximal solution r(t,, uy) of (4) with initial function uy at t = t, exists and
is bounded on [t,, 00). Then, corresponding to each solution x(t,, ¢,) of (1) with
initial function ¢, at t = t, satisfying | ¢oll < u,, there exists a constant vector &
such that

(10) IA@x(Lo, po) (1) — YNl = o(1), t— 0.

Furthermore, if (6) is satisfied, then £ is nonzero.
Proof. Let x(t) = x(t,, ¢o)(t) and define Y,
transforms (1) to the system

(11) Z(t) =Y U0, Yz) = F(t, z),
with z, = ¢,. From (8) and (9), we obtain
IF(t, z)ll = g(t, llz]).

An application of the lemma to (11) yields the existence of a constant vector &
such that

= [,. The substitution x = ¥z

0

tl_igl) z(ty, Po)(t) = ¢.
To verify that (10) holds we observe the inequality
IA@x(Lo, Po) (1) — YL = ADY (D)z(to, Po)(®) — &1l = o(1), t— o0,

The fact that £ is nonzero provided (6) is satisfied follows immediately from the last
conclusion of the lemma.
Next, we shall consider a converse problem to the result of Theorem 1.
THEOREM 2. Let the hypotheses of Theorem 1 be satisfied. Then, corresponding
to each constant vector & which satisfies the inequality

1l < Tim r(to, o) (0) = 7o,

there exists a solution x = x(t) of (1) which satisfies the asymptotic relationship (10).

Proof. As shown in the proof of Theorem 1, it suffices to show that (11) has a
solution z = z(t) which is valid on some interval [T, ) and satisfies
lim,,  z(t) = &.
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Define the numbers #, y by
n=_>[r,—l&l2, y=r,—n.

Since y < r, it follows from (4) that
f g(t,y)dr < co;
in particular, it is possible to choose T, > 0 such that

f g(t,y)dt <n.

To
Let the set F be defined by

F = {zlze C[R,R"]; ||z(t)]| < y,te R;z(t) = const.on —o0 <t < Tp}.

Define the operator Ton F by the equation

é—ffmawatz%,
t
Tz(t) =

ﬁ—f F(x,z)ds, t<T,.

To

The Tychonoff theorem will be used to establish that the mapping T has a fixed
point in F. First, F is a compact convex subset of the Banach space C[R,R"]
with the usual supremum norm. To see that TF < F, we note that for t e R,

unmugmn+fﬂwmaww

To

gmn+fgmww

To
s el +n=y.
Next, let the sequence {z"};, converge uniformly to z on every compact
subinterval of R, where z", z are in F, n = 1,2, --- . Then, the sequence {z/}_,

converges uniformly on compact t-subintervals of R. Suppose ¢ > 0 is given;
select T, > T, such that

on a(t,y)dt < ¢/4.

T
Choose N = N(e, Ty, T}) so thatifn 2 N,

IF(t, z) — F(t, z)ll < &/2Ty — Tp)), telTy, T,].
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Then for t € R, we have

Ty
I To(0) — 0] < f |F(s, 2) — Fis, z)| ds

To

+ j " IFGs. 2] ds + f " FGs, 2] ds

Ty T,
<e, n=N.

The above inequality shows that T'is continuous on F. To see that the closure of
TF is compact, we need only observe that TF is uniformly bounded and equi-
continuous at each point of R.

Therefore by the Tychonoff fixed-point theorem, there exists a z € F such that

6—‘[ F(S’Zs)dsa tg TO,
A1) = .
¢ — J F(s,z)ds, t< T,.

To

For t 2 Ty, z(¢) satisfies (11); furthermore, lim,_, , z(f) = £ This completes the
proof of the theorem.

Remark. The matrix A was not required to be nonsingular in either Theorem
1 or 2. This fact has been previously observed in the case of ordinary differential
equations for Theorem 1, but not in regard to Theorem 2. The general technique
used in the proof of Theorem 1 was the comparison principle ; hence both Theorem
1 and its proof are extensions of one part of Theorem 1 of [4] which used an
ordinary differential equation as a comparison equation. The Tychonoff fixed-
point theorem, which was used in the proof of Theorem 2, has also been used for
problems of this type. The ordinary differential equation analogue of Theorem 2
was obtained by this method in [3]. In that proof however the hypothesis that A
be nonsingular was necessary.

4. An example. Many known results in ordinary differential equations have
been obtained from the ordinary differential equation analogues of the above
theorems by making a special choice of A. The references [2], [3] give several
examples to illustrate this application.

We shall apply Theorem 1 to obtain a generalization of a well-known result
(1, p. 114] in ordinary differential equations.! Consider the second order linear
delay equation

(12) v"(t) + p(u(t — ) =0, t=0,

where © = 0 and

(13) f “ o) dt < oo.

! The extension given here is probably known to many workers in the area; however, the authors
are not aware of a reference which supports this statement.
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Every solution v = v(t) of (12) satisfies
t
(14) nmit) _ e
t— o0

for some constant c. Furthermore, there exist solutions of (12) where the asymp-
totic constant ¢ is nonzero.
In the usual manner, we write (12) as a system of equations of the form

(15) X'(1) = Ax(1) + f(¢, x,),

where

v _ 0 1 _ 0 2
v')’ A‘(o 0)’ st 9) (~p(r>¢1(—r>)’ bec.

By choosing
00
A(t) = ( 0 1) (a singular matrix),

then we have for t > 1,

IY='@f & dl = dp)l, o= = g(t, 1A=l

As the scalar comparison equation, we have

(16) u(t) = fp@Oult — 7).

To see that all of the solutions of (16) are bounded, we note that an integration in
(16) leads to

t

u(t) = u(ty) + f s|p(s)lu(s — 7)ds.

to
Therefore,

t

lu(n)] = K(1) = u(to)l + f slp(s)l[u(s — 7)| ds.

to

Since K is monotone nondecreasing, we have
K'(t) < tlp(0)|K(r),  K(to) = [u(to) -

An application of Gronwall’s inequality shows that all solutions of (16) are
bounded. Applying Theorem 1 to (15) we see that given any solution v of (12),
there exists a constant ¢ such that

() = ¢ + o(1), t— 0.

This implies that (14) is true. An argument like that in [1, p. 115] may be used to
show that ¢ can be chosen to be nonzero.

If A is taken to be Y1, then the stronger hypothesis [ £*[p(t)| dt < co is
required in the above argument to obtain the same conclusion. This illustrates an
advantage of allowing A to be a singular matrix.
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ANOTHER CHARACTERIZATION OF THE CLASSICAL
ORTHOGONAL POLYNOMIALS*

W. A. AL-SALAMY anp T. S. CHIHARA}

Abstract. The classical orthogonal polynomials of Jacobi, Laguerre and Hermite are characterized
as the only orthogonal polynomials with a differentiation formula of the form

T(X)P(x) = (X + B)Pu(X) + VuPr-1(X), nzl,

where 7(x) is a polynomial. If “orthogonal polynomial” is used in the sense of “‘orthogonal with respect
to a function of bounded variation,” then the characterization remains valid if the Bessel polynomials
are included in the classical family. This characterization also permits us to verify a conjecture of
Karlin and Szego.

1. The classical orthogonal polynomials of Jacobi, Laguerre and Hermite
form a natural family in that, in addition to their frequent occurrences in similar
problems of applied mathematics, they enjoy a number of similar properties
which in turn characterize them.

For example, the classical polynomials are the only orthogonal polynomials
(apart from those obtained by trivial transformations of the classical polynomials):

(i) whicharetheeigenfunctionsofa second order Sturm-Liouville differential
equation (Bochner [1]);
(i) whose derivatives also form a sequence of orthogonal polynomials
(Hahn [5]);
(iii) which have a Rodrigues-type formula. (This was first observed by
Tricomi [9] whose proof however was incomplete. Complete proofs have
been given recently by Ebert [3] and Cryer [2].)

Here we have been using the term ““orthogonal polynomial’’ in the classical
sense of orthogonal on the real line with respect to a nondecreasing real function.
If however we use the term in the more general sense of orthogonal with respect to
a function of bounded variation, then the above characterizations remain valid
provided we (a) drop the usual restrictions on the parameters in the Laguerre and
Jacobi polynomials and (b) include the generalized Bessel polynomials in the
classical family. (This has been observed by Ebert (implicity) and Cryer for (iii)
and implicitly by Bochner and Hahn in (i) and (ii), respectively.)

Another property common to the classical orthogonal polynomials (including
the Bessel) is the existence of a differentiation formula of the form

(1) TX)P(x) = (X + Bo)Pu(X) + 7,P0-1(x),

where n(x) is a polynomial. (For a unified derivation of (1), due to Tricomi, see
[4, p. 167]. The Bessel polynomials are not explicitly included in this derivation
but easily can be.)

* Received by the editors March 2, 1971, and in revised form May 21, 1971.

t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada and Depart-
ment of Mathematics, American University of Beirut, Beirut, Lebanon.
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Now if {P,(x)} is a sequence of orthogonal polynomials (with respect to
do(x), where ¢ is of bounded variation) and if it satisfies (1), then

Iy = j  RWPLOP() dp(x)

[ PP+ B o) 43 [ P 0P dot)

— 0

=0 ifm<n.

Thus if it can be shown that I,,, # 0 (n > 0), then {P,(x)} is an orthogonal
polynomial sequence with respect to m(x)de(x). Then it would follow from
Hahn’s theorem that P,(x) is one of the classical orthogonal polynomials.

In case n(x) is constant or linear, this is easily done but the quadratic case
becomes involved. We therefore bypass this approach and give below a direct,
elementary proof that (1) characterizes the classical orthogonal polynomials,
thus obviating reference to Hahn’s theorem.

Our characterization will also permit us to answer affirmatively a question
raised by Karlin and Szegd [7]. This will be considered in § 4 together with related
conjectures (the authors wish to thank the referee for calling these to our attention).

2. Let {P,(x)} be a sequence of monic orthogonal polynomials so that there
is a recurrence formula,

Pn+ l(x) = (X + Bn)Pn(x) - CnPn—l(x)s n g 09

2
P_,(x)=0, Pyx)=1, C,#0 forn>1.

Suppose further that {P,(x)} satisfies (1).

Comparison of coefficients in (1) shows that 7n(x) is at most quadratic so
write

n(x) = ax* + bx + c.
Clearly

©) &, = na.

Now differentiate (2), multiply by n(x) and use (1) to eliminate 7(x)P;(x),
k =n — 1,n,n + 1. Then use (2) to eliminate P,, ,(x). The result of all this is

{(Ocn+1 - 0y — a)x2 + (ﬁn+1 + Bnocn+1 - ﬁn - Bnan - b)x
—c + Bnﬂn+1 + Yn+1 — Bnﬁn}Pn(x)
= {Cn[(o‘n+1 - Ocn—l)x + ﬁn+1 - ﬁn—l] + yn(x + Bn)}Pn-—l(x)

—Cny,,_an_z(X), n=1.



CLASSICAL ORTHOGONAL POLYNOMIALS 67

Using (3) and simplifying, we obtain
(4) Bn+1 - ﬂn =b- aBna
(Bn+ an - ﬁan + Va1 — C)Pn(x)

®)
= {(zacn + yn)x + Cn(ﬂn+1 - ﬁn— 1) + Yan}Pn— l(x) - Yn—lcnpn—2(x)‘

Examination of the derivation of (4) and (5) reveals that they remain valid for
n = 0 if we define

Bo=70=Co=0

(and expressions with negative subscripts as finite but otherwise arbitrary).
Comparing (5) with (2), we thus find

(6) Bn(ﬁn+1 - ﬁn) + Vny1 — C = 2aC‘n + Vs
(7) Cn— l(zacn + yn) = Cnyn— 1
(8) Cn(ﬂn+1 - ﬁn-—l) + yan = Bn—l(zacn + yn)

From (7) we obtain vy,/C, = y,-1/C,_1 — 2a,n = 2, which gives
) Yn = —(2an + d)C,,

valid for n = 0 withd = —2a — y,/C;.
Substituting (9) into (6) and (8), then using (4), leads us to

(10) 2an +d + 2a)C,, 1 — Ran + d — 2a)C, = B,(b — aB,) — c,
(11 (2an +d + a)B, — (2an + d — 3a)B,_, = 2b, nzl1.

We note that all formulas (4)-(10) inclusive remain valid for n = 0 with
Bo=70=Co=0.

3. We next consider separately the cases where n(x) is constant, linear and
quadratic.

Case 1. n(x) is constant. We can assume without loss of generality that
a=>b =0 and ¢ = 1. It then follows directly from (1) that «, = 5, = 0 so that
Qu(%) = (7172 -+ 72~ ' Py(x) are Appell polynomials: Q,(x) = Q,_(x). Now it is
well known that the only Appell polynomials that are also orthogonal polynomials
are essentially the Hermite polynomials.

However we can show directly that P,(x) is essentially a Hermite polynomial
by using (11) to conclude that B, = B, and then using (10) to find C, = —n/d.
Thus the recurrence formula becomes that satisfied by

P,(x) = (2r) "H (rx + rB,), r=(—d/2)".

Case 11. n(x) is linear. We can assume a = ¢ = 0,b = 1. Thena, = 0, 8, = n
and y, = —dC,,.
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From (11) we now obtain
dB, = 2n + dB,,
whence from (10),
d>C, = n(n — 1) + dByn.
The recurrence formula (2) thus shows that, in this case,
P,(x) = d "n! L¥(—dx), o=dB, — 1.

Case 111. n(x) is quadratic. Without loss of generality, we take a = 1, b =0
so that o, = n.
From (11) and (4) respectively we obtain

K

12 B, = K = (d* - 1)B
(12) " @n+d-1)Q2n+d+ 1) ( )Bo.

—Kn
d—1@2n+d—-1)
Using these in (10) and multiplying by 2n + d gives
2n+d+2)2n+d)C, y —(2n +d)(2n +d — 2)C,

K*(2n + d)
2n+d—-1*2n+d+ 1)

Bn =

= —c(2n + d) —

which in turn yields
K2

Cn+d+2)2n+d)Cpy; = —cn + 1)(n + d) — e

Jd—-=1D"2=@2n +d+1)"?],
Cnn+d— DK — 17+ c@n+d—1)%]
- RCn+d)2n+d—-12Cn+d-2)

If ¢ =0, we then write d = a — | and K = b(a — 2) so that (12) and (13)
become

(13) C,

B - b(a — 2) c - —b*n(n + a — 2)
" 2n+a)n+a-2) " @2n+a-1)2n+a—-2>*2n +a-3)

It can now be verified from the recurrence formula for the generalized Bessel
polynomial, y,(x, a, b) (Krall and Frink [8, (51)]), that

_ b"(a)n -1
Pn(x) - 2"((1/2)" yn

Finally, if ¢ # 0, writed = o + f + 1 and K = («*> — B?)(—¢)"/?. Then
(@ = ) (=o'
Rn+a+BC2n+a+ p+2)

—dcen(n + o + P)(n + a)(n + P)
Cn+a+p—D2n+a+pP>*2n+a+p+1)

(x,a,b).

n

n
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and this shows that we have Jacobi polynomials:

A

Px) = (25)" (2n +: + B)_

Thus the only orthogonal polynomials satisfying a relation of the form (1)
are the classical polynomials together with the Bessel polynomials.

4. At the conclusion of their monumental paper on determinants whose
elements are orthogonal polynomials, Karlin and Szeg6 [7, p. 156] suggest three
conjectures concerning additional characterizations of the classical orthogonal
polynomials. The first of these is the existence of a differentiation formula of the
form

(14) r(X)P(x) = [P, - 1(x) + Cx)P,(x)]p(x), nz0,

where C(x) is a polynomial. (The subscripts on the right side of (14) are miscopied
on p. 156 of [7]—cf. their formula (24.2) on p. 100.)

Assuming that Py(x) and P;(x) are monic polynomials, we take n = 1 in
(14) and obtain

r(x) = iy [Po(x) + C(x)Py(x)]p(x).
Thus (14) becomes

(15) il + CX)P(X)IP(x) = [P, - 1(x) + C(x)P(x)].

Comparison of leading coefficients now shows that u, = nu,. Next consider
(15) for n = 2 and rewrite this in the form

Py(x) = 2Py(x) = [2P,(x) — Py(x)P5(x)]C(x).

The left side of this equation is of degree at most 1. On the other hand, 2P,(x)
— P,(x)P,(x) cannot vanish identically unless P,(x) = kP3(x) which is impossible
if (2) is satisfied. Therefore it follows that C(x) is of degree at most 1 so (15) is of
the form (1) and {P,(x)} is classical or Bessel.

We are unable to add anything to the second conjecture in [7] but we note
that the third had already been established earlier by Hahn [6].

A somewhat related question due to Askey (private communication) is:
“What orthogonal polynomials have the property that their derivatives are quasi-
orthogonal polynomials (here in the sense that (P,,, P;) = 0 if |m — n| > k)?”
Another related problem due to Askey is to characterize the orthogonal poly-
nomials whose derivatives satisfy

2k
(16) TX)PYX) = Y Py j(X), k independent of n.
0

j=

In view of the recurrence formula (2), our characterization (1) solves this problem
for the case k = 1.
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Added in proof. It should be noted that (14) does not provide a complete
characterization of the classical orthogonal polynomials since (14) is not satisfied
by the Jacobi polynomials except in the ultraspherical case.
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ERRATA: ON THE EVALUATION OF CERTAIN SUMS INVOLVING
THE NATURAL NUMBERS RAISED TO AN ARBITRARY POWER*

KEITH B. OLDHAM+

On page 538, the relation

Go=gl—v+ 1,80 —=v+2, g0
should be replaced by

G.=gll—v+1D,gl—v+2), -,g0.

On page 539, the expression G;_ ,(G,) on line 5 should be replaced by C;_,(G,);
in equation (5) the minus sign following the = sign should be deleted ; in equation
(5) and in the final (unnumbered) equation on the page a term O(I "~ 2™~ 1) should
be added to the right members.

* This Journal, 1 (1970), pp. 538-546. Received by the editors April 10, 1971.
+ Department of Chemistry, Trent University, Peterborough, Ontario, Canada.

71



SIAM J. MATH. ANAL.
Vol. 3, No. 1, February 1972

MULTIPLE SOLUTIONS OF
SINGULAR PERTURBATION PROBLEMS*

DONALD S. COHENY

Abstract. Under certain conditions on g(x, u) we establish the existence and asymptotic behavior
for small ¢ > 0 of multiple asymptotic solutions of the nonlinear boundary value problem

eu” + u' — g(x,u) =0, 0<x<l,
w(0) —au(0) = A4 =0, a>0,
u'(1) + bu(l) = B > 0, b>0.

Formal techniques of singular perturbation theory clearly reveal the mechanism which controls the
appearance of multiple solutions. Their existence is then established rigorously by iteration schemes
and the so-called “shooting method” for ordinary differential equations.

1. Introduction. We shall establish the existence and asymptotic behavior
for small ¢ > 0 of multiple asymptotic solutions of the nonlinear boundary value
problem

(1.1) e +u — gx,u)=0, 0<x<l,
(1.2) uw'(0) — au(0) = A =0, a>0,
(1.3) (1) + bu(l) = B > 0, b > 0.

In general, a function u(x, ¢) is said to be an asymptotic solution to order O(¢") if
the function satisfies the differential equation and boundary conditions to order
O(¢") as ¢ —» 0. More precisely, for this paper, we adopt the following definition.

DEFINITION. A function u(x, &) is an asymptotic solution of the boundary value
problem (1.1)—(1.3) if u(x, ¢) satisfies (1.1), (1.2) and v/'(1,¢) + bu(l,¢) = B + O(e)
ase— 0.

Problems of this type occur in chemical reactor theory, and it has been found
recently [1]-[3] that multiple stable steady states can occur in certain adiabatic
tubular reactors. By considering the relevant physics in the various parts of the
reactor, or equivalently by applying the formal techniques [4] of singular per-
turbation theory, the mechanism by which the multiple solutions occur is clearly
revealed. We do this briefly in § 2, and this will provide us with useful insight
regarding the properties of the equation and its solutions. The rest of the paper is
devoted to rigorously establishing the existence and asymptotic behavior for small
¢ > 0 of the multiple asymptotic solutions of the nonlinear two-point boundary
value problem (1.1)—(1.3).

* Received by the editors March 9, 1971, and in revised form May 24, 1971.

+ Department of Applied Mathematics, California Institute of Technology, Pasadena, California
91109. This work was supported in part by the U.S. Army Research Office (Durham) under Contract
DAHC 04-68-C-0006 and in part by the National Science Foundation under Grant GP-18471.
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Our entire analysis is based on the so-called “shooting method” for ordinary
differential equations. Accordingly, in § 3 we study the initial value problem

(1.4) eu" +u — glx,u)=0, x >0,
(1.5) u0)=h=0,
(1.6) u'(0) = A4 + ah.

Note that the initial conditions (1.5), (1.6) imply that the boundary condition (1.2)
is satisfied. Specific properties of g(x, u) are stated, and we then prove that for all
¢ > 0 the initial value problem (1.4)-(1.6) possesses a unique solution u(x, &, h)
and that u(x, ¢, h) and u'(x, ¢, h) depend continuously on h for & = 0, and u(x, ¢, h)
depends continuously on ¢ for sufficiently small ¢ > 0.

In §4 we show that the boundary value problem (1.1)—(1.3) possesses many
distinct (and we state precisely how many) asymptotic solutions. This is accom-
plished by demonstrating that there exist many distinct values of h such that for
each of these values of h the solution u(x, ¢, h) of the initial value problem (1.4)—(1.6)
also satisfies u/(1, &, h) + bu(l, ¢, h) = B + O(¢) for sufficiently small ¢ > 0. Further-
more, we show that on the subinterval 0 < § < x < 1 each asymptotic solution
u(x, ) possesses the property that u(x, &) — v(x) = O(e) and u'(x, &) — v'(x) = O(e)
for sufficiently small ¢ > 0, where v(x) is the solution of an appropriate reduced
problem (that is, the problem v' — g(x, v) = 0 subject to an appropriate boundary
condition).

Our analysis and specific results are confined to the problem (1.1)—(1.3) for
simplicity. However, our proofs and results can be extended to problems more
general than (1.1). For example, it is relatively easy to extend our proofs to the
case where we allow ' in (1.1) to have a positive nonlinear coefficient f(x, u).
Furthermore, with somewhat more work the results of the present paper taken
together with those of [5] allow us to obtain quite similar results for equations of
the form eu” + f(x,u, u' )’ — g(x,u) = 0 for classes of f and g which occur in
problems in fluid and gas dynamics.

2. Formal methods and multiple solutions. The reason for the existence of
multiple solutions is clearly revealed by an application of the formal matching
techniques of singular perturbation theory [4]. For 0 < ¢ « 1 we find that there
is a boundary layer of thickness O(¢) near x = 0. Away from this boundary layer
the first term of the asymptotic expansion (the outer expansion) is given by

(2.1) u — g(x,u) =0, 0<x=1,
(2.2) u'(1) + bu(l) = B.

Evaluating (2.1) at x = 1, we find that (2.1) and (2.2) together imply that

(2.3) g(l,u(1)) = B — bu(l).

Clearly, the solutions of (2.3) provide the proper initial conditions for (2.1).
Figure 1 illustrates a case where there are four roots «;,i = 1, --- , 4, of (2.3) for

some nonlinearity g = g(u) which is sketched.
Our formalism suggests that there are as many solutions for small ¢ > 0 as
there are roots of (2.3) (later, we shall have to modify this slightly), and the first
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Ag(u)
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|

1

2 a3 O

term in the outer expansion of each solution is given by
(2.4) v — g(x,v) =0,
(2.5) u(l) = «;.

In the boundary layer we introduce a new length X = x/¢ and let u(x) = u(ex)
= w(X). Then, the first term of the expansion (the inner expansion) near x = 0 is
given by

(2.6) w' +w =0,
2.7 w(0) — aw(0) = 4,
(2.8) w(oo) = v(0).

The boundary condition (2.8) expresses the proper condition for matching the
inner and outer solutions.

This procedure can be continued to generate succeeding terms in an asymptotic
expansion, and from this procedure we could, in fact, construct an expansion
which is uniformly valid on the interval 0 < x £ 1. Alternatively, we could employ
a “two-timing’’ formalism to obtain the same answer. We shall not pursue this
further, however, because the mechanism controlling the appearance of multiple
solutions when ¢ is small is already clear. Quite simply, multiplicity is governed
by the roots, « = «;, of the equation

(2.9) g(l,a) = B — ba.

Each root «; of (2.9) gives rise to an appropriate “‘reduced problem” (2.4), (2.5),
and as we shall see, each solution v,(x) of (2.4), (2.5) can be an asymptotic solution
of (1.1)«(1.3) on any subinterval 0 < 6 < x < 1 for sufficiently small ¢ > 0. (We
shall also see that sufficiently small values of a; may not generate an asymptotic
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solution.) We shall now proceed to give a rigorous investigation of the existence
and multiplicity of asymptotic solutions of (1.1)—(1.3).

3. The shooting method. For all the work in §§ 3 and 4 the conditions imposed
on g will be:

H.1 g(x,u) is continuously differentiable in the region
R={(x,ul0<x=1,uz0}.

H.2: g(x,u) = 0onR.

H.3: 0= u; < u, implies that g(x, u;) = g(x, u,).

H.4: g(x,u)satisfies a Lipschitz condition in R ; that is, there exists a constant
k such that for all (x, u) e R,

|g(x, u) — glx,v)| = klu — v].

H.5: Theequation g(1,®) = B — ba possesses N rootsa;,i = 1, ---, N,such
that0 < o; S o, £ -+ =< ay.

Conditions H.1 to H.4 imply that as a function of u for u = 0 the nonlinearity
g(x,u) is a reasonably smooth, positive, Lipschitz continuous, nonincreasing
function. Condition H.5 simply guarantees that there exists at least one root of
g(1,0) = B — ba, and from the formalism of § 2 we suspect that for small positive
¢ > 0a solution of (1.1)(1.3) will not exist if a root &, does not exist. Note that the
conditions H.1 to H.3 imply that g(x, u) is uniformly bounded above on R. Thus,
g(x,u) = M < oo on R, and since g is positive and monotone nonincreasing in
u, we can take

M = max [g(x,0)].
0=<x=1

For the rest of this paper M shall have this meaning. We wish to point out that
these conditions are satisfied in many rate functions in chemical kinetics.

Write the differential equation (1.4) as eu” + u’' = g(x, u), and consider it as
a first order equation in u’ with initial condition u'(0) = A + ah. Then,

(3.1) W(x) = (A + ah)e ™ + lfx e~ T 0eg(t u(t)) dt.
€Jo

Clearly, u'(x) 2 0on 0 =< x £ 1 if u(x) exists on 0 < x < 1. Integrating (3.1) and
using the condition that u(0) = h, and performing an integration by parts, we
obtain

(3.2) u(x) = h + &4 + ah)(1 — e %) + fx [1 — e &C79%g(t, u(t)) dt.
0

For later convenience we shall write (3.1) and (3.2) respectively as
(33) w(x) = S[u),  u(x)= Tlu],

where the operators S and T are defined as

X

(3.4 Slu] = (A + ah)e™™* + lf e~ 7 eg(t, u(t)) dt,

& Jo

(3.5)  Tlu]l=h+ e(4 + ah)(1 — e™**) + r[l — e~ g(¢, u(t)) dt.
0
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The conditions H.2 and H.3 imply the following lemma which is basic for all of
our results.

LemMma 3.1. Let y, and y, be continuously differentiable nonnegative functions

of x defined on 0 < x < 1. If y,(x) = y,(x), then S[y,] = S[y,]and T[y,] = Tly,].
Define the sequences {u,(x)} and {u,(x)} by

(3.6) uy(x) = h, U,y (x) = Tlu,], n=20,1,2,---,
(3.7 ug(x) = 0, u,,(x) = Slu,], n=0,1,2,---.

Clearly, u;(x) = ug(x) = h, uy(x) = u(x) = h, u(x) 2 up(x) = 0and uy(x) 2 up(x)
= 0. These facts and Lemma 3.1 immediately imply the next lemma.

LeEmMaA 3.2.

u0§u1» ”1%“2’ u2§u3, u3gu4, ?
Ug S Uy, Uy = Uz, Uy S Uy, Uy 2 Us, s
up S Uy, Uy = uy, uy Suh, Uy =, ,
Up S Uy, Wy Z Uy, Uy Sul, U3 2 us, ;

that is, for any positive integers k and |,

(3.3) Up S Uy S UL S-Sy S-Sl = Sus S Uz S Uy,

and

B9 Uy SuySuy S Suy S-Sy, S Sus Sy S

That the alternating pincer movement (for fixed h) converges to the unique
solution of (1.4)—(1.6) is the content of the following theorem.

THEOREM 3.3. Let g(x, u) satisfy H.1 to H.4. Then, for any h = 0 the sequences
{u(x)} and {u;(x)} defined by (3.6) and (3.7) converge respectively to the unique
solution u(x) of the initial value problem (1.4)~(1.6) and to its derivative u'(x) on the
interval 0 < x < 1.

Proof. First, we prove that for all n = 1 we have

>

(A + ah)k"x"  M"k"x"
N +

(310) Iun - un~1| = n!

n!
(A + ah)k"x" 1 M"k"x"

(3.11) luy — | = (n— 1! (n— 1

Here k is the Lipschitz constant of condition H.4, and M is the uniform upper
bound on g(x, u).
We now proceed by induction. Using the fact that &(1 — e™ %) < x, we obtain

|, — upl = &(4 + ah)(1 — e™ %) + fx [1 — e~ *=9%g(t, u(t)) dt
0

(3.12)
< (A4 + ah)x + Mx =< (A + ah)kx + Mkx.
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We have used the fact that x2/2 < x on 0 < x < 1, and we see also that we must
take k = 1. Similarly,

1 X
W) — upl = (A + ah)e™™* + —f e~ T 0eg(t u(t)) dt
& Jo

X

(3.13) < (A + ah) + Mf e TV gy
¢ Jo

< (A + ah) + Mk.

Hence, (3.10) and (3.11) are valid for n = 1. Now, assume that (3.10) and (3.11)
are valid for all integers up to and including a given integer n. We must prove
that they are valid for n + 1. Using H.4 and the induction hypotheses (3.10) and
(3.11), we obtain

wﬁrwmgﬁu—e“ﬂmemwwmmAWMr
Skx —u, _ dt
< me Uy (0] dt

X hnn njnsn
ékf [(A+a)kt +Mkt]dt
0

n! n!

_ (A + ah)kn+1xn+1 M"+1k"+1X"+1
- (n+ 1)! (n + 1)!

To obtain the last line of the inequality we have used the facts that we can take
M= 1land x"*?/(n + 2) £ 1 on 0 £ x < 1. Similarly,

(A + ah)kn+1xn Mn+1kn+1xn
n! * n! ’

|t sy — | =

Therefore, we have verified that (3.10) and (3.11) hold for all n = 1. Now, write
u,(x) as

(3.14) u(x) = o) + 3 [x) — 1, 4()]
=1

with a similar formula for u/(x). The estimates (3.10) and (3.11) immediately imply
that in the limit as n — oo the series in (3.14) converges absolutely and uniformly
on the interval 0 < x < 1. Consequently, the limit functions u(x) = lim,_, ,, [u,(x)]
and '(x) = lim,_, ., [u,(x)] exist and are continuous (since each u,(x) and u(x) is
continuous), and it then follows in the usual manner that u(x) is a solution of
(1.4)~(1.6) on 0 = x =< 1 with derivative u/(x).

We shall now prove the uniqueness of the solution u(x). Suppose that i(x) is
another solution. Then, ii(x) = uy(x) = h, and hence,

TMi) = i < uy = T[ug).

In the same way we show that u,, < @i < u,,, . As we have just showed, the
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sequence {u,(x)} converges (i.e., the pincer closes). Then,
fi(x) = lim [u,(x)] = u(x).
This completes the proof.

We wish to note here for future use that the solution u(x, ¢, h) of the initial
value problem (1.4)~(1.6), and its derivative, depend continuously on h for all
h = 0. This follows from the uniform convergence of the {u,(x)} which are clearly
continuously differentiable in ¢ and h.

The preceding analysis was suggested by the classical paper of Hermann

Weyl [6] who obtained a similar alternating process for the Blasius problem of
fluid dynamics.

4. Multiple solutions and their asymptotic expansions. We shall now show
that under the conditions H.1 to H.5 every root a; of (2.9) can give rise to an asymp-
totic solution u,(x, ¢) of the boundary value problem (1.1)~(1.3). Furthermore, we
shall prove that corresponding to any o; the asymptotic solution u,(x, &) possesses
the property that uyx,e) — v(x) = O(¢) and ui(x,&) — vi(x) = O(e) as ¢—> 0
uniformly on any subinterval 0 < § < x < 1, where v(x) is the solution of the
reduced problem (2.4), (2.5).

In order to prove the existence of multiple asymptotic solutions of the
boundary value problem (1.1)~(1.3) for sufficiently small ¢ > 0 we shall need the
following lemmas.

LemMMA 4.1.If |v/(x, &, h)| < C for sufficiently small ¢ > 0, where C is independent
of &, then for any x € (0, 1] we have

4.1) jx%e“"_')“g(t,u(t,s,h)) dt — g(x, u(x, e, h)) = O(c)
0

for sufficiently small ¢ > 0, where u(x, &, h), for fixed h = 0, is the unique solution
of the initial value problem (1.4)—(1.6).
Proof. First, note that

X
f 1e“("—')/‘gdt =1 — e ¥,

o0 €
Then,

j %e_(x"”sg(t,u(t,e,h)) dt — g(x,u(x, e, h)

0

S
_ ’(1—_ e""/s)J eI — gt (o, ) — g(x, ux, 6, )] de
0

1 1
mf s gt ult, e, b)) — glx, ulx, e, ) de
0

IIA

e—x/s xl
| = e T 0g(r (e, &, h))dt
+(1 — ) 5 ¢ g(t, u(t, e, h)
dg/dt] *1
< maxldg/dil 1 vy _ par + e max g
1 —e ™)), e

_ max |dg/dt|

10— [e ¥ (—x — &) + &] + e **max|g].
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Here we have used the mean value theorem and the factsthat ganddg/dt = g, + g’
are bounded. The lemma now follows.

As an immediate consequence of applying Lemma 4.1 to (3.1) we obtain the
following lemma.

LEMMA 4.2 If |u'(x, &, h)| < C for sufficiently small ¢ > 0, where C is independent
of &, then for all h = 0 the solution u(x, ¢, h) of the initial value problem (1.4)—(1.6)
satisfies

4.2) u'(x,e,h) — g(x,u(x,e, h) = Ofe)

for sufficiently small ¢ > 0 on any subinterval 0 < 6 < x < 1.

Now, define J as the number of roots «; of g(1,a) = B — ba which exceed
the quantity M + O(e) for sufficiently small ¢ > 0. For example, J = 4 for the
situation illustrated in Fig. 1, and J = 3 for the situation illustrated in Fig. 2.

?g(u)

WY

]
Q a, ag M ag ag ag

Fi1G. 2

We shall now prove that there exist J asymptotic solutions of the boundary value
problem (1.1)~(1.3) and that on any subinterval 0 < § < x < 1 each asymptotic
solution and its derivative is asymptotic to the solution and its derivative of
the reduced problem (2.4), (2.5). (Here we are assuming that J = 1. Later we
shall discuss the situation where roots o; of g(1, ) = B — ba exist but where J = 0.)

THEOREM 4.3. Let g(x, u) satisfy H.1 to H.5. Let v(x),i= N —-J +1,---, N,
denote the solution on 0 < x < 1 of the reduced problem

4.3) v — g(x,v) =0,
(4.4) u(l) = o,

wherea;,i =N —J + 1, .-+, N, are the J roots of g(1,a) = B — ba which exceed
the quantity M + O(g) for sufficiently small ¢ > 0. Then, for all sufficiently small
& > 0 there exist J asymptotic solutions u(x,¢),i =N —J + 1,---, N, of (1.1}—
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(1.3) such that ufx, &) — v{x) = O(e) and ui(x, &) — vi(x) = O(¢) as ¢ = 0 uniformly
on any subinterval 0 < 6 < x < 1.

Proof. First, we prove that there exist J asymptotic solutions. Now consider
the solution u(x, ¢, h) of the initial value problem (1.4)—(1.6). Equation (3.2) implies
that for any ¢ > 0 we can choose h so large that u(l,¢, h) is arbitrarily large.
Furthermore, g(x,u) < M on R and (3.2) imply that

u(l,e,h) < h + e(A + ah)e * + M(1 + ¢ + ge” %),

Thus, for sufficiently small ¢ > 0,u(1,¢e,h) = M + h + O(¢). Hence, for sufficiently
small ¢ > 0, u(1, ¢, h) varies continuously from M + O(g) to infinity as h varies
from O to infinity. Therefore, u(1, ¢, h) takeson the valuesa;, i = N — J + 1, ---, N,
as h varies. Now, let h; = hy(¢) denote the value of h for which u(1, ¢, h) takes on
the value «;; that is, u(1, ¢, h(e)) = o, for sufficiently small ¢ > 0. Then,

4.5) g(l,u(l,e,he) = B — bu(l,¢, hfe))

for sufficiently small ¢ > 0. If we can show that |u'(1, ¢, h(e))| < C for sufficiently
small ¢ > 0 where C is independent of ¢, then Lemma 4.2 and (4.5) imply that
u'(l, e h) + bu(l,e,h;) = B+ O() for sufficiently small ¢ > 0. Therefore, if
lu'(1, ¢ hye))] < C for sufficiently small ¢ > 0, then for each root o;,i =N —J
+1,---, N,of g(1,) = B — ba there exists an h; = h,(¢) such that corresponding
to that value of h; there exists an asymptotic solution uyx, ¢) of the boundary
value (1.1)+(1.3). Therefore, if |u'(1, ¢, hy(e))| < C for sufficiently small ¢ > 0, then
there exist J asymptotic solutions. To show that |u'(L, ¢, h(¢))] < C for sufficiently
small ¢ > 0 note that (3.2) implies that

u(l, e, hye)) = o; = he) + &(A + ahfe))(1 — e %)

1
(4.6 + J [1 — e U g(t, ult, &, hie)) dt .

0
Since all terms on the right of (4.6) are positive, then he) < o;. Thatis, h(e) = O(1)
as ¢ = 0. From this together with |g(x,u) < M we conclude from (3.1) that
u'(1, &, hye)) is bounded independent of ¢ for sufficiently small ¢ > 0, and therefore
there exist J asymptotic solutions. Note that in a similar way it follows that
|u'(x, & hye)) < cforall xe(0,1].

Lemma 4.2 and the preceding paragraph imply that each asymptotic solution

u;(x, ¢) satisfies

u;' - g(xv ui) = 0(8)7
ui(l»g) = o,

for sufficiently small ¢ > 0 on 0 < 6 < x £ 1. Let v(x) denote the solution of
(4.3), (44) on 0 < 0 £ x £ 1. Then, standard theorems on ordinary differential
equations (for example, Theorem 5 of W. Hurewicz [7, p. 9]) immediately imply
that uy(x, &) — v(x) = O(e) and ui(x, &) — vi(x) = O(¢) as ¢ > 0 uniformly as ¢ > 0
on 0 < ¢ £ x £ 1. This completes the proof.

It is clear that there exist functions g(x, u) satisfying H.1 to H.5 such that
roots «; exist but J = 0. Our Theorem 4.3 does not apply here, and we can draw
no conclusions as to whether or not the solutions of (4.3), (4.4) approximate
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solutions of (1.1}~(1.3) on 0 < § < x < 1 for sufficiently small ¢ > 0. The formal
matching techniques of singular perturbation theory [4] indicate that a root o,
may exist but that the corresponding solution of (4.3), (4.4) is not an approximate
solution of (1.1)(1.3) on 0 < é £ x < 1 for sufficiently small ¢ > 0. There are
other situations for which such solutions may not exist. For example, let y = v’
and write (1.1) as

“.7) b _gew=y
du &y

Figure 3 represents a sketch of the phase-plane trajectories corresponding to
(4.7 for small ¢ > 0 for the same function g used in Fig. 1. A necessary condition
for the existence of a solution of (1.1)~(1.3) is that a trajectory intersect both the

y =B-bu

FiG. 3

lines y = A + au and y = B — bu. The situation depicted in Fig. 3 represents a
case in which no such trajectory exists. It seems reasonable to expect that under
such conditions a solution of (1.1}+1.3) will not exist. Thus, for example, if
B — bu < g(x,u) for all u and 4 > M = max,.,<, [g(x,0)], we expect that
(1.1)~(1.3) has no solution for sufficiently small ¢ > 0.

Acknowledgment. The author wishes to express his appreciation to Professor
Herbert B. Keller for several discussions and helpful suggestions during the
course of this work.
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DECOMPOSITION OF AN INTEGRAL OPERATOR
BY USE OF MIKUSINSKI CALCULUS*

R. G. BUSCHMANf

Abstract. Recently T. R. Prabhakar used fractional integrals in order to obtain explicit solutions
to a convolution integral equation in which the kernel involved a confluent hypergeometric function.
Decomposition of the integral operator into fractional integrals and exponential functions plays a
role in the development and, following the ideas of A. Erdélyi, this decomposition is treated here in
a clearer format from the standpoint of Mikusinski operators. Further, the conditions for existence
and uniqueness of the solution are conveniently displayed.

In a recent paper by T. R. Prabhakar [4] fractional integrals are used in order
to obtain explicit solutions of a convolution integral equation of the form

t
Kmﬂﬂ=wabJ0—Wﬂww=mﬂ
0
in which the kernel is of the form
K(a; b; At) = [t*1/T(b)],Fy(a; b; Ar)

and ,F, denotes the confluent hypergeometric function with Re b > 0. Decom-
position of the operator K, , into a product of simpler operators plays a role in
the development. Following the ideas of A. Erdélyi [2], this equation can be studied
from the standpoint of Mikusinski calculus and the decompositions can be
presented in a clearer format.

The following correspondences to Mikusinski operators are needed :

K(a; b; At) s %(s—4)7% Reb>0, Rel>0;
[t~ e*/T(w] < (s — A%, Reu> 0.

In view of the development by Erdélyi [2], these can be obtained from tables of
Laplace transforms [3]. Since by Kummer’s transformation,

Fila; by —At) = e *Fi(b — a; b; A,

we see that the first relation also holds for Re A < 0. For 4 = 0 in the second
correspondence we obtain [* < s™*, where [* denotes the Riemann-Liouville
fractional integral operator of order u for Re u > 0. This can be extended to
Reu <0 in the usual manner by choosing a positive integer n such that
Re(n + p) > 0 and letting I* = I~"I**" in which I~ " denotes a differentiation
operator such that the property I ™" f = s" fis retained.

We note that
t a1 JAt—u)
LFLJ%@i—Jﬂme@—MWﬁ

* Received by the editors April 26, 1971.
+ Department of Mathematics, University of Wyoming, Laramie, Wyoming 82070.

83



84 R. G. BUSCHMAN

From this and from the other correspondences,
Ka,bH Sa—b(S _ l)—a(’_) Ib—aeltlae—}.t,

and we have obtained the decomposition of K, , into a product of fractional
integral operators and exponential multipliers. This is the result of Lemma 9.1 of
Prabhakar [4] which is used to solve the given integral equation in Theorem 9.
Looking at the expression in s we can see that other decompositions are available,
but this certainly seems to lead to the simplest. Another interesting result,
Theorem 5 of [4], states that, if f € L?, then

X

17K, f(x) = f(x) + af Filla+1;2;x—0f@)de.

0

This representation can be obtained by the following manipulations with Mikusin-
ski operators, in which we use the formula sf = f’ + f(0). Consider

I"'K,  f e ss* Ys — A)7f
= s{,F(a; 1; A} f
= [D{,F,(a; 1; i)} + F,(0)]f
= {al,Fila+ 1;2; M)} f + f,

which gives us the result. We also note the correspondences which are related to
Theorem 3 of [4];

I"K, o s" "7 s = )7 < Ky iy

In terms of Mikusinski operators the integral equation becomes the algebraic
equation

SN — ) =g
which has the operator solution
[=s""s = Afg
= s’g + [(1 — A/s)* — 1]s%g.

The second form is useful for the investigation of the conditions under which a
locally integrable solution exists. First we note that the expression in brackets is
actually an integration operator so that it suffices that s’g correspond to a locally
integrable function. Using ideas from [1] and [2], if we write

s'g = s~ V(s"g),

where k is the least integer such that k > Re b, we know that if g has a locally
integrable derivative of order k and g"(0) = 0 for 0 < m < k — 1, then a locally
integrable solution exists. A similar discussion holds for continuous solutions,
L'-solutions, etc. This method is directly analogous to that used by Jet Wimp [5].
The uniqueness of the solution follows from the uniqueness of the operator
solution in the field of operators as in [2] ; of course, this means uniqueness among
the appropriate equivalence classes which are the elements of the particular space
of functions under discussion.



DECOMPOSITION OF AN INTEGRAL OPERATOR 85

Other similar types of equations and other decompositions of the associated
integral operators can be treated in an analogous manner using the field of
Mikusinski operators. The hypergeometric function of several variables @,,
which can be considered a generalization of | F;, corresponds to a rather simple
expression involving the operator s, as can be seen from formula 4.24(5) of the
tables [3]. It thus presents us with an example which can be treated similarly.

With the easy general technique available, we omit the details of numerous special
cases.
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EXISTENCE THEORY FOR MULTIPLE SOLUTIONS
OF A SINGULAR PERTURBATION PROBLEM*

HERBERT B. KELLERY

Abstract. Nonlinear two-point boundary value problems of the form &y” + )" = g(x,y),
0=x=1; y0)—ay0) = A4; f(»(1),y (1)) = 0 are studied. Under modest assumptions on g(x, y)
and f'(y, z)itis shown that for each simple root a; of F(x) = f(«, g(1, ®)) = 0, which lies in an appropriate
interval, the boundary value problem has a distinct solution y;(x, ) for all ¢ in 0 < & < &,. Further-
more the solutions converge uniformly on [0, 1] to an appropriate solution of the reduced problem
v = g(x,v), f(u(1),v'(1)) = Oase | 0. As equilibrium states of a diffusion process the y;(x, ¢) are stable or
unstable provided f(a;, g(1, ®;))F'(2;) > 0 or <0, respectively. This latter result is not demonstrated
here. These problems are suggested by and have relevance to the theory of tubular chemical reactors.

1. Introduction. In[1] D. S. Cohen has shown that the singular perturbation
problem

(1.1) ey +y = g(x,y), 0<x<1;
(1.2) V'(0) — ay(0) = 4;
(1.3) y(1) + by(1) = B

can have several distinct “asymptotic solutions’’ for all sufficiently small ¢ > 0.
These are functions y(x, &) which satisfy (1.1) and (1.2) exactly but only satisfy
(1.3) to within O(e). We shall complete and extend Cohen’s results in several ways.
First the conditions on g(x, y) are weakened in two essential ways: (i) by imposing
smoothness requirements only on a finite y-interval rather than the half-liney = 0;
(ii) by eliminating the monotonicity condition g (x, y) < 0. Under these modified
conditions we show, using essentially techniques already employed in [1], that
(1.1)~1.3) can have several exact solutions y = y(x,¢). These solutions are
continuous and even continuously differentiable with respect to ¢ on 0 < ¢ < ¢,
for sufficiently small ¢,. As & | 0 each y;(x, ¢) converges uniformly on 0 < x < 1
to an appropriate “outer solution” of singular perturbation theory. Our analysis
furthermore allows us to establish all of these results when (1.3) is replaced by
very general nonlinear boundary conditions of the form

(1.4) S, y(1)) = 0.

A number of other extensions of (1.1) were mentioned in [1] and of course
the present analysis carries over for these problems too. In particular we point out
that the present analysis applies (with but a sign change and an interchange of
the treatment of the endpoints) to establish the existence of all three solutions
conjectured by Cohen in [2]. Previously only the two “‘stable” solutions were
shown to exist. In fact the proofs employed in [2] could have been applied in [1] to
get the existence of an exact solution corresponding to essentially every other
asymptotic solution. This has also been observed independently by S. V. Parter

* Received by the editors May 13, 1971, and in revised form June 1, 1971.
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(private communication). However it has recently been shown by Sattinger [5]
that only “‘stable” equilibrium states (of unsteady parabolic problems) are obtained
by these monotone iteration methods. In fact the analysis in [5] can be applied
almost without change to determine the stable solutions of (1.1), (1.2), (1.3).
For nonlinear boundary conditions of the form (1.4) the analysis must be modified,
as is already done in [4], and the stability can again be studied under some
additional conditions on f(y, z) that we do not require here.

We first reformulate the hypothesis of [1], and impose conditions on g(x, y)
only over some finite rectangle Ry = {x, /0 < x £ 1,0 £ y < Y} as follows:

Hl: g(x,y)eC(Ry);
H2: 0= g(x,y) = MonRy;
(@) f(y,2)eCy([0, Y] x [0,2M + N]);

(b) F(x) = f(a,g(1,a)) = 0 has J simple roots o; in
M<o <o,< -+~ <o <N;

H4: a=20,4=0,Y<2M + N).

H3:

From HI it follows that there is some constant, say

(L.5a) K = rr,l{aXIgy(x,y)I,
such that
(1.5b) lg(x, y) — g(x, )| = Kly — j| forall(x,y)and (x, ) e Ry.

(This Lipschitz condition had to be assumed in [1] since R, was used rather than
Ry)

2. Initial value problems and outer solutions. To establish asymptotic solutions
of (1.1), (1.2) and (1.4) as well as exact solutions we use the initial value problem

(2.1a) eu” + u' = g(x,u);

(2.1b) u(0) = h, w0)= A + ah.

By integrating (2.1a) over [0, x], multiplying by the integrating factor e*’*, integrat-
ing again over [0, x] and performing an integration by parts, we formally obtain
the integral equation

(2.2a) u(x) = @o(x) + Tolu(x)];
Qo(x) = h + (A + ah)e[l — e™ ],

(2.2b) x
Tolu(x)] = f [1 — e~ eg(t, u(t)) dt.
0

If u(x) is a twice continuously differentiable solution of (2.1) for which (x, u(x)) € Ry
for 0 < x £ 1, then the indicated derivation of (2.2) is valid and u(x) is also a
solution of the integral equation on 0 £ x < 1. Conversely, if u(x) is a continuous
solution of (2.2) whose graph remains in Ry, then it has two continuous deriva-
tives and, by differentiation, is found to be a solution of (2.1). Thus (2.1) and
(2.2) are equivalent, and we study the existence theory by means of the integral
equation.
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THEOREM 2.3. Let H1, H2 and H4 hold. Then for each (g, h) in
(2.4) 0<é=¢gy=min(l/a, M/A); 0<h<N;

the initial value problem (2.1) has a unique solution u = u(x; ¢, h) which exists on
0= x =1 and satisfies 0 < u(x;e h) < Y, u'(x;e h) = 0. Further u(x;e h) and
u'(x; &, h) are continuously differentiable with respect to (s, h) on (2.4) for all x in [0, 1].

Proof. We consider for any fixed (e, h) satisfying (2.4) the sequence of iterates
{ux;e h)} = {u/(x)} say, defined by

(2.52) Uuo(x) = @o(x);
(2.5b) Uy+1(%) = @o(x) + To[u(x)], v=20,1,2,--

We first show, by induction, that 0 < u(x) < Y on [0, 1]. From (2.2b) and (2.4)
we have, recalling H4,

0= ug(x) =@ox) =h(l +ae)+ Ae<2h+ M 2N+ M < Y.

Assuming 0 < u,(x) < Yon [0, 1] we use H2 and (2.5b) to get
0. 1) = o) + M [ [1 = e dt = pfx) + M < .
0

concluding the first induction.
Next we show that
M K’x"
_ < A
26) 1(x) = 1,100 S

R 0x<1, v=1,2,---.

Clearly from (2.5), |u;(x) — up(x) = |Tylue(x)]] < Mx for 0 < x < 1, so (2.6) is
established for v = 1. Using the inductive hypothesis and (1.5) we get

g1 1(%) — () < f [ — K uy(t) — uy_ 1(0)] dt

<Kf lu,(t) — 1(0)] dt

MKv+1xv+1
< -
=K v+

and so (2.6) follows.

Now in the usual way {u,(x)} is a Cauchy sequence of continuous functions
on [0, 1] and by the continuity of g(x, y) on Ry it follows that lim,_, ., u,(x) = u(x)
is a continuous solution of (2.2) over [0,1]. Since 0 < u,(x) < Y the same is
true of u(x). To demonstrate uniqueness we simply use the fact that T,[u] is con-
tracting under the norm

lul, = sup e ®u(x)|
0sx=s1

for any K > K. Finally u/(x) = 0 follows from differentiating in (2.2a), and the
smooth dependence on (g, h) follows from the uniform convergence of the {u,(x)}
which are clearly continuously differentiable in ¢ and h and these derivatives
converge uniformly on 0 < x < 1. This completes the proof.
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We next show that u(l; ¢, h) essentially ranges over (M, N] as h ranges over
(0, N] for all ¢ sufficiently small. More precisely we have the following corollary.
COROLLARY 2.7. Let H1, H2 and H4 hold. For any 6 in 0 < 6 < 3M define

£o(d) = min (1, 1/a, 5/(3A4)).

Then for each ¢ in 0 < ¢ < ¢o(0) as h ranges over 0/3 < h < N, the quantity
ale, h) = u(1; e, h) ranges, at least, over M + 6 < o < N.

Proof. All (¢, h) as in the hypothesis also satisfy (2.4) and so u(1 ; ¢, h) is uniquely
defined by (2.1). Integrating (2.1a) over [0, x] and using H2 yields

eA + (1 + agdh < eu'(x) + u(x) < eA + (1 + agh + Mx.

However since u(x) = 0 and u'(x) = 0 on [0, 1] we have | (1) u(x)dx < u(1) so that
another integration, now over [0, 1], yields

h+ l—j_g(A +ah) < u(lye.h) < eA + (1 + aghh + M.

The result follows from the continuity of u(1;¢, k) in h by using first h = N in the
left-hand inequality and then h = §/3, ¢4 < /3 and a¢ < 1 in the right-hand
inequality.

Finally we require some bounds on u”(x) which are contained in the next
corollary.

COROLLARY 2.8. Let H1, H2 and H4 hold. Then there exist constants K | and
C,, independent of (¢, h), such that for all (¢, h) satisfying (2.4) the solution u(x; ¢, h)
of (2.1) has second derivatives bounded by

(2.9a) eu'(x:e,h)| < (K; + KC)e(1 — e %) + C, e "
Further for e < 1,
(2.9b) u"(1;e,h)) £ Ko=K, + (1 + K)C,.

Proof. By differentiation in (2.2a) we obtain the integral representation

w(x;e,h) = (A + ah)e™ ¢ + f ée“"‘”“g(t,u(t)) dt.

0

On performing a partial integration this yields, in (2.1),

eu'(x;e,h) = [g(0,h) — (A + ah)] e™™* + j e(t—x)/sdg(t"h”(t)) dr.

0
Using the bounds

Kl = max |gx(x7y)|7 Cl z max |u,(x;8’h)|’ K = maxlgy(x’y)|a
Ry O0=xs Ry

1
we get

eu'(x;e,h)) < (M + A+ aN)e ™ + ¢K, + KC)(1 — e~ 7).

Here we have recalled that h < N and |g| £ M. Also we find from the above
integral representation that|u'(x;e,h)| < (4 + ah) + M,andsoC, = (M + A + aN)
will do. Thus (2.9a) is established, and (2.9b) follows since e /* < ¢ for ¢ < 1.
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We recall [1] that Cohen disclosed the possibility of multiple solutions of
(1.1)~(1.3) by considering the reduced problem

(2.10a) v = glx,v),
(2.10b) v'(1) + bo(1) = B;

obtained by formally setting ¢ = 0 in (1.1) and dropping the boundary condition
(1.2). A slight knowledge of singular perturbation theory suffices to determine
which, if any, boundary condition should be retained ; we refer to the text of
Cole [3] for a thorough understanding. The reduced problem for (1.1), (1.2) and
(1.3) is simply

(2.11a) v = g(x,v),

(2.11b) f((1),v'(1)) =0.

In either case we are thus led to consider initial value problems of the form
(2.12a) v = g(x,v),

(2.12b) (1) = a.

The existence theory for this problem is contained in the following theorem.
THEOREM 2.13. Let H1 and H2 hold for some Y > M. Then for each o in
M < o £ Y the problem (2.12) has a unique solution v = v(x;a) on 0 £ x < 1
satisfying o — M(1 — x) < v(x, ) < o
Proof. We simply consider the equivalent integral equation

1
v(x) = o — f g(t, u(t)) de

and the iteration scheme
1
bol0) = o, Dy y(x) = 0 — f gt v,(0) di

By induction it is easily established that,on 0 < x < 1,

o — M — x) £ vyx) = «a, v=1,2,.--

l,(x) = v, ()] =

MKV — v
_—(1 x), v=1,2 ..
K

v!

The results now follow in the standard fashion previously indicated.

If we use o = «;, the roots of f(a,g(1,®)) = 0, as initial data in (2.12), we
obtain v/(x) = v(x, «;) which are solutions of the reduced problem (2.11). These
are known as the “outer solutions’ for the singular perturbation problem (1.1),
(1.2), (1.4). Notice that according to H3 we may not be investigating all of the

outer solutions but only those determined by the «; which are simple roots and
lie in (M, N).
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3. Solutions of the boundary value problem. We now use the results of
§2 to show that the boundary value problem (1.1), (1.2) and (1.4) has several
distinct solutions each converging to an appropriate solution of the reduced
problem (2.11) as ¢ — 0. The main result is contained in the following theorem.

THEOREM 3.1. Let g(x,y) and f(y, z) satisfy H1, H2, H3 and H4. Then for
some ¢, > 0 the boundary value problem (1.1), (1.2), (1.4) has at least J distinct

solutions, y = y(x, &), for each ¢ in 0 < ¢ < &, . For some constant C, independent
of ¢, these solutions satisfy

(32) lyj(198)—aj|<C089 J=15255J
Proof. For all (¢, h) satisfying (2.4) we use the solution u(x; e, h) of (2.1) to

define

(3.3a) G(h,e) = f(u(l;¢e,h),u(1;e, h).

It clearly follows from Theorem 2.3 that y = u(x; ¢, h) is a solution of (1.1), (1.2),

(1.4) if G(h, &) = 0. We shall establish that G(h, ¢) has, for all sufficiently small &,

at least J zeros h = hje). First, using F(«) defined in H3(b), we write

(3.3b) G(h,&) = F(u(l;¢,h)) + B(h,e),

where

(33¢)  Bh,e)= f(u(l;e, h),u' (15, h) — fu(l;e, h), g(1;u(l;e, h)).

For (¢, h) in (2.4) we have 0 < u'(1;¢ h) < 2M + N, and it follows that fi(h, ¢) is

continuous and even continuously differentiable on this domain. The smoothness

of f(y, z)in H3(a)and the boundedness of u(1 ; ¢, h) and |u"(1 ; ¢, h)| from Theorem 2.3
and Corollary 2.8, respectively, imply that

(3.3) |B(h,e) < KoLe, L= Jnax | £y, 2).
0§z=§y27v1+1v

Since the roots o; of F(x) = 0 are simple we are assured that

(3.4a) m = % min

Then for some sufficiently small p, > 0 it follows that
(3.4b) |[F(a)] > mla —a] onO0<|a—oaf<p,, j=1,2,---,J.

Thus, since F(x) changes sign at each «;, the continuous function F(«) + f must
vanish atleast onceineachintervaljx — o < pif|f| < mpforany pin0 < p < p,.
Now pick ¢ and p, so small that
M+ 6 =0y —py, py=po, Py < min (o —o;_4)/2,
25j5J
and set ¢; = min {gy(5), mp/(K,L)} . Applying Corollary 2.7 foranyein0 <e < ¢,
shows with the above argument and the continuity of (h, ¢) that as h ranges over
0/3 = h = N, G(h,e) = 0 for at least J distinct values of h, say h = hj(e). In fact
these values of h can be chosen such thatforallein0 < ¢ < ¢,

a; — KoLe/m < u(l;e,hje) < o; + KoLe/m, j=1,2,---,J.
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Clearly y/(x, e) = u(x; e, hje)) for j = 1,2, ---, J are each solutions of (1.1),
(L.2), (1.4), and they are distinct since they differ at x = 1. Furthermore these
solutions satisfy (3.2) with C, = K,L/m. This completes the proof.

We can show, by means of the implicit function theorem, that the h¢) and
hence the solutions y,(x, ¢) can be continuous and continuously differentiable in
eon0 < ¢ < ¢, for sufficiently small ¢, . The proofis involved so we do not present
it here. However we easily show how the exact solutions are related to the “outer
solutions” in the following corollary.

COROLLARY 3.5. Let H1-H4 hold and ¢, be as in Theorem 3.1 and at least as
small as ¢; < 1/K. Define the outer solutions v{x) = v(x, o)), j =1,2,---,J, by
using (2.12) with o = o; and Theorem 2.13. Then for each¢in0 < ¢ < ¢,

K -x c —x/e
8|:(C0 + Cl + "Izl) eK(l ) + (ﬁ(—) e /‘:I

forall0 £ xZlandj=1,2,---,J.
Proof. From (1.1), (2.9) and (3.2) it follows that wj(x,¢) = y,(x, &) — v(x)
satisfies an initial value problem of the form

IIA

(3.6) |Yj(x’ &) — Uj(x)l

w' = a(x, e)w + b(x,¢), w(l) = C,

where
alx,e) = gy(x,0yx,e) + [1 — OJv(x)), lalx,e) £ K,
blx.e) = —eyj(x. ), lb(x,e)l < (K, + KCy)e + Cye ",
C=yl.e) —ay, IC] £ Cgs.

The bound on |b(x, ¢)| follows from Corollary 2.8. Solving the equation for w
yields, on taking absolute values,

1
W) = K]+ [ o) e
Finally (3.6) results on inserting the bounds for |b| and |C| and using ¢K < 1,
thus completing the proof.
We note that the convergence implied by (3.6) is uniform in x as ¢ | 0. Thus
there is no typical boundary layer jump at x = 0 butat most one of magnitude O(e).
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ASYMPTOTIC SOLUTIONS OF A 6TH ORDER DIFFERENTIAL
EQUATION WITH TWO TURNING POINTS.
PART II: DERIVATION BY REDUCTION TO A
FIRST ORDER SYSTEM*

B. GRANOFF+}

Abstract. The 6th order ordinary differential equation (D? — k?)>u — k®xu = 0 possesses turning
pointsatx = —1and x = 0. The asymptotic behavior of a fundamental set of solutions of this equation
is investigated by first transforming the scalar equation into a first order 6 x 6 linear system of the
form U’ = A(x)U, where ¢ = k™. In a neighborhood of the turning point x = — 1, the system can be
reduced to four uncoupled scalar equations and a 2 x 2 first order system. The resulting scalar
equations are solved without difficulty and the solution of the 2 x 2 system is shown to be expressible
in terms of Airy functions. This constitutes a derivation of uniformly valid asymptotic expansions of
a fundamental set of solutions in a neighborhood of x = — 1. At the turning point x = 0, it is shown
that the 6 x 6 system can be reduced to two uncoupled 3 x 3 systems for the leading terms of the
asymptotic expansions of a fundamental set. Each 3 x 3 system is equivalent to a third order scalar
equation of the form &*v'® + exu(x)v’ + xv(x)v = 0, where u(0) # 0 and v(0) # 0. A comparison is
made between this type of asymptotic analysis and a previous investigation which employed the
method of steepest descent.

1. Introduction. In a previous paper (Granoff and Bleistein, 1972) we
obtained the asymptotic expansions of a fundamental set of solutions to the
equation

(1.1) (D* — k*u — k®xu=0 (D = d/dx),

where k is a large positive parameter. This equation possesses two turning points,
at x = —1 and x = 0. The results contained in that paper were obtained by
applying the method of steepest descent to integral representations of a funda-
mental set of solutions. The paths of descent were determined numerically at a
representative point in each of the intervals (— oo, —1), (—1,0), (0, c0). In this
manner we were able to derive asymptotic expansions of a fundamental set in
each interval and WKB connection formulas across the two turning points.

In the present paper we describe an analytical procedure by which we obtain
the uniform asymptotic expansions of a fundamental set in a neighborhood of
the turning point x = — 1. In a neighborhood of x = 0 we find that (1.1) may be
replaced by two uncoupled third order linear equations for the leading terms of
the asymptotic expansion of a fundamental set. The procedure which we employ
is described in detail in Wasow (1965).

In the next section we replace (1.1) by a first order linear system and make
use of a theorem which implies that this system can be partially uncoupled by a
similarity transformation in a neighborhood of each of the turning points. The
details of the uncoupling at x = — 1 are given in § 3. Four uncoupled equations
and two coupled equations result. The two coupled equations are treated in § 4.
There itis shown that the leading terms of the asymptotic expansion of the solutions
can be given in terms of Airy functions. In § 5 we obtain the leading terms of the

* Received by the editors December 7, 1970, and in final revised form April 29, 1971.
t Mathematics Department, Boston University, Boston, Massachusetts 02215.
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asymptotic expansions of a fundamental set of solutions to (1.1) in a neighborhood
of x = —1. In §6 it is shown that, in a neighborhood of x = 0, (1.1) may be
replaced by two uncoupled systems consisting of three equations each. Additional
analysis results in two third order equations of the form

(1.2) eu” + exglxw + xh(xu =0, e=k*,

where g(x) and h(x) are analytic at x = 0 and g(0) # 0, h(0) # O for the leading
terms of the asymptotic expansion of a fundamental set. A comparison of the
two techniques applied to (1.1) is made in § 7.

2. Reduction to a first order linear system. Expanding (1.1) fully we obtain
(2.1) u® — 3k*u™ + 3k*u” — kSx + u = 0.
Let us now set ¢ = k™! and
Ujpq = euj, j=1,2,---,5.

Here u; = u. By (2.1), this substitution results in the first order linear system

(2.2) eU" = A(x)U,
where U is a six-component column vector and
0 1 000 0]
0 0 1 000
AG) = 0 0 01 00
0 0 0010
0 0 00 01
| I+x 0 =3 0 3 0]

The turning points of (2.2) occur at the points x at which the eigenvalues of
the matrix A(x) coalesce. The characteristic equation associated with A(x) is

(2.3) A8 —=34*+342 - (1 +x)=0.
The roots are easily found and they are

(2.4) T+ x3 £/T+ ox'B, £ /1 + 0?x'3,

where x = re?, 0 < 0 < 2n, x13 = r13 %93 and w = ¢**/3. We find that the
turning points are x = —1, at which ++/1 + x!3w both coalesce to zero, and
x = 0, at which \/1 + x!1/3, \/1 + wx!? and /1 + w?x'/® coalesce to 1 and
the remaining roots coalesce to —1.

It can be shown that in a neighborhood of each turning point it is possible
to partially decouple the system of equations given by (2.2). The decomposition
results from the following theorem proved in Wasow (1965).

THEOREM. Let A(x, &) ~ oA j(x)ej, & — 0, uniformly for ¢ in some sector
S of the e-plane, 0 < |¢| < &,, where A(x), j = 0,1, ---, are analytic at x = x,.
Assume that the eigenvalues of A(x,) consist of two groups {A,,---, A,} and
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{Ap+1s """ Any such that A; # A for j < p and k > p. Then there exists a matrix
P(x, ¢), analytic at x = xq and for 0 < |¢| < &, in a sector S of the ¢-plane, possessing
in S a uniform asymptotic expansion

P(x,e) ~ ) P(x)¢/, &-0,
j=o

det Py(x) # 0 for x sufficiently close to x,, such that the transformation
U = P(x,¢)Y
takes the system of differential equations

&"U = A(x, e)U
into

"Y' = B(x,¢)Y,
where B(x, €) has the block diagonal form

B 3 [B“(x,s) 0 ]
(x.8) = 0 B,,(x,¢) '

The matrices B;|(x, &) have asymptotic power series for ¢ —» 0 in S and the eigen-
values of lim,_, o B;j(xo,¢€) are {4y, -+, A,} forj = land {A,.y, -, A} forj = 2.

Upon investigation of the eigenvalues associated with the matrix A(x) given
in (2.4), we find that this theorem implies that, in a neighborhood of the turning
point x = — 1, we can replace (2.2) by a system consisting of four first order
uncoupled equations and two equations which remain coupled. The uncoupled
equations can be solved for the leading terms of the asymptotic expansion of their
solutions. Because of the manner in which the two eigenvalues coalesce to zero at
x = —1, we can show that the two coupled equations can be reduced to a problem
involving Airy’s equation. The analysis leading to these results is contained in
§§ 3 and 4.

In a neighborhood of the turning point x = 0, the above theorem implies
that (2.2) may be replaced by two uncoupled systems each consisting of three
equations. This problem is treated in § 6.

3. Block diagonalization of A(x) about x = — 1. The first step in decoupling
(2.2) about x = —1 is to construct a matrix P(x), analytic and nonsingular at
x = —1, such that P~'(x)A(x)P(x) is in the appropriate block diagonal form.
This may be accomplished by considering the cyclic invariant subspaces of E®
relative to the matrix A(x) in a neighborhood of x = — 1. The theory of cyclic
invariant subspaces is described in Gantmacher (1959). We are led to consider
the matrix

1 11 1 1 0
A=A A, —4, O 1
A2 2 2 20
ABo-32 -B o0 2
AaE s 2% %o
A=A A =i 0 A

(3.1) P(x) =
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where 4; = /1 — o|x|*3, 1, = /1 — w?x|3, and A3 = 1 — |x|*3. It is easily
seen that P(x) is analytic at x = — 1 and possesses an analytic inverse at x = —1.
By direct computation we find that

P~ 1(x)A(x)P(x) = o/(x)

At 0 0 (VI
0 —4 O (U

(32) _ 0 0 4, 0 0'
0 0 0 -4, 0 O
0 0 0 0 0 1
L0 0 0 A3 0_

From (2.2) we have that

(3.3) eP 1 (x)U = A(x)P (x)U.

Setting

(34) U = P(x)Y

we obtain

(3.5) eY' = C(x,¢)Y,

where

C(x, ) = A(x) — eP™1(x)P'(x).
It is shown in Wasow (1965) that by means of a transformation of the form
(3.6) Y = Q(x,¢)V,

where Q(x,¢) = I + Z;’O:l Q/(x)¢/, it is possible to transform (3.5) into

3.7 eV = [&i(x) + Y &ij(x)aj:lV,
j=1
where the matrix Z;": , #j(x)e’ has the same block diagonal form as the matrix .</(x).
Thus (3.7) reduces to the system of four uncoupled equations:
evy = | A44(x) + Z ﬂlj(x)sj]”1 >
L i=1

oy = | A0+ Y uz,(x)af]vz,
(3.8) - =1

evy = | A(x) + Y usj(x)aj]vs,
L Jj=1

evy = | —Ay(x) + Z :u4j(x)8j:|l74a
j=1

L.
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and the system of two coupled equations:

Il

&vs = vg + Z (s (x)vs + V5j(x)vs]8j,
(3.9) =t

lg(x)vs + Z [V6j(x)175 + st(x)vs]gj-
=1

j=

’
eV

4. Solution of the coupled equations. We now proceed to treat the coupled
equations (3.9). We rewrite them here as

(4.1) eW' = [Bo(x) + i Bj(x)gf]w,

we[o] e mi=, o]
= an = .
Vg ol¥ 1—|x'? 0

Our object is to obtain the leading term in ¢ of a fundamental matrix to system (4.1).
Following the procedure in Wasow (1965) we find that if we set

@2 =3[ Vi)

where

2/3

and
4.3 R(x) [1 0 :l

) =10 ayix )
then, by means of the transformation
4.4) W = R(x)W*,
we obtain

dW* ® )
4.5) € = [B’g(t) + > B}‘(t)e’]w*.
dt i

Here

0 1
Ba"(t)=[t 0].

Observe that t = t(x), defined by (4.2), is analytic at x = — 1.
We shall now employ the following theorem proved in Wasow (1965).
THEOREM. There exists an asymptotic power series ) *  R(t)e’ whose
coefficients are analytic in a region |t| < t,, and with det Ry(0) = 1, such that
the formal transformation

(4.6) W* = i R{(t)e'Z
i=0

J



98 B. GRANOFF

changes the differential equation (4.5) into
4.7) ¢Z) = B{(t)Z.

Furthermore it is proved in Wasow (1965) that the formal series )\* , R (t)¢’
in the above theorem is the asymptotic expansion of functions R(t, ¢) such that
the transformation W* = R(t, ¢)Z actually transforms (4.5) into (4.7).

A fundamental matrix of (4.7) is

_[ Ai(te™ 23 Ai(ote™2/?) ]

4.8
“8) elBAT(te23)  eBwAi(wte™23)

where Ai(x) is Airy’s integral and w = exp 2zi/3. Therefore, the leading term of
the fundamental matrix of (4.5) is given by

wi wh
4.9) Wr~ Rz =| 0
W21 Waa
where
W’lkl = r“(t) Al (t8“2/3) + rlz(t)81/3 Al/ (t8—2/3)’
why =1y (1) Al (wte™27) + 1150 o AT (wte™?7),
W’Zl‘1 = r21(t) Ai ([8—2/3) + r22(t)81/3 Ai'(t8_2/3),

W;Z = 7'21(t) Al (60[3_2/3) + r22(t)81/3w Ai (0)[8_2/3).
From (4.4) we obtain the leading term of a fundamental matrix of (4.1). It is

wi wi,
(4.10) W ~ R(x)W* = dt dt

wi — wi,—
21 dx 22 dx
In (4.10) there appear four unknown functions, r,,, ry,, r,;, and r,,. We shall
find it necessary to determine only the functions r,; and r;, in order to obtain
the leading terms of a fundamental set of solutions of the original scalar equation
(1.1). This will be considered in the next section.

5. Derivation of a fundamental set of solutions for (1.1) at x = —1. From

(3.8) and (4.10) we find that the leading term of the asymptotic expansion of a
fundamental matrix of (3.7) is

vy, 0 0 O 0 0
0 v, 0 0
0 0 v;3 O 0 0
(5.1) V= ,

0 0 v, 0 0
0 0 0w w¥,

dt dt

* x

LO 0 0 O Wiy Wndx_
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where

lh~ﬁp8”fjhﬁwé+m@ﬁ,
v, ~exp| —& ! J‘i‘ A& dE + ﬂz(x)],

vy~exp|e ! Jj A(8) dE + ﬂ3(x)] )

X

U4 ~ €Xp —e! A8 dE + H4(x)] >

-1

and w¥,, wf,, wi,, wi, are given by (4.9). The function ¢ = #(x) is given by (4.2).
The functions pjx), j = 1,---, 4, are still unknown. They will be determined
shortly by resorting directly to the original scalar equation (1.1).

From (3.4) and (3.6), we find that the leading terms of the asymptotic expan-
sion of a fundamental matrix of (2.2) are given by
(5.2) U ~ P(x)Q(x,0)V = P(x)V.

In order to obtain the leading terms of the asymptotic expansions of a
fundamental set of solutions to the scalar equation (1.1), we need consider only
the entries in the first row of the fundamental matrix U given by (5.2). By direct
computation we find that these terms are

(53) szvj, j=1""a4’
where v, j = 1, ---, 4, are given by (5.1) and
(54) us = wi, Ug = wis,

where w¥,, w¥, are given by (4.9).

We now proceed to find those unknown functions uix), j=1,---,4,
appearing in (5.1), and g(x) = r,,[¢(x)], h(x) = r,,[t(x)], appearing in (4.9). First
let us substitute the expression

ww{wfﬂwuwﬂ
-1
into (1.1). Observe that this is the typical form of u;,j = 1, - --, 4. This substitu-
tion yields the equation
[A° — 34% + 34% — (x + 1)] + e[(64° — 124* + 6A)’
+ (154* — 1842 + 3)A'1 + 0(¢?) = 0.

If A= +4, or +4,, where 1, and A, are given in (3.1), then the first bracketed
term in (5.5) vanishes. Equating the coefficient of ¢ to zero, we obtain

(5.6) (645 — 124* + 64)u + (154* — 1842 + 3)A' = 0,

where 4 = + 4, or +1,. We observe that implicit differentiation of the charac-
teristic equation given by (2.3) results in

(5.7) (645 — 1243 + 64)F — 1 = 0.

(5.5)
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Since A = 4+, or + 4, are simple roots of (2.3) in a neighborhood of x = —1,
we may solve (5.7) for A’ and then substitute it into (5.6). The result is

(5.8) W= —(152* — 184% + 3)(X)%.

The solution is

(5.9) ux) = — fx (154% — 1842 + 3)(X)* dE.
If A= +4,, then o

13 _
uf o et ae

(5.10) it

= In|x| 731 — wlx]'?)TV4H1 - o).
If 2 = +4,, then
(5.11) wx) = In x| 7 13(1 — @?x|13) "1 — )V
Hence we obtain

m~u—m“mWM—@wmwwmfﬁ 2() de,
-1

w~u—m“mwm—wwmw%m—fﬁ (&) dé,
(5.12) !

%~U—MWWFWO—MMWY“wm”f 2(8) e,
-1

g ~ (1= 0 a7 = 0P ) exp e [ A de.
-1

By substituting w¥,, given by (4.9), into (1.1) and retaining only leading
powers of ¢, we find that g(x) = r,,[#(x)] must satisfy the equation

1t =2t 4+ 1)
513 ! —+ = =0
13 s [2t/ Ty [

and that h(x) = r,,[t(x)] satisfies

vt (Pt = 2+ 1Y
5.14 n — + = = 0.
©14) * |:2t NS T R I e h=0

The solutions are given by

(5.15) g(x) = cy|x| "3V (x)[1 — |x| /3] M4 (c; = const.),

where t14(x)[1 — |x|/3]” Y/* is analytic at x = —1, and
hm=d{%ﬁoﬁtﬁFﬁTM%rmﬂWmu—uWﬂ*“

(d, = const.).

(5.16)
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Observe that if d;, # 0 in (5.16), h(x) > oo as x - — 1. Hence A(x) is analytic at
x = —1if and only if d, = 0.
Therefore the leading terms for u5 and u, are

(5.17) us ~ |x| 73 Hx) 1 — |x| 3]V Al L6 23 (x)]
and

(5.18) Ug ~ |x| 7B x)[1 — [x]V3]7V* Al [e” PRot(x)],
where

X 1/6
11/4(x) = BJ JT= g dg} .
-1
From (4.2) we see that

(5.19) PR =[x = (35 + 3811+ S

6. Block diagonalization of 4(x) about x = 0. In a manner similar to the
one described in § 3, we may obtain a matrix Q(x) which, together with its inverse,
is analytic at x = 0 and such that Q~*(x)A(x)Q(x) is in the desired block diagonal
form. A matrix which has the required properties is

(1 0 0 1 0 0

0 0 g, 0 0 —q,
0 a1 ¢, 0 — 4 q>
(6.1) O(x) = .
41 492 43 —4q q4> —d43
42 43z da 4> —d43 qa

43 44 4ds —43 d4s  —(s

if we set
ay = —J/1+x13 — /1 + ox!® - /1 + 0?x3,

(6.2) ay =1 — 1 + x¥3 + /1 —xB + x2P + /1 — x'P + 0%,
az = —m,

where the elements of Q(x) are given by the formulas

q, = —das,
q, = a,43,
(6.3) 43 = —a3(3 + a,),

qs =1+ x + 3a,a,,

qs = —6a; — 3a,a;.
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By direct computation we find that

0 0 —a; 0 0 |
1 0 —a, 00

(6.4) 0 Ao = . 0O
00 0 00 a
00 1 0 —a,
LO 0 01 ap |

From (2.2) we obtain
6.5) eY = 4(X)Y — Q7 '{(x)Q'(x)Y,

where U = Q(x)Y and /(x) = Q@ '(x)A(x)Q(x). From comments made in § 3,
(6.5) can be further transformed by V = (I + ) R /x)&)Y in such a manner that
we obtain a system of the form

(6.6) eV’ = [%(x) + i Mj(x)ajle,

i=1

where .o/,(x) = 2/(x) and the matrix Z;‘;l (x)e’ has the same block diagonal
form as matrix .&/(x). Therefore, (6.6) is equivalent to the two uncoupled systems

_O 0 _a:; o
eVi=|1 0 —a,|V, + (Z Alj(x)aj)Vl,
0 1 —a =t
(6.7) _ _
00 as .
SV/Z = 1 0 —az VZ + ( Z Azj(x)aj) Vz.
10 1 a, | =

Let us restrict our attention to the first system appearing in (6.7). If we set

V, = TW, expe~ 'x,

where
1 -1 1
T=|-2 1 0y,
1 00
then we obtain for W,
ax) 1 0
(6.8) eW) = | f(x) 0 1|W, + O()W,.
yx) 0 0

Here
x) = —3 — a,(x),

(6.9) B(x) = =3 — 2a,(x) — a,(x),

YX) = =1 = a,(x) — ay(x) — as(x).
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Now set W; = S(x)U,, where

1 00
S(x) = | —« 1 0].
-p —a 1
Then
010
(6.10) Uy =10 0 1|U;+ O(U;.
y B oo

It may be easily verified that the leading term in the asymptotic expansion of the
first component of the three-vector U, must satisfy the third order equation
given by

(6.11) eu” — alx)u’ — ef(x)u’ — y(x)u = 0.

The change of dependent variable

-1 px
v = uexp [—%J Ot(f)dﬁ]

(6.12) 30" + eu(x)’ + v(x)p = 0

results in the equation

for the leading term of the asymptotic expansion of v. Here

Hx) = —Go® + p),

(6.13)
v(x) = — (5o’ + af + 7).
It can be shown that p(0) = v(0) = 0 and that u'(0) # 0 and v'(0) # 0.

An equation similar to (6.12) can be obtained when treating the second system
in (6.7).

Some special third order differential equations with a turning point have
been investigated by Langer (1955). However, asymptotic expansions of a
fundamental set of solutions of third order equations of the form of (6.12), which
possess a turning point at x = 0, have not yet been obtained. In a forthcoming
paper we shall consider this problem.

7. Comparison. The results given by (5.12) and (5.17), (5.18) are most easily
compared to the results of Granoff and Bleistein (1972) with the aid of the following
equations:

f HEVAE = Ax)(— 8] + &Ixw? + Hlx P + 19
1.1) !

= A=DE50? + F5o - 33),
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where A(x) = 4,(x) or A,(x), and

: 1/3
(1 _ wlxll/S)——l/4 - |1 + |x|1/3 + |x|2/3l—1/8 exp iarctan 3|x|
(12) vk

) 5
(1 — @2|x|3)" 1% = |1 + |x|¥3 + |x]23~ /8 exp lare taniL '
4 2+ |x*3

Reverting to the notation used in Granoff and Bleistein (1972), we obtain
Uy ~ ¢ya,(x) exp [ko;(x) + i0_(x)],
Uy ~ Cy0,(x) exp [—ks(x) + i0_(x)],
uy ~ €3a,(x) exp [kep,(x) — i _(x)],
Uy ~ C4a,(x) exp [—ke,(x) — i _(x)],
us ~ ¢sgo(x) Ailk*f2(x)),
U ~ CoZol(x) Ai(k?3wf *(x)).

Here a,(x), ¢,(x), @;(x), 8_(x), go(x), and f(x) are given by (4.1)~4.5) and (5.2),
(5.8) in the abovementioned paper and the ¢;, j = 1, -- -, 6, are constants.

In comparing the two procedures used in order to obtain the uniformly valid
asymptotic expansions of a fundamental set of equation (1.1) in the neighborhood
of the turning point x = —1, it is clear that the one described in the present paper
is the simpler to employ. This technique gives the required result in a straight-
forward analytical manner without the necessity to resort to a numerical analysis,
which was required in the previous investigation. The analysis described in this
paper is recommended for those equations which may be uncoupled into systems
of equations of order not greater than two.

The situation in the neighborhood of the turning point x = 0 is not as simple.
The present procedure leads to a problem which has not been fully investigated,
whereas the treatment given in Granoff and Bleistein (1972) does yield the WKB
connection formulas across this turning point.

(7.3)
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GENERAL BOUNDARY VALUE PROBLEMS FOR
DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE*

JOHN E. LAGNESEY

Abstract. An L, theory (I < p < o) of existence and regularity of solutions of the partial differ-
ential equation (1 — p.#(t))(0u/0t) — L(t)u = f satisfying general boundary conditions is given. For
each t, /(t) is a linear elliptic partial differential operator in the space variables, .Z(t) is a linear differ-
ential operator whose order does not exceed that of .#(t) and y is a nonzero complex constant.

1. Introduction. The following note is concerned with existence and regu-
larity of solutions of the equation
0
(1) (1 = 9l (x, 15 D) (%, 1) = L(x, 65 D)ulx, 1) = fx.)
in a cylindrical domain A = Q x (s, T),Q < R", which satisfy the boundary
conditions

(1.2) Cux,t;Dyu(x,t) =0, k=1.,2,---,s,
ou )
(1.3) Bj(x,t;D)E(x,t) =0, i=1,2,-,m,

on the lateral portion of A. In (1.1), y is a nonzero complex constant and .# and ¥
are linear partial differential operators in x of respective orders 2m and [ < 2m
with complex-valued coefficients defined in A, and .# is elliptic. {C,};-; and
{B,}-, are given sets of linear differential operators in x with coefficients defined
on the lateral part of A. In what follows, {C,}; - can be, for example, a subsystem
{B;.}i-1 of {B;}]- ; having the property that the order of B;, does not exceed | — 1,
where | < | < 2m, and the coefficients of B;, do not depend on ¢.

We now outline our main results. Assume first of all the coefficients in the
differential operators appearing in (1.1)~(1.3) are independent of ¢, and let M
(resp., L) be the realization in L,(Q) (1 < p < o) of the operator .# (resp., <) under
the boundary conditions (1.3) (resp., (1.2)). In § 2 we prove, for example, that the
initial value problem

(1.4) (1 - yM)‘jT? — Lu=f, u(0) = uq

has a unique solution for all complex y with the exception of a discrete sequence
{7:} consisting of the characteristic numbers of M. Regularity of the solution is also
studied and it is proved, in particular, that solutions of (1.1)~(1.3) are C* in all
variables provided all the given data in the problem is C*. In § 3 we study (1.4) in
the case when v is a characteristic number of M. Assuming that L = M and p = 2,
we give necessary and sufficient conditions in order that (1.4) have a solution and
study also the question of uniqueness of solutions. Our results in this connection
generalize some results of R. E. Showalter [9], where it is assumed that

* Received by the editors November 17, 1970, and in revised form March 25, 1971.
T Department of Mathematics, Georgetown University, Washington, D.C. 20007.
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106 JOHN E. LAGNESE

L = M = M*. The extension to a nonself-adjoint operator M is nontrivial and
makes considerable use of the theory of bases in a Hilbert space. In § 4 we extend
the results of § 2 to the case where M and L depend on t.

The literature on equations of the form (1.1), or more generally, linear partial
differential equations having mixed space and time derivatives in their highest
order terms (equations of Sobolev type ; see [12]), is extensive. We refer to the ref-
erences listed in [9]-[11] for an adequate bibliography on the subject and for infor-
mation on the physical origins of (1.1). The papers most relevant to the present
note are those of R. E. Showalter and T. W. Ting [9], [11] who treat (1.1}~(1.3) in
L,(Q) by Hilbert space methods, assuming the coefficients to be independent of ¢.
Their methods are, however, essentially bound to the validity of Garding-type
inequalities and, consequently, their results apply only to a small class of boundary
value problems. (Cf. M.I. Visik [16, especially Thm. 5"].)

2. The stationary case. Let Q be a bounded open set in R with smooth
boundary and let x denote a variable point in Q. Write D; = 0/0x;,
D* = D}'D% --- D™ for any multi-integer o = (o;, 05, -+, a,), o; =0, and
lo| = oy + o, + -+ + a,. The operator .# is the elliptic operator

M(x; D)= Y a (x)D*
ol = 2m
with complex-valued coefficients a, defined in Q. Thus the characteristic poly-
nomial associated with the principal part .4’ of .4 satisfies .#'(x ;&) # O for all
real vectors (¢, &5, -+, &,) # 0 and xeQ. If n = 2, we shall also assume that
M satisfies the following condition.

Roots condition. For every pair of linearly independent real vectors &, n and
x € Q, the polynomial in z, #'(x ; ¢ + zn), has its roots equally divided between the
upper and lower half-planes.

As is well known, this condition is a consequence of the ellipticity of ./ if
n > 2 or if n = 2 and the coefficients of .#’ are real.

In addition to .#, we give m differential boundary operators

Bu= Y bix)D*, m<2m—1, j=1,---,m,
|| mj
with complex-valued coefficients b} defined on 0Q. We shall always assume
{B;}- is a normal system. This means that m; # m, if j # k and that 0Q is non-
characteristic to B; at each point. We further require the following condition.

Complementing condition. At each point x on 9€), let v be the normal vector and
& # 0 be any real vector parallel to dQ at x. Denote by z," (£) the m roots with posi-
tive imaginary part of the polynomial .#'(x;& + zv). Then the polynomials
B/(x; & + zv) are linearly independent modulo the polynomial [ [y, (z — z/ (¢)).

We next state our smoothness assumptions which will depend on a non-
negative index q.

(A,) Qis a bounded domain of class C2m*4, The coefficients in .# are of class
C4(Q) and those in B ;jof class C2mta=mi(pQ)).

Following Agmon [1], we call the boundary value problem (., {B;}T,Q)
a regular elliptic boundary value problem if the conditions of the present section are

satisfied. In what follows all elliptic boundary value problems will be assumed
regular.
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For 1 < p < oo, let W, () denote the Banach space consisting of the sub-
class of functions in L,(Q) whose distributional derivatives of orders <k belong
to L,(Q), with the norm

1/p
nu||k,,,,g=(z ID“uI"dx) .

laf sk vQ

If2m < k < 2m + qand ue W, (), B;u has a well-defined trace on 0Q as a func-
tion in the space W _,, _1,,,(0Q) (see, for example, [7, Chap. 1]). We define

W, (Q; {B;}) as the closed subspace of W, ,(Q) consisting of those functions which
satisfy

Bju=0 on 0Q), 1=j<m.
In what follows, we shall omit the subscripts p and Q and write W,(Q), Wi(Q; {B;})
and | - ||, in place of W, (Q), W, (Q;{B;}) and || - |, , q respectively.
Under the assumptions of the present section the following well-known
a priori estimates hold for all ue W,,,, (Q):

(2.1) [l 2ms g £ CUAUl G+ 3 1 Bjttll zms g-my— 175 + l1ullo),
j=1

where C does not depend on u.
We denote by M the unbounded linear operator in W,(Q) defined as follows:
(i) For ue DIM), Mu = .4 (x; D)u.
It is clear that M is a closed operator in W(Q) and it follows from (2.1) that M has a
finite-dimensional null space and closed range. If the spectrum of M is not the whole
complex plane, that is, if (A — M)~ ! exists for some 4 = 4, it follows (since
(o — M)~ ' is compact) that (1 — M)~ ! exists for all A except a discrete sequence
{4,} of eigenvalues of M, each of finite multiplicity, having no finite accumulation
point. In general, however, one cannot exclude the possibility that the spectrum
of M is the whole complex plane. We therefore assume the following condition.
Spectrum condition. The spectrum of M is not the entire complex plane.
If the spectrum condition is fulfilled and A is in the resolvent set of M, a
special form of the estimates (2.1) is valid :

(2.2) [l 2msq S C{IA — Ayully + 3 1Bl 2msgm;— 1/} >
j=1

where C may depend on 4 but not on u. A sufficient condition for the spectrum
condition to hold is given by the following result of Agmon [1].

THEOREM 2.1. Suppose for some 0,0 < 0 < 2, the following two conditions
are satisfied

M'(x ;&)

O " s e

# € for all real vectors ¢ # 0 and x € Q.
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(i1) At any point x of 0Q let v be the normal vector and & # 0 be any real vector
parallel to 0Q at x. Denote by z;7 (¢, A) the m roots with positive imaginary part of the
polynomialinz,(—1)"#'(x; & + zv) — A, where L is any number on the ray arg A = 0.
Then the polynomials B(x ; & + zv) are linearly independent modulo the polynomial
[T, @ — 2 A).

Then the spectrum of M is discrete. Moreover, there is a sector X:|arg A — 0|
< 0,|Al = R, of the complex plane such that, for all A€  and u € D(M),

2m+gq q

(23) Y AP Ml g g = C Y AP A — Mully—y,
k=0 k=0

where C does not depend on A or on u.

In particular, £ is contained in the resolvent set of M. The inequalities (2.3)
were established only for g = 0in[1], but their derivation for g > 0 may be carried
out in essentially the same manner. If p = 2, Theorem 2.1 is contained in [2]. In
this case the conditions (i) and (ii) are also necessary for the validity of (2.3).

Next we state our assumptions on . Actually, in what follows we need not
assume ¢ is a differential operator at all. We therefore make certain assumptions
about some linear operator L which will be satisfied, in particular, if L is a suitable
realization in W(Q) of a boundary value problem.

(B,) D(L) is a closed subspace of W, (Q) for some [ < 2m. L is a bounded
linear operator from V = D(L) into W,(Q) and V > D(M).

Example 2.1. Suppose £(x; D) is a partial differential operator in Q of order
I < 2m with CYQ) coefficients. Let [ <1 < 2m and {B, };_, be a subsystem of
{B;}7, such that m; <1 — 1. Let V'be a closed subspace of W, (Q) such that
Wi, (Q;{B,}) = V< W,,(Q)and define L as follows : D(L) = V and for u e D(L),
Lu = #(x; D)u. Then L satisfies hypothesis (B,).

We now proceed to discuss solutions of the equation

(2.4) (1 — yMy'(t) — Lu(t) = f(0),

where f(t) is a given W, (Q)-valued function.
DEFINITION 2.1. A solution of (2.4) on an interval I is a strongly continuously
differentiable function u:I — V such that u'(t) e D(M) and (2.4) holds for all ¢ in I.
If L is the realization in W(Q) of the boundary value problem (Z(x; D), V)
given in Example 2.1, and if u is a solution of (2.4) on I, then u will be called a
solution of the boundary value problem

2.4) (1 - y/%(x;D))% — P(x;Du = f(x,1), (x,)eQ x I,
(2.5) ueVv, tel,

ou .
(2.6) BJ(X;D)E=0’ (x,0)edQ x I, j=1,---, m.

Example 2.2. By choosing | = 2m and V = W,,,, (Q; {B;}) in Example 2.1,
the boundary conditions (2.5)become Bj(x; Dyu= 0,j = 1,2, --- , m. The boundary
conditions (2.6) are therefore a consequence of (2.5) in this case. At the opposite
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extreme we take [ = [ and V = W, (Q). Then no boundary conditions are im-
posed by (2.5). Since Vwill be the space of initial conditions for solutions of (2.4),
in certain situations it may be desirable to have V as large as possible.

We denote by y(M) the discrete set of characteristic numbers of M. Thus
y € y(M) if and only if y~ ! is in the spectrum of M.

THEOREM 2.2. For any given uge V,y ¢ y(M) and t, € [s, T], equation (2.4) has
at most one solution u on (s, T) such that

2.7 lim u(t) = u,.
t—ty

THEOREM 2.3. Let f be a continuous function from an interval [s, T] into W, ().
For any given uye V, y ¢ y(M) and ty € [s, T], equation (2.4) has a unique solution u
on [s, T] satisfying (2.7).

Theorems 2.2 and 2.3 are a consequence of the following lemma.

LeEMMA 2.1. For any y ¢ y(M), (1 — yM)™ L is a bounded linear operator on V.

Proof. Theorem 2.1 and hypothesis (B,) shows that (1 — yM)™'L is a well-
defined linear operator from Vinto itself for each y ¢ y(M). Moreover, for each
u e Vwe have from the estimates (2.2):

- C C
11 = yM)™ Lull g g S mllLullq = m“u“l+q‘

The lemma follows from this last inequality since | < 2m.

We now form the group {¢"*: —c0 < t < + 00} of bounded linear operators
in V, where A = (1 — yM)~'L. It is well known that ¢4 is infinitely differentiable
with respect to t on (— o0, c0) in the uniform operator topology and

dntA__ n tA
(dt)e = A" e,

Moreover, if y ¢ y(M), equation (2.4) is equivalent to
(2.8) w(t) = (1 — yM)™"Lu(t) + (1 — yM)™'f (1),

which in turn is equivalent to

t
() = &4y + [ e = 3h)” (o) do

to

whenever f(o) is continuous on [s, T] and (2.7) holds. Theorems 2.2 and 2.3 follow
casily.

We next examine the regularity of solutions of (2.4). Suppose that f(t) has
derivatives to order k on (s, T) as a function in W(Q) and u(t) is a solution of (2.4)
on (s, T) for some fixed y¢ y(M). Since (1 — yM)~! (resp., (1 — yM)"!L) is a
bounded linear operator from W, (Q) (resp., V) into D(M), it follows from (2.8),
by forming difference quotients, that u'(t) has derivatives to order k + 1 in D(M)
and that

W00 = (1= yM)~ Luh(0) + (1 = yM)"fO0),  j=0,1,---, k.
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In particular, u'(¢) is continuous on (s, T') as a function in D(M). Writing
t+h

(2.9) ut + h) — u(t) = f u'(t) dt, s<t<t+h<T,
t

where the integral is a Riemann integral in D(M), we conclude that A~ *[u(t + h)
— u(t)] lies in D(M) and converges to u/(t) in D(M). We summarize the above
discussion in the following theorem.

THEOREM 2.4. For any fixed y ¢ y(M), let u(t) be a solution of (2.4) on (s, T). If
f(t) has continuous derivatives on (s, T) to order k as a function in W,(Q), then u(t)
has continuous derivatives on (s, T) to order k + 1 as a function in W,,,, (Q; {B;}).

We note from (2.9) that if u(t) is a solution of (2.4) on (s, T') satisfying (2.7) and
if ug € D(M), then u(t) is also in D(M) for s < t < T. In particular, this implies that
the group {¢'*: —c0 < t < + o0} leaves invariant W,,,, (Q; {B;}). This same con-
clusion could also be reached by noting that (1 — yM)~ 'L is a bounded linear
operator on W, (Q; {B;}).

Let C"KQ x (s, T)) denote the class of functions u(x, t) defined and having
continuous partial derivatives DDiu(x,t) on Q x (s, T) for |of < r,0 < j < k. By
employing Theorem 2.4 in conjunction with the Sobolev imbedding theorem, we
obtain the following result concerning differentiability in the classical sense of
solutions of (2.4).

THEOREM 2.5. With the hypotheses of Theorem 2.4, let u(t) = u( -, t) be a solution
of (2.4) on (s, T) and suppose 2m + q > n/p. Then ue C*™ 1~ =Lk () 5 (5, T))
dafter correction on a set of measure zero.

COROLLARY. Let u(x, t) be a solution of (2.4') satisfying the boundary conditions

B(x; Dyu(x,t) =0, (x,0)edQ x I, j=1,--,m

(thatis, V = W,,,, (Q;{B;})). Suppose Q is of class C*, the coefficients of & and .4«
are of class C*(Q) and the coefficients of B; are of class C*(0Q). Thenu e C*(Q x I)
whenever fe C*(Q x I).

3. The singular points. In this section we suppose y is a characteristic number
of M. Since the spectrum of M is discrete we may suppose without loss that zero is
in the resolvent set of M, so that y is an eigenvalue of M ~!. We make the simplifying

assumptions that L= M, p =2 and q = 0. Thus we are concerned with the
problem

(3.1) (I = yMyu'(t) — Mu(t) = (1),  u(0) = upeV,

for a function ue C'(R, V), where R = (-0, ), V= W,,,(Q;{B;}) and f is
a continuous function from R to L,(Q2). (We could, of course, treat (3.1) on any
interval.) By setting v(t) = Mu(t), (3.1) is clearly equivalent to

(3.2) (M™1 =)0 — o) = f(),  v(0) = Muge L(Q),

for a function v € C'(R, L,(Q)), where we consider M ~* as a compact operator in
L,(€©). We shall use (-, ) to denote the inner product in L,(Q):(u, v) = [q ubd dx.

In this section we first derive necessary conditions, in terms of f (), u, and the
root vectors of M corresponding to y~!, in order that (3.2) have a solution. We
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then show that solutions of (3.2) are uniquely determined by f(¢) and u, if the
system of root subspaces of M form a basis for L,(Q). Finally we prove that the
necessary conditions are also sufficient in order that (3.2) have a solution provided
the system of root subspaces form an unconditional basis for L,(Q) and only a
finite number of the root subspaces contain root vectors which are not eigen-
vectors.

It may be helpful at this point to recall a few facts concerning root vectors. For
a more complete discussion particularly relevant to this paper we refer the reader
to V. B. Lidskii [6, Chap. 2].

If 1 is an eigenvalue of M, a nonzero vector ¢ is called a root vector of M
corresponding to J if for some positive integer k, (A — M)¢ = 0. (One assumes, of
course, that ¢V = (A — M)¢, ¢® = (4 — M)¢p'?, and so on, all belong to D(M).)
The set of all root vectors of M corresponding to A spans a (root) subspace of L,(€2)
which we denote by R(A). Clearly ¢ is a root vector of M corresponding to A if
and only if ¢ is a root vector of the compact operator M~ ! corresponding to the
eigenvalue u = A~ !;the root subspace R(A) = R(u)is therefore finite-dimensional.
One can choose a basis in R(u) consisting of Jordan chains (a Jordan basis) of
eigenvectors and root vectors of the operator M ™|, . Each such chain ¢V,
¢, -, ¢ is a Jordan chain for M~ ! and is transformed by M ~! according to
the formulas

MW = up™, M~1p® = pgp@® + ¢V, ... M 1P = up® 4 $»-b,
3.3)

Consider the sequence {y;} of all distinct eigenvalues of M ™! and choose a
Jordan basis in each root subspace. In this way we obtain a certain sequence {¢,}
in L,(Q). This sequence determines in a unique way another sequence {},}, con-
sisting of eigenvectors and root vectors of (M ~')*, which together with {¢,}
forms a biorthonormal system, that is, (¢,,¥,) = ;. More precisely, if
¢, .-, ¢® is a Jordan chain in the system {¢,} which transforms accord-
ing to (3.3), then the vectors Y/, y/®, ... ¥, having the same indices in the

system {if;} as the vectors ¢ have in the system {@,}, transform according
to

(M_l)*l//“’) = ﬁl//(”), (M‘l)*xp""” = ﬁlp(p—l) + l//“’),
(M—l)*lp(l) — ﬂw(l) + lp(Z)‘

Therefore the matrix [(M ~*¢", )% has Jordan form, having u at each diagonal
element and, if p > 1, 1 at each subdiagonal element and zeros elsewhere. Thus
if {¢,}nisy (n, = 0)is the Jordan basis for R(y;) and {y,}!i:} the corresponding
dual Jordan basis in R*(};) (the root subspace of (M ~')* corresponding to the
eigenvalue 7,), the matrix

(34)

(M ™y, )

has Jordan form, having y; at each diagonal element, either 1 or 0 at each sub-
diagonal element and zeros elsewhere. In particular, the above matrix is diagonal
if R(y;) contains only eigenvectors.
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Finally, we note that if a vector fin L,(Q) can be written as a strongly con-
vergent series

f= i Ck¢k’
k=1

then by virtue of the existence of the dual system {i;} the coeflicients c, are uniquely
determined: ¢, = (f, ¥,).

We return to the problem (3.1) and derive necessary conditions for it to have a
solution. Let ™), @, ... | ? be a Jordan chain in the root subspace R*(7) which
transforms according to (3.4) with u = y. If we form the inner product of (3.2)
with ¥, we obtain

d . . .
(3.3) E(v(t),lﬂ"“’) = (), ) = (f), ¥"), i=1,---,p—1,
(3.6) — @), ¥ ) = (f(©), 7).

We therefore see that (f(t), ¥”) must be continuously differentiable and, setting
t = 0in (3.6), that

—(Mug, y'P) = (f(0), y'?).
Similarly, from (3.5) and (3.6) we find that

d
(f(0,y* 1) + 09

must be continuously differentiable and

d
—(Mug, y*~ ) = (f(0),y*™ V) + prUURAY

t=0

Proceeding step-by-step we obtain the following theorem.
THEOREM 3.1. In order that (3.1) have a solution, the following conditions are

necessary : For each Jordan chain ", ', - .. | P in the Jordan basis for R*(}),
transforming according to (3.4) with p = vy, the functions defined recursively by
(3.7 GP(t) = (f(1),¥'P),

. d . .
(38) G0 = ZGYTIO + (0., =1 p— L,

are continuously differentiable and
(39) (Mug, %) = —G(0), i=1,2,-,p.

We remark separately on the case when M, which is a closed, densely defined
operator in L,(Q), is normal: MM* = M*M. Then M~ ! is a compact normal
operator in L,(Q), its root subspaces therefore contain only eigenvectors and the
eigenspaces E(y) = R(y) and E*(j) = R*(y) coincide. Consequently Theorem 3.1
implies the following theorem.

THEOREM 3.2. Suppose M is a normal operator in L,(Q). In order that (3.1) have
a solution it is necessary and sufficient that (f(t), ¢) be continuously differentiable
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for each ¢ € E(y) and Mu, + f(0) be orthogonal in L,(Q) to E(y). The solution is
unique whenever it exists.

The statements concerning sufficiency of the conditions and uniqueness of
solution are a consequence of Theorems 3.3 and 3.4 below. If M = M*, Theorem
3.2 was essentially obtained in [9].

We proceed to the question of uniqueness of solution. Let { R(y;)} be the system
of root subspaces of M arranged in some order. This system is called a basis for
L,(Q) if each fe L,(Q) can be written as a strongly convergent series

(3.10) f= .ifi, Jie R(y).

This implies, in particular, that the set of characteristic numbers is infinite. If
{@i}nisy (ny = 0) is a Jordan basis in R(y;) and

Ri+

fi= Z P
k=n;+1
then ¢, = (f;,¥,), where {y,}ni1Yy is the dual Jordan basis in R*(y). Since ¥, is
orthogonal to all the root subspaces R(y;) with j # i we have (f,¥,) = (f;, ¥,) = ¢,-
The representation (3.10) is therefore unique.

The system {R(y,)} is an unconditional basis for L,(Q) if it remains a basis
under any permutation of its constituent subspaces. It is known (see, for example,
I. C. Gohberg and M. G. Krein [4, pp. 335-336]) that this is equivalent to the
following statement: There is a bounded, invertible linear operator on L,(Q)
which transforms {R(y;)} into an orthogonal basis for L,(€).

THEOREM 3.3. If some arrangement of the system {R(y;)} of root subspaces
of M forms a basis for L,(Q), the problem (3.2) has at most one solution.

Proof. Let the characteristic numbers of M be indexed so that {R(y,)}7 is a

basis for L,(©2). We may assume without loss that y, = y. If v(¢) is a solution
of (3.2), then

(3.11)

o0) = i( 5 ﬁm),

i=1 \k=n;+1

where {¢,}ni1} is a Jordan basis for R(y;) with corresponding dual Jordan basis
{Wihnisy for R*(7,) and

vt) = (v(1), ¥ b = (Mug, ¥y).
A similar series representation is valid for v'(f):

(3.12) V() = i (

n

Wk(t)lﬂk), wi(t) = (V'(1), i) = v (0).

k=n;i+1

We have to show that the functions {v,(t)}{ are uniquely determined by f(z)
and the initial condition Mu,. Substituting (3.11) and (3.12) in (3.2) gives

ni+1 Ri+y

(3.13) i Y TOMT =g — 006 = ik_z b

=n;+1 i=1
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where f,(¢) = (f(t), ¥,). Each subspace R(y;) is invariant under M~ ! — y. Consider
first R(y;) = R(y) and let ¢V, ¢@, ... ¢ be a Jordan chain in its Jordan basis.
If o'9(t), v®(¢), - -, v'Pt) are the corresponding coefficients in the expansion
(3.11), we have from (3.5) and (3.6),

(3.14) v9() = —G(), i=1,2,---,p,

where the functions GY(t) are defined by (3.7) and (3.8). The coefficients v'*), - - - | v'®
are therefore uniquely determined by f(t). Since the basis for R(y,) consists of a
finite number of such Jordan chains, it follows that all the coeflicients {v,}}* are
uniquely determined by f(¢).

Consider next a subspace R(y;) with i # 1. This subspace is invariant under
M~! — y so that

Hi+1

M~ == ) o k=mn+ 1, ,nq,

j=ni+1

where

Crj = (M—l(bk’l//j) - 'V‘Skj‘
Hence from (3.13),

>y { S UM ) — 16,0000 — o) f,.(t)}d,j:o,

i=1j=nm+1 Uk=n;+1
and therefore,

Ni+1

(3.15) Z [(M_1¢k7‘//j) — o lot) —vit) — f() =0, j=n+1,--,ny.
k=n;+1

The matrix [((M ™', ¥;) — yd,;lsisy has Jordan form, having y, — y at each

diagonal element, 1 or zero at each subdiagonal element and zeros elsewhere.

The matrix is therefore nonsingular which in turn implies that the system (3.15)

has a unique solution {v,(t)},}} subject to the initial conditions

(3.16) 0(0) = (Muo, ¥y).

The coefficients in the expansion (3.11) are therefore uniquely determined by u,
and f(t), proving the theorem.

Before discussing existence of solutions to (3.1) we comment on the basis
condition of Theorem 3.3. If M is a self-adjoint or normal operator, then of course
the root subspaces form an unconditional basis for L,(€2). This same result is
true for various classes of nonnormal operators (see, for example, [4, Chap. 6]
and V. N. Vizitei and A. S. Markus [15]). This is true, in particular, if M is a
dissipative operator (that is, Im (Mu,u) < 0 for u e D(M)) such that the closed
linear hull of its root subspaces equals L,(2) and whose characteristic numbers
{77 satisfy
i Im p; Im y;
Y omm——

1

m, —J < w0
Ty — g2

ij=
i#j
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and
. Im vy, 1
lim sup (m; — 1) s < ,
b ly: — 74 Zﬁ

where m; is the smallest positive integer for which (M~ — y)™R(y;) = 0. (See
A. S. Markus [8] and [4, Chap. 6].) If m; = 1 for all i = iy, that is, if all but a
finite number of the R(y;) contain only eigenvectors, these conditions reduce to

o Imy;Imy;

wim1 v — l?

i#j

The condition that the closed linear hull of the root subspaces equals L,(Q)
is known to hold under mild conditions on the regular elliptic problem (%, {B;}, Q)
({1, Thm. 3.2]). This result holds in particular if (/, {B,},Q) differs from a self-
adjoint problem (4, {B;},Q) only in lower order terms, that is, #' = .4’ and
B = B;. If in addition 2m > n and the order of .# — . is less than 2m — n,
the following stronger result is valid : The root subspaces form an unconditional
basis with parentheses for L,(Q) ([15, Thm. 5.3]). This means there is a sequence

{k;}¥ of natural numbers (k, = 0) such that the system of subspaces {R;}?
defined by

R; = R(yi;+1) @ -+ @ R(yy;, ) j=12,.,

is an unconditional basis for L,().

We now turn to the question of existence of solution of (3.1). Assuming that
the necessary conditions of Theorem 3.1 and the basis condition of Theorem 3.3
are satisfied, we form the series (3.11) in which the coefficients {v;},i1} are defined
by (3.15) and (3.16) for i > 1 and, for i = 1, by (3.14) for each Jordan chain
¢, ..., ¢'P in the Jordan basis for R(y,). Then (3.11) will obviously be a solution
of (3.2) provided the two series (3.11) and (3.12) converge uniformly on bounded
t-intervals.

THEOREM 3.4. Suppose the necessary conditions of Theorem 3.1 are satisfied
and that

(i) {R(yy)} is an unconditional basis for L,(Q);

(i1) all but a finite number of the R(y;) contain only eigenvectors.

Then the problem (3.1) has a unique solution.

Proof. We suppose y, = y and arrange the other y; in order of decreasing
magnitude, so that {y;} converges to zero. By hypothesis (ii), there is a positive
integer i, such that if i = i, the matrix [(M~'@,,¥;) — yd,;1%+" has diagonal
form, having y, — y at each diagonal element. Therefore the system (3.15)
uncouples and becomes

(7: — Vi) — vlt) = £il0), k=n+1,---,n.,.
Thus for i = iy,

vi(t) = (Muo, ) exp [(v; — v) " 't] +

fo exp [0 — 7)1t — (). o) ds.

P

k=n;+1,---,n4,
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so that
V= Y uée = expln — 9~ U,
k=n;+1
1 t
+—— [ explon— 97 — $F(s) ds,

Vi— 7YJo

where
U= S Muo b FO= S (0.0

Therefore,
(3.17) ol < C(r)[uvino + f ||Fi(s)||ods], P2 o,

where C(¢) is bounded on bounded intervals (here we use the fact that y; — 0).
We have

(3.18) Mu, = Y U,  f()= Y F().
i=1 i=1
By hypothesis (i), there is a bounded, invertible linear operator A mapping

L,(Q) onto L,(Q) such that {AR(y,)} ¥ is an orthogonal basis for L,(Q). It follows
from (3.18) that

IAMuo)l3 = 3 14U3,  14Af0I5 = Y. 14F I3,
i= i=1

i=1

and since A has a bounded inverse,

(3.19)

M8

IUl§ < o0, X IF@®I§ < .
i=1

i=1

Since each F(t) is continuous we can apply Dini’s theorem to deduce that the
second series in (3.19) converges uniformly on compact intervals. It then follows

from (3.17) that ) V{(t) converges for each ¢, uniformly on bounded intervals.
Since

1
Vit) = ——[V(0) + F(1)], i 2 i,
Yi— 7

and y;, —y > —7, Z V'(t) likewise converges uniformly on bounded t-intervals.
The proof is therefore complete.

4. The nonstationary case. We suppose the coefficients in the differential
operators .#(x,t;D) and {Bj(x,t;D)}} are defined in the infinite cylinder
Q x (—o0, ) and that (%, {B i}, Q) is a regular elliptic boundary value problem
satisfying the spectrum condition for each fixed t. We also make the following
smoothness assumptions.

(A,,) Qis a bounded domain of class C*"*4. The coefficients in .# are of class
C*"(Q x (— o0, 0)) and those in B; of class C*>"*47""(0Q x (— o0, ).
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As in § 2, let M(t) be the realization in W(Q) of the boundary value problem
(M(x,t;D), {Bjx,t; D)} ). We further introduce a family {L(t): — o0 <t < + o0}
of linear operators which satisfy the following hypotheses.

(B,,) D(L(t)) = Visaclosed subspace of W, (),] < 2m, which is independent
of t,and V' > D(M(t)). L(t) is a bounded linear operator from V into W,(Q) having
continuous t-derivatives to order r in the uniform operator topology.

Example 4.1. Let Z(x, t; D) be a partial differential operator in x of the form

L(x,t;D)= Y l(x,t)D"
lal =1

with coefficients of class C*"(Q x (—o0, 00)). Let | <[ < 2m and {B, };-, be a
subsystem of { B;}_ ; such thatm; =< | — 1and the coefficientsin B;, are independ-
ent of t. Let V be a closed subspace of W, (Q) such that W, (Q; {Bjk}) cV
< W, (Q). Define L(t) as follows: D(L(t)) =V and for ueV = D(L(t)),
Ltyu = L(x,t;Dju. Then {L(t): —oco <t < + o} satisfies (B,). In fact, the
derivative LY(t) of L(t) is the operator defined by LY(tju = £Y)(x,t; D)u for
ueV, where £Y(x, t; D) is the differential operator obtained by differentiating
the coeflicients of . j-times with respect to t.

We now discuss solutions of the equation

4.1) (I — yM(&)'(t) — L(tyu(t) = F(¢).

DEFINITION 4.1. A solution of (4.1) on an interval [ is a strongly continuously
differentiable function u:I — V such that u/(t)e D(M(t)) and (4.1) holds for all
tin I

In the particular case when L(t) is defined as in Example 4.1, a solution of
(4.1) will be called a solution of the boundary value problem

@2) (1 - y/%(x,t;D)% — P(x,t:Du = f(x,0), (x,0)eQx1I,

(4.3) ueVv,

Ju

4.4) Bij(x, t; D)E =

0, (x,0)edQ x I, j=1,-,m.

For any t-interval we denote by y; the set
1= U M),

Although each y(M(t)) is discrete, we cannot in general rule out the possibility
that x; is the entire complex plane. However, if we suppose that conditions (i)
and (ii) of Theorem 2.1 hold for each ¢t and consider a bounded interval I, there is
a sector X;:larg A — 0| < 0, |A] = R, in which the estimates (2.3) hold uniformly
in tel, so that y, must lie entirely outside of X, in this case.

THEOREM 4.1. Let 1 = [s, T]. For any given ugeV, tyel, and y ¢y, (4.1)
has at most one solution u on int (I) satisfying

4.5) lim u(t) = u,.

t—to
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THEOREM 4.2. Let I = [s, T] and let f be a continuous function from I into
W,(Q). For any given uyeV, toel and y ¢ x;, (4.1) has a unique solution u on 1
satisfying (4.5).

THEOREM 4.3. For any interval I and any fixed y ¢ y;, let u(t) be a solution
of (4.1) on 1. If f(t) has continuous derivatives on I to order k as a function in W (Q),
then u(t) has continuous derivatives on I to order min (r, k) + 1 as a function in
Wapns o).

The existence of a classical solution of the boundary value problem (4.2)—(4.4)
can now be deduced from Theorems 4.1-4.3 and the Sobolev imbedding theorem
asin§ 2 provided f, Q and the coefficients of .#, & and { B;} are sufficiently smooth.
In particular, if these functions are C*(Q x (s, T)), then every solution of (4.2)(4.4)
is C*(Q x (s, T)) after correction on a set of measure zero.

Denote by Z(W,(Q), W,,, ., ,(€2)) the Banach space of bounded linear operators
from W,(Q) into W,,, . (Q) with the uniform operator topology. Theorems 4.1-4.3
are a consequence of the following lemma.

LeEMMA 4.1. For each y¢y,;, the mapping t— (1 — yM(t))~' of I into
LW(Q), Wy, (Q)) is r times continuously differentiable.

This result is due to H. Tanabe ([14]; cf. [5], [13]) and is based on the
inequalities (2.2). In fact, if f€ W(Q) and u(t) = (1 — yM(t))~'f, for each ¢ the
derivative wy(t) = u(¢) is, formally, the solution of the boundary value problem

(4.6) (1 — yM(x,t; D)wx,t) = Z ( )/%” B(x,t; Du®(x, 1), xeQ,

-1

)
(4.7) Bj(x;Dyw(x,t) = — ) (k)Bﬁ’"k’(x,t;D)u"‘)(x,t), xedQ, 1=j=m,
k=0

where #""¥(x,t;D) (resp., B™») is the differential operator obtained from
M (resp., B;) by differentiating the coefficients | — k times with respect to t.
Lemma 4.1 is proved by induction. The passage from [ — 1 to lis made by applying
the estimates (2.2) to the difference w,(t) — A~ [~ V(@ + h) — u~(1)], where,
for each ¢, w(t) is the unique solution of (4.6), (4.7).

We now can prove Theorems 4.1-4.3. We first note that because of Lemma 4.1
and hypothesis (B,,), the mapping t - A,(t) = (1 — yM(¢t))" 'L(t) from I into
LV, Wy 4 Q) is r times continuously differentiable. In particular, this mapping
is continuous in Z(V, V) so the evolution operators {G(t,7):(t,7)e [ x I} exist
for the equation u/(t) = A,(t)u(t) (see, for example, [3, pp. 134-136]). Thus for any
uo €V and any continuous W, (Q)-valued function f(t) on I, the problem (4.1),
(4.5) has the unique solution

u(t) = G(t, to)uy + f G(t,7)(1 — yM(z))” f () dr, tel.

Theorems 4.1 and 4.2 are thereby proved. To prove Theorem 4.3 write

u(t) = A,0u) + (1 — yM(@1)~ ' ().
Because of the differentiability properties of A.(t), (1 — yM())~! and f(¢), an
easy argument shows that u'(t) has min (r, k) continuous derivatives as a function
in Wy, ,(Q). Arguing as in § 2, we also can conclude that h™'(u(t + h) — u(t))
lies in W,,,, () and converges to /() in that space.
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ON THE EXISTENCE OF SIMILAR SOLUTIONS OF SOME
BOUNDARY LAYER PROBLEMS*
PHILIP HARTMANY

Abstract. The first part deals with the continuity and monotonicity of functions of the parameters
determining the range of existence of solutions of the Falkner—Skan equation considered by Iglisch
and Kemnitz (and by Hartman). It also deals with the continuous and monotonic dependence on
parameters of the maximal solution and its derivative. In the second part, we give existence theorems
and physically significant properties for solutions of some problems associated with the names
of Pohlhausen and Stewartson. Some of these problems have also been treated by Hastings. The
method depends on Tikhonov’s fixed-point theorem and on the consideration of a boundary value
problem for a nonlinear second order equation on [0, c0). Existence for this singular boundary value
problem is obtained by Nagumo’s method of sub- and supersolutions, and uniqueness by properties of
principal solutions of disconjugate linear second order equations. The third part is concerned with
more general boundary value problems on [0, c0) associated with systems of equations, some of which
are of order two and some of order three.

Consider the boundary value problem involving the Falkner—Skan [2]
differential equation

(1) " +un” + A1 —u? =0,
and boundary conditions

12 u@) = o, W) =p,
(1.3) (o) =1,

also the side conditions

(L4) 0spf<u <1 fort>0,
(1.5) u >0 fort >0,
(1.6) 0<u <1 fort > 0.

This problem occurs in boundary layer theory. Questions of existence and non-
existence, of uniqueness and nonuniqueness, of the asymptotic behavior of solu-
tions have been settled (Weyl, Iglisch, Iglisch and Grohne, Iglisch and Kemnitz,
Coppel [1], Hartman; see [6, pp. 519-537] for a systematic exposition and
bibliography).

The situation as to existence is as follows: if A > 0,0 <1 or A =0,
0 < p < 1, then (I.1)(1.5) has a solution for all «;if A =0, =00r A < 0,0 <
< 1, then there exists a constant A(f5, 4) with the property that (I.1)}+(I1.5) has a
solution if and only if & = A(f, 4). It is known [3] that A(0,0) < 0. Hastings [8]
has pointed out that it is not known if A4(0, A) is continuous at A = 0, but his
results imply A(0, 1) < O for small —4 > 0.

In Part I, we examine the function A(f, 1) and solutions of (I.1)«1.5) for
A < 0.1t is observed that A(f3, A) is continuous for 4 < 0 and 0 < f < 1, monotone

* Received by the editors September 29, 1970.
1 Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218. This
work was supported by the Air Force Office of Scientific Research under Contract F44620-67-C-0098.
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with respect to A, and satisfies, as 4 — 0—, A(S, A) — A(0,0) or — oo according as
p=00r0<p <1 Itis shown that the maximal solution of (I.1)—(1.5) and its
first derivative are monotone in A for 4 < 0. It will remain undecided if A(f, A) is
monotone in f§ but it will be verified that if 0 < f, < f < 1, then (I.1)~(I.3) has a
solution satisfying (1.6), but possibly not (1.4), when a = A(B,, 4).

The results of Part I are used to obtain some existence theorems for the
problems of Polhausen and Stewartson involving the system of differential
equations
(IL1) u”" 4+ uu’ + Mh —u? =0,

(IL.2) K"+ ouh’ =0,

the boundary conditions

(IL.3) u0) = o, uw(0)=p, h0) =a,
(IL.4) u'(0) = h'(0) =1,

and one or more of the side conditions

(ILS) u >0 fort > 0,
(IL.6) B<u <1 fort>0,
(IL.7) u' >0 fort > 0,
(IL.8) h—u*>0 fort>0,
(I1L.9) l<u <fp fort>0,
(11.10) u <0 fort =0,
(IL.11) h—u?*<0 fort>0.

Existence for (I1.1)~(IL.5) has been settled for 6 >0, A >0, a >0, f§ = 0 and
—o00 < a < oo by Ho and Wilson [9] in some cases, and by McLeod and Serrin
[15] in general ; see Lan [14] for systematic proofs. Hastings [8] has dealt with the
cascofoc = 1,00 = f = 0,a = 1,and sufficiently small —4 > 0(say, Aq(a) < 4 < 0),
and has raised the question of existence in corresponding cases for 0 < a < 1. In
Part II, we obtain sufficient conditions on the parameters a, o, 5, /(< 0), ¢ for
existence. The main result (Theorem 7.1) implies that if ¢ = 1, a = 0, and either
B # 0 and ais arbitrary, or f = 0 and a > A(0, 0), then (II.1)~(IL.5) has a solution
for sufficiently small —A4 > 0. (After the completion of this paper, Mr. Lan
called my attention to [8a] in which Hastings has announced a corresponding
existence theorem for the case o = 0, which has been incorporated into [8].)
The condition ¢ = 1 can be relaxed to ¢ > 0ifa > 0. Ifa — f2 = 0and o = 1,
then the solution obtained satisfies (I1.8) and if, in addition, § < 1, then (I1.6)-
(IL.7) hold. If § = (a+1)/2 and ¢ = 1, then the solution obtained satisfies (II.11)
and if, in addition, # > 1, then (I1.9)~(11.10) hold. For references to Pohlhausen,
Stewartson, Cohen and Reshotko, Libby and Lin, and other hydrodynamical
literature, see [8] and [15].
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Hastings [8] and Lan [14] obtain their existence theorems by the use of fixed-
point theorems, not unlike the methods in Hartman [4, pp. 506-509]. The methods
to be employed below are similar. The idea of using a solution of (L.1)~(1.5) as
a subsolution of certain second order equations is suggested by Hastings [8], and
is extensively exploited here in the proof of all existence theorems. In the proof of
the continuity of A4(0, 2) at A = 0 and of the proof of Remark 4 (following Theorem
7.1 which contains [8]), we use the same linear functional equations as Hastings
[8]. In the other existence theorems, we use a nonlinear functional equation. The
ingredients of the proofs are the choice of subsolutions (just mentioned), con-
struction of a supersolution, a corollary of a theorem of Nagumo [16] on two-
point boundary conditions for a nonlinear second order equation (cf. Proposition
A3.1 in the Appendix), and a simple uniqueness theorem for linear second order
equations (cf. Proposition A2.2). The latter should have other useful applications.

In Part III, it is pointed out that a similar procedure leads to existence
theorems for a more general class of problems.

PART 1. THE FUNCTIONS 4, y AND u,

1. Statement of results. We shall need the following theorem of Iglisch and
Kemnitz [12] on f# = 0 (see [6, pp. 525-534] for 0 < f < 1).

PROPOSITION 1.1. If 4 < 0 and 0 £ < 1, then there exists a number A = A(p,
A) and a continuous increasing function y(a) defined for o = A such that y(A) = 0

and (I.1)-(1.4) has a solution if and only if « = A; in which case (1.5) holds. The
solution of the initial value problem (1.1), (1.2) and

(1.1) u'(0) =y

is a solution of (I.1)~(1.4) if and only if 0 < y < y(a); so that there is uniqueness if
and only if o = A(f, 4).

Below we shall prove the following result concerning A(f, A).

THEOREM 1.1. The function A(B, A) is continuous for . <0 and 0 £ f§ < 1,
is a decreasing function of J,and as A - 0 —,-

(1.2) A(B,A) > —oo uniformly on compacts of 0 < ff < 1,
(1.3) A(0, ) — A(0, 0).

The monotonicity of A(0, 1) has been proved by Iglisch and Kemnitz [12]; the
proof for A(f, A) will be similar.

We shall write p(a) = y(o, f, 4) and denote by u = uy(t) = ue(t, o, , A) the
solution of (I.1)«(L.5) satisfying u"(0) = y(«). If « > A(B, 1), so that p(x) > 0, then
different solutions u = u(t) of (I.1)~(L5), ie., those having 0 < u"(0) < (),
satisfy

(1.4) o <u<uy, Pf<u <uy fort>0;

cf. the proof of (3.9) in § 3. The solution u = u,(t) will be called the maximal solution
of (I.1)~(I.5). It can also be characterized by its asymptotic behavior at t = o0 ;
Hartman [5] (see [6, pp. 534-537]). For 4 = 0,u,(t) = ug(t, o, B, 0) will be the unique
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solution of (I.1)~(L.5) when it exists; correspondingly, y(a, 8, 0) = ug(0). Analo-
gously, let A(B,A) = —oo for 1 = 0,0 < f < 1. Define the sets

Q%= {(@,p,):0=p<1,A<0,002 AB, 1},

1.5
( )QO={(a,ﬁ,A):0gﬁ<1,,1=o,a>A(ﬁ,0)} and Q=0°UQ,.

THEOREM 1.2. The functions y(a, B, 1), uy(t, o, B, 1), and uy(t, o, B, 1) are con-
tinuous on {t = 0} x Q and are strictly increasing functions of o and of A.

The monotonicity of u, up with respect to A, when § = 0, is contained in [12].
One cannot expect continuity, for example, at («, §, 1) = (A4(0,0),0,0) for «
= A(0, 1) » A(0,0) and 0 = y(A4(0,4),0,4) > 0 as 4 - 0—, but no solution of
(I.1)~(1.5) for A = 0 can have u"(0) = 0.

In this part of the paper, we shall also prove the following theorem.

THEOREM 1.3. Let A < 0,0 Z By < f <1, a = A(By, A). Then (I.1)<(1.3) has
a solution u = u(t) satisfying B, < u’ < 1 (but not necessarily u" > 0) for t > 0;
also, 1 — v < 1 — uy(t, o, Bo, A) fort = 0.

The proofs of Theorems 1.1 and 1.2 will be given together ; the monotonicity
statements in § 3, the continuity statements for 4 < 0 in §4, and the assertions
concerning A — 0— in § 5. Theorem 1.3 will be proved in § 6.

2. Preliminaries. The proofs of Proposition 1.1 depend on some changes of
variables, due to Iglisch [10] and [11], which will also be used below. Introduce the
new independent and dependent variables,

21) u=ut) and z(u) = u'*(t)

along solutions of (I.1) for which 4’ > 0 on some interval 0 <t < T(=Z ), so
that if z = dz/du,

(2.1,) u =z, u =322, u =z'%:72.
Thus (I.1)~(1.5) and (1.1) become, respectively,
(2.2) 2125 +uz + 241 —2) =0,

where z = dz/du,

(2.3) 2(o) = B2,

(2.4) 2o0) = 1,

(2.5) BrP<z<1 fora<u< oo,
(2.6) z>0 fora<u< o,
2.7) o) = 2.

Along a solution on which z > 0, we can (following Iglisch [11]) also introduce
z as a new independent variable. Let u = U(z) be the function inverse to z = z(u)
and let V(z) = 2(U(z)). Then (2.2) becomes the system

(2.8) d(—U)dz = —1/V, dVidz = —U/z'? — 241 —2)/z'?V.
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When we wish to consider varying 4, add the following differential equation to
this system :

d(—2)/dz = 0.

The system of differential equations for (— U, V, — 1) has the property that the
right sides of these three equations are, respectively, nondecreasing functions of
Vand —A, of —U and — 4, of — U and V for 0 < z < 1. Hence, it follows from a
theorem of Kamke [13] (cf. [6, Exercise 4.1, p. 28 and p. 558]) that if (— Uz2),
V{z), —4;) for i = 1,2 are solutions satisfying

(2.9) Uy sU,, "hzh, L=

and V, > 0 at some z = z,, 0 < z, < 1, then the same inequalities persist on
their common domain of existence in z, < z < 1.

This leads easily to the following analogues of propositions of Iglisch and
Kemnitz [12] (cf. [6, Steps (d) and (¢), pp. 526-528]).

ProposITION 2.1. Let z = z,(u) = z,(u, 4,), z = z,(u) = z,(u, 4,) be two
solutions of (2.2), where A = A, A,, satisfying

z5(02) = z4(2y) = ﬂza 0 = 25(0) £ 24(0y), oy Sy, A4 £ 4, <0,

0 < B < 1, and at least one of the following inequalities hold :
ay <oy, Zi0) < zy(0y), Ay < 4.

Then, as long as both solutions satisfy f*> < z < 1 with increasing u, U,(z) — U,(z)

is positive and increasing, and V,(z) — Vi(z) < 0. In particular, the arcs z = z,(u),

z = z,(u) in the (u, z)-plane do not intersect in the half-stripu > o,, p> <z < 1.
Remark. Proposition 2.1 remains valid for 4, = 0 provided that

(2.10) either >0 or Z,(a) > O.

(If (2.10) fails to hold and 4, = 0, then z,(u) can be z,(u) = ff and the assertion be-
comes meaningless.) In the verification of Proposition 2.1 and this remark, one
avoids the singularities of (2.8), if any, by exploiting the relationship between
(I.1) and (2.2), and examining the Taylor expansion of corresponding solutions of
(I.1)at t = 0, in order to first obtain the desired inequalities for small z — % > 0.

ProprosITION 2.2. Let z = z(u) be a solution of (2.1) for large u satisfying
0 < z(u) < 1 and Z(u) > 0. Then z(c0) = 1.

3. Proofs. (a) Monotonicity of A, o with A(<0). We first show that if 0 <
< 1, then

(3.1 AB,2) £ AP, A4y if 4 <4, <O,
To this end, let
(3.2) AB, Ay) S o

Let z = z,(u), z,(u) be the solutions of (2.2), with 4 = 4,, 4,, determined by the
initial conditions

(3.3) zy=2,=F% =2, =20pF,4)20 atu=a.



BOUNDARY LAYER PROBLEMS 125

Then 2 < z; < 1,2; > Oforu > o and z,(00) = 1, by Proposition 2.2. It follows
from Proposition 2.1, since a solution of (2.2) cannot have a maximum value z on
0 < z < 1, that z,(u) exists for u = o,

(3.4) B2 <zy,<z, <1, z,>0 foru>a.

Hence z,(c0) = 1 by Proposition 2.2 and so o = A(B, 4,). This proves (3.1).
Also, since 2y(a, 5, ;) = Z,(x), equation (3.3) implies that

(3.5) Yo, By Ay) = (a, BoAy) if Ay < A, <O.
We now show that strict inequality holds in (3.5). Suppose, if possible, that
(3.6) W, By Az) = ylo, B, 4y)

forsomeo = A(f,1,),0 < f < 1,4, < 4, < 0.Then z,,as well as z, , corresponds
to a maximal solution, so that 2y(u, z3/*(u), A,) = 2,(u). The application of Proposi-
tion 2.1 giving (3.4) also yields V;(z) > V,(z) for 2 < z < 1 for the corresponding
functions V defined after (2.6). Hence, if % < z, < 1 and z,(U,) = z,(U,) = z,,
then U; < U, and %,(U,) > z,(U,). A solution z = z!(u) of (2.2), with A = 4,
determined by

2W(U,) = zo, £(Uy) 2 24(U,) > 2,5(U,)

exists for u = U, and satisfies 2! > 0 for u > U, and z!(c0) = 1; Propositions
2.1 and 2.2. Hence

Y(U27 26/2711) > ZZ(UZ)/2 = y(UZa Z(1)/27j'2)'

This contradicts (3.5) and shows that y(a, 8, A) is an increasing function of A(<0).
In particular, if o = A(f, A;), then y(a, B, 4,) > 0 = y(a, S, 4,). Hence, the
strict monotonicity of A(f, 1) follows, that is, A(S, A,) < A(B, 4,)if 4, < 4, <O.
(b) Monotonicity of uq,ug with A(<0). Let 4, < 4, <0, a = A(f, 4,), and
Z10, Z20 correspond to maximal solutions, that is, solutions of (2.2) for A = 4,, 4,,
respectively, satisfying

(3.7 zio(®) = B2, Ziolo) = 2y(0t, B, 4,).
Then the argument leading to the contradiction of (3.6) shows that

(3.8) Zy0(tt) > z10(u) for u > o.

Note that the fact that y(a, f, 4) is an increasing function of A implies that
(3.9) uo(t, o, B, A1) <uolt, o, B, 4;) if 4y <4, <0

for small t > 0. Suppose, if possible, that there is a first t-value t = t, > 0 where
(3.9) fails, so that u,(ty) = u,0(to) and ujo(te) = tse(to), Where u;o = ug(t, o, f, 4;).
But, in view of (2.1,), this contradicts (3.8). Hence (3.9) holds for t > 0.

The strict monotonicity of u; with respect to A follows from (3.8), the mono-
tonicity of z,,, and (3.9), that is, from

Z20(t20(1) > z10(ti20(t) > z;0(10(1)),
by virtue of (2.1,).
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(c) Monotonicity of y,uq,uy with o for A < 0). The strict monotonicity of
y(o, B, 2) with a follows at once from Proposition 2.1 and the “maximality”
property of y. The monotonicity of u,, uy with a follows from Proposition 2.1 and
the arguments just used to demonstrate their monotonicity with A.

(d) Monotonicity of A,7,uq,uy on Q. It merely has to be remarked that the
above arguments extend to 4 = 0, a > A(f, 1), by virtue of the remark following
Proposition 2.1. (Actually, the meaningfulness of this statement depends implicitly
on the validity of (1.3) which will be proved in § 5.)

4. Proofs. Continuity for 1 < 0.
(A) Local estimates. Let 4 < 0 and let z = z*(u) = z*(u, 4) be the maximal
solution for f = 0 and & = A(0, 4), so that

(4.1) =0, =0 atu= A~,2).

Thus 0 < z* < 1,2* > Oforu > A(0, 1), and z*(c0) = 1. Letu = U*(z) = U*(z, 1)
be the function inverse to z = z*(u) and V*(z) = V*(z, 1) = z*¥(U*(z)). Clearly,

4.2) AP, 1) S U*B*, %) for0<p <1,
for z = z*(u) satisfies (2.2)~(2.6) with & = U*(8?). Also,
(4.3) 0 <29, B,4) < V¥p*,2) for A(B, ) < o« < UXB*, A)

by Proposition 2.1 and the “maximal” property of y(«) = y(a, B, A).

(B) Upper semicontinuity of A(f, A). The continuity of U*(B, 1) with respect to
p and the monotonicity of A(f, A) with respect to A imply that A(B, 1) is locally
bounded from above. Let 1, < 0,0 < 8, < 1, and

o = liminf A(B, 1) as (By, o) # (B, A) = (Bo» Ao)s

withl < 0,0 < f < 1,sothat —o0 < ¢ < o0.Leta > o;inparticular, o0 > A(f, A)
for (B,4) a member of a sequence (8,,4,), (B2,42), ., (Bu, An) = (Bo, Ao). Let
u = u"(t) be the solution of (I.1), with A = 4,, satisfying u(0) = o, v'(0) = B,,
u"(0) = 0; so that u = u"(¢) satisfies the analogue of (I.1)~(I.5) forn =1,2, ---,
and u" and its derivatives tend uniformly to u® and its derivatives on compacts of
t 2 0. It follows from A, < 0 that 0 < u® < 1, u®” > 0 on t > 0, and that u°(c0)
= 1, by Proposition 2.2. Hence a = A(f,, 4,). Since o( > o) is arbitrary,

Ao, o) = liminf A(B, 1) < 00 as (B, 1) = (Bo, 4o).

(C) Continuity of A(B, 2) for 2. < 0. Let l; < 0and 0 £ B, < 1. It suffices to
show that if 0 > 4, - 4,,0 < 8, - B, and

(4.4 o = lim A(B,,4,) exists (finite),
as n — oo, then
(4.5) o = A(fo, Ao)-

To this end, let z = z*(u, f5, A) be the solution of (2.2)~(2.7), where a = A(S, /)
and y = 0. The arguments of step (B) show that, since 1, < 0, z*(u, 8,, 4,) and its
derivatives tend to zy(u) and its derivatives, where z = zy(u) is the solution of
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(2.2), with 1 = 1,, satisfying zo(x) = B3, zo(x) = 0. It has to be verified that
(46) ZO(“) = Z*(u’ BO? /10)

Let vy,(u) be the solution of the Weber equation (Al.1) satisfying (A1.2)
and let S(A) be defined by (A1.4) in the Appendix. Then z*(u, f, 4) satisfies

4.7) —2*/(1 — z%) < Dox()/voa(u) foru = S(4);
cf. [6, pp. 536-537]. Hence, by the continuity of S(4),
—Zo/(1 = zg) = Doa/vo; for u = S(4), A= lo.

Consequently, 1 — zy(u) = (const.)vg,(u), 4 = Ay, for u = S(4,). This asymptotic
behavior of zy(u) implies (4.6); see [6, pp. 536-537].

(D) Continuity of y,uq,uqy for A < 0. The proof is similar to that in step (B),
but simpler because of (4.3), and will be omitted.

5. Proofs. Behavior as 1 — 0—.

() On(1.2). If 2, = 0 and 0 < B, < 1, the arguments in step (C) of the last
proof remain valid and show that if (4.4) holds for 4, = 0 and 0 < 8, < 1, then
(I.1)~(1.5) has a solution with u"(0) =0, A = 0. But 4 = 0, u”(0) = 0 imply that
u"(t) = 0, since (I.1) reduces to a first order linear equation for u” when 4 = 0.
Hence, (4.4) cannot hold when 0 > 4, - 0,0 < 8, — f,,0 < f, < 1. In particular,
it follows, from the monotonicity of A(f5, 1) with respect to A, that the limit relation
in (1.2) holds for a fixed 8, 0 < f < 1. The relation (1.2) now follows from the
continuity of A(,A)for 1 < 0,0 B < 1.

(B) On A(0,0—) < A(0,0). Let ¢ > 0 and o = A(0,0) + ¢. We shall show that
there exists a number A = A(g) < 0 such that (I.1)~(L.5), with f = 0, has a solution
if A <1 <0. This, of course, implies that A0, 1) £ A(0,0) + ¢ if A £ 1 <0,
so that 4(0,0—) < A(0, 0).

Let u = uy(t) = ug(t, A(0,0),0,0) be the solution of (I.1)~(L.5) for A =0,
o = A(0,0) and f = 0. Put

(5.1) w(t) = uy(t) + .

Then we have

(5.2 w(0) = A4(0,0) +¢,  w(0) =0,
(5.3) 0s=w=uy<1, w’' =ug >0,
(5.4) w” 4+ ww” + A1 — w?) = euf + A1 — ud).

Choose —A = —A(¢) > 0 so small that
(5.5) eup + M1 —ug) >0 forA <4, t=0.

The existence of A is clear from the fact that uf > 0 and 2uj ~ t(1 — uy) as
t — oo0; see Hartman [5] (cf. [6, p. 536]).

Let %' be the space of functions u e C'[0, oo) with the topology of C* con-
vergence on compacts of ¢t = 0. In terms of M(T)= M(T; T}/, 1) in (A3.9)
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in the Appendix, let .#" be the compact convex subset of €' consisting of functions
u satisfying
u©0) = w0), w(0)=w(), wH=u(@H=1 forez1,
lu'(t) = w9 = M(TH(t —s) for0<s=t=T,

(5.6)

where w(0) = A(0,0) + & w'(0) = 0. Foru e ", consider the linear, inhomogeneous
equation

(5.7) Lyl =y +uy + A1 —u(@O)(1 +y) =0.

Note that this reduces to (L.1) if y = v’
The function y = 1 is a supersolution,

(5.8) L) =241 —u) 20,

and the function y = w’ is a subsolution if A £ 4 < 0,

(5.9) LW = (u— ww' + eug + M1 — ug) > 0.
It follows that (5.7) has a unique solution y = y(t) satisfying
(5.10) y(0) = A(0,0) + e, w<y<l1l fort>0,
(5.11) WOl =MT) for0<t<T, T>0.

In fact, the homogeneous part of (5.7),

(5.12) " +u(t)z + Al — u(t)z =0,

is disconjugate (i.e., no solution z # 0 has two zeros) on ¢t = 0 since the coefficient
of yis

(5.13) Al —u)=0.

Thus (5.7) has a unique solution y = y,(t) satisfying arbitrarily given two-point
boundary conditions, say,

W0) = A(0,0) + ¢ and WT) = (W(T) + 1)/2.

Such a solution satisfies (5.11), and (5.10) for 0 < t < T by a simple maximum
principle. We obtain the solution y = y(t) satisfying (5.10), (5.11) for ¢t > 0 by
letting T — oo through a suitable sequence. (One recovers the strong inequalities
in (5.10) by a maximum principle.) The solution y = y(t) is unique, for the difference
of two solutions is a solution z = z(t) of (5.12) satisfying z(0). But such a solution is
either z(t) = 0 or is monotone, by (5.13), and cannot satisfy z(c0) = 0.

Define a map 7:. 4 — 4 by

t
(5.14) Ur—o + f y(s)ds,
0
where y = y, is the unique solution of (5.7), (5.10), (5.11). It is clear that 7 is con-
tinuous. Hence, Tikhonov’s fixed-point theorem implies the existence of a solution
of (I.1)H1.3) for « = A(0,0) + & f = 0, 1 = A(e). Note, that by (5.6), a fixed point
u satisfies u”(0) = ug(0) = 0, hence (1.4)~(1.5).
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(y) On (1.3). It has to be shown that A(0,0—) = A(0,0). Let o > A(0,0—)
be fixed. Then y(c, 0, ) increases to a limit, which is finite,as A -» 0 —. For (I.1) and
0 < v < 1 imply that [u”| < T|u"| + |4 on 0 < ¢ £ T, so that, for example,

70, 0,4) = ug(0, 2,0, 1) < M(1;1,]4], 1);

cf. (A3.9) in the Appendix. Since the limit y(x,0,0—) > 0, the arguments in
step (C) of § 4 show that (I1.1)~(1.5) has a solutionif § = 0, 4 = 0. Hence o = A(0, 0),
and so 4(0,0—) = A(0, 0).

(6) Completion of the proofs. The continuity of uy, up and y(a, B, A) at points
(o, B, A) of Q, where 4 = 0, is an easy consequence of the uniqueness of solutions of
(I.1)~(L.5) when 4 = 0. This completes the proofs of Theorems 1.1 and 1.2.

6. Proof of Theorem 1.3. This theorem can be proved by the method of step
(p) in the last section ; cf. also the proof of Theorem 7.1, where a = 1 is permitted. A
slightly simpler proof is as follows: Let A < 0,0 < fi, < < 1, o = A(f, 4) and
z = zo(u) = zo(u, o, Bo,A) correspond to the maximal solution, ie., zy = B2,
Zo = 2y(a, B, 4) at u = a. Note that z = 1 is also a solution of (3.1) and, of course,
0 < B% <zy<1 for u>a It follows from Proposition A3.1, and Remark 1
following it, in the Appendix, that (2.2), (2.3) has a solution z = z(u) satisfying
z(o) = B2, (0<)zo < z < 1 for u > o. This implies the first part of Theorem 1.3.
As to the last part, cf. the proof of the monotonicity of u,, up with respect to A in
§ 3, step (b).

PART II. ON POHLHAUSEN’S AND STEWARTSON’S PROBLEMS

7. Existence theorems. In what follows, o, o, 5, 8o, f1, & 0, a are constants
satisfying

(71.1) —w<agSa<owo, 0=2By<1, Bo=B =By,
' 0<eZl, 6>0, a=0.

Note that the problem (II.1)}+(I1.4) is trivial if § = 1 for, in this case, u =t + a,
and h is determined by two quadratures. When a = 1, so that h = 1, the problem
(I1.1)~(IL.4) reduces to that discussed in Part I. When ¢ > 0, the condition (I1.4)
is not less general than

(7.2) u?*(0) = h(w) = c.
For if u(t), h(t) are replaced by ¢~ Y*u(c™**t), ¢~ 'h(c~'/*t), then the problem
(I1.1)~(I1.3), (7.2) is reduced to (IL.1)~(I1.4), with a, B, A, a replaced by o/c'/*, B/c*/?,

Jct’?, ajc, respectively.
THEOREM 7.1. Assume that either

(7.3) {0 < By < 1,0 arbitrary} or {Bo =0,a, > A(0,0)}
and that either

(7.4) {o=1} or {6>0,0020}.
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Then there exists a number A = A(ag, Bo, f1,¢ min(o, 1), max (a, 1)) with the
property that if (7.1) holds and

(7.5) A=i<0,

then (IL1)-(IL5) has a solution satisfying 0 < o <u' < max(l + ¢ f,) for
t>0.

It is not claimed that there is nonexistence if A < A. The proof supplies
estimates for [u' — 1|, hence implicitly for|h — 1|, for the solution (u, h) constructed.
For example, there exists a positive constant ¢ = ¢(a,, f, 81, min (o, 1), max (a, 1))
such that

(7.6) ' — 1] = O(exp(—ct?) ast— oo.
Remark 1. If § = (a + 1)/2 and either
{e6=1} or {o<l,a<1l,020} or {o>1,a>1,a2=0},
then the proof of Theorem 7.1 can be modified to yield a solution (u, h) satisfying,
fort > 0,
(7.7) u' > [(1 = Bh + (B — @)1 —a) > h'72,

hence (I1.11). If, in addition, § = 8, > 1, then (I1.9)«I1.10) hold ; while if (a + 1)/2
< B < 1, then u' either increases from f§ to 1 or first increases to a value >1 and
then decreases to 1; cf. Remark 5.

If 6 = 1 and B < a'/?, then the proof can be modified to yield solutions of
(IT.1)~IL.5), (11.8) (and (I1.6)I1.7) if 0 < B < 1) and, at the same time, simplify
the definition of A. This is the content of the next three remarks.

Remark 2. Assume that ¢ = 1, By < f < a'? <1 and a = A(By, u), where
w=22/(1+ Bo) = A < 0. Then (I1.1)«(IL5) has a solution satisfying

(7:8) Wo<w <[ = Ph+ (B -l —a) <k <1,

hence (11.8). In (7.8), w(t) = uy(t, &, By, 1) is the maximal solution of (I.1)«(1.5), with
(a, B, ) replaced by («, By, n). If f = f,, then (I16) and (I1.7) hold. If a =
max (A(fB,, 1), 0), then condition ¢ = 1 can be relaxed to g = 1.

Remark 3. Assume that 6 =1, 0< B, <1, 1 <B < B, <a'? and «
= Ay, vo), where

(7.9) vo = Amax [(a — B3)/(1 — B3),2B,/(1 + Bo)] < A <O0.

Then (I1.1)~I1.5) has a solution satisfying

w<u <[l =PBh+ P —al/l —a<h u<B§B,
l<h<l1l+(a—-1)01—-w)1 -8y,

hence (I1.8), where w = uy(t, o, Bo, vo). If o = max (A(By,vo),0), then o =1
can be relaxed to ¢ = 1. Furthermore, either v’ decreases from S to 1 or first
decreases to a value <1 and then increases to 1; cf. Remark 5.

Remark 4. Let f, < f <1 < aand

(7.11) v=Aa— B2/ — f2) < 4 <0.

(7.10)
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(1) Ifo = 1 and « = A(B,, v), then (I1.1)-(I1.5) has a solution satisfying
(7.12) w<u<l<h<l4+(a—-1DA-w)1-= B,

hence (I1.8), where w = uy(t, o, By, v). If § = f,, then (IL.6)11.7) hold. If «
= max (A(By, V), 0), then 6 = 1 can be relaxed to o = 1.

(ii) Also,if0 < ¢ < 1and « = max (¢~ 2 A(B,, va 1), 0), then the conclusion
of part (i) is valid with w = ¢~ 2uy(c'/?t, 6*%a, B, v/6) in (7.12).

In the verification of these remarks, we shall use the following remark.

Remark 5. If (u, h) is a solution of (I1.1)~(I1.4) satisfying h'/? — u’ < 0 (>0)
for t > 0 and u"(ty) < 0(=0) at some t = t, = 0, then u"(t) < 0 (>0) for t > ¢,.
In fact, since 4 <0, u” + uu” < 0(>0), so that u” exp j *uds is decreasing (in-
creasing) and, hence, negative (positive) for t > t,.

The proof of Theorem 7.1 is contained in §§ 8-9. Section 8 contains also some

propositions needed for the verifications of Remarks 1-4. Remarks 1-4 are proved
in §§ 10-13.

8. Subsolutions, supersolutions and uniqueness. Consider the system of dif-
ferential equations

(®8.1) Lyl =y" +uy + Ah — y*) =0,
(8.2) h' + ouh’ =0,

which reduces to (II.1), (IL2) if y = u'. If u = u(t) is a given function of ¢ such that
u = const. > 0 for large t, then (8.2) has a unique solution h(t) = h,(t) satisfying

(8.3) hO)=a and h(oo) =1,

and i’ # 0if a # 1. It will always be assumed that u = u(t) is a given function and
h = hy(t), so that (8.1) reduces to a differential equation in one unknown function
y. We shall assume, for convenience, that

(84) a#1.
Define the function 6 = 6(g, o) by
(8.5) 0=1=0 ifeyg<0 and 0 =min(l,0) ifoy, = 0.
Let —u > 0 be so small that
(8.6) 0'20 2 A(Bo, 11/0).

Note that if o, < 0, then # = ¢ = 1 and (7.3) implies the existence of u; also, if
oo = 0, then p exists since A(0,0) < O; cf. Theorem 1.1. Put

(8.7) w(t) = 012uy(0Yt, 0 %0y, By, 1/0),

where uy(t) = ug(t, 0204, By, u/0) is the maximal solution of (I.1)~(L.5) when
(a, B, A) = (020, By, 11/0). Then (8.7) satisfies

(8.8) w” 4+ Oww” + (1 — w'?) =0,
(89) W(O) = %o, W/(O) = BOa

(8.10) 0<1—w=1=uy0?t) ~ cit™ 20 exp(—0t?/2 — c,t), t— o0,
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where ¢, > 0, ¢, are constants; Hartman [5], cf. [6, pp. 536-537]. Also, we have

(8.11) X"+ 0wX' — u(l + w)X =0,
where X =1 —w' > 0, X' < Ofort > 0; and the function
(8.12) Xo=010-=w)(1 =Bg)>0, X;,=0,

is a solution of (8.11) and X ((0) = 1, X y(o0) = 0.
Define W = W(t) to be the solution of

(8.13) W” + (6w — )W’ =0,
(8.14) W(0) = max(l1 +¢,6,)>1 and W(w) =1,
where 0 < ¢ < 1, so that
l<W<max(1+¢p) and W <0 fort =0,
O0<W-—1=0(@xp(—01), t—>oo, if0<@ <0.

(8.15)

Also, the function
(8.16) Wy = (W — 1)/(W(00) — 1) > 0, Wy <0,

is the unique solution of (8.13) and W(0) = 1, W(w0) = 0.
Note that if

(8.17) uzw,
then, since w = 0 when o, = 0,
(8.18) u=0uz=60w>=06w-—1.

Hence, if the linear equation (8.2) is compared with (8.11) and with (8.13), we see
that

(8.19) 0<(h—1)fa—1)=hy < Xo, Wy fort>0,

where h = h,, is the unique solution of (8.2) satisfying h,(0) = 1, hy < 0; cf. (A2.10)
and Proposition A2.1.

In the propositions to follow, we assume that L is defined in (8.1) and that the
given function u satisfies

(8.20) u = const. > 0 for large ¢,

so that (8.2), (8.3) has a unique solution h(t) = h,(t).
ProposITION 8.1. If'a < 1 (so that h < 1 for t = 0), then

(8.21) Ll1l=Ah—-1)>0 fort = 0.
PrOPOSITION 8.2. If 'a > 1 (so that h > 1 fort = 0), then

(8.22) L1]=AMh-1)<0 fort=0.
PROPOSITION 8.3. Assume that

(8.23) Bz (a+1)2,
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that either
(8.24) {c=1} or 0<o=<l,a<l,uz0} or {c=1,a>1,u20},

and that m(t) = m,(t) is given by

(8.25) m(t) = [(1 = ph + (B — a)]/(1 — a).

Then

(8.26) m0) = B, m(o)=1, m>h'? fort>0,
(8.27) m’ + oum = 0,

(8.28) Liml = (1 — oum' + Ah —m?>) >0 fort> 0,

Proof. We have (h + 1)/2 > h'/? for h > 0, h # 1. The linear function of h
on the right of (8.25) has the value  when h = a and the value 1 when h = 1, so
that m = (h + 1)/2 > h'/? if h is between a and 1. This gives (8.26), while (8.27),
(8.28) are clear.

PROPOSITION 8.4. Assume that

(8.29) 0=sp

lIA

o
"
Iy

and that either
(8.30) {o=1} or {0<o=<1l,a>1u=20} or {o21,a<1l,uz0}.
Then (8.25) satisfies (8.27),

(8.31) mO) = f, mo)=1, m<h'? fort>0,
(8.32) Liml = (1 — oum’' + ih —m?) <0 fort >0,

Proof. The linear function of h on the right of (8.25) has the value f,1 at
h = a, 1, respectively, so that the concavity of the function h'/? implies thatm < h'/?
for h between a and 1.

PROPOSITION 8.5. Let 0 < a <1 (so that h <1 for t 2 0) and let u = w.
Then

(8.33) us1<0

implies that

(8.34) Lw]>0 fort>D0.
Proof. From (8.1) and (8.8),

(8.35) LIw] = (u— 0ww" + Ah — 1) + (4 — p)(1 — w'?).
PROPOSITION 8.6. Let a > 1 (so that h > 1 for t = 0) and let u = w. Then

(8.36) Wl — Ba— P <i<0

implies (8.34).

Proof. This follows from (8.35), (8.12) and (8.19), since 1 — w?
=1 +w)1—=w)=(1+ o)1 —w)and (u — Oww” = 0.
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ProproSITION 8.7. Let the function W in (8.13)~(8.16) and the constantn > 0
satisfy
(8.37) Wi w-1)<g -n<0
and let u = w. Then
(8.38) —n{max(0,1 — a@)/fmax(l +¢,B) —11+3+ B} 1 <£i<0
implies that
(8.39) LW] <0 fort>0.

Proof. Note that a constant 5 exists since, by ’'Hopital’s rule,

W/(W—-1)~W/W=—-0w+1-> —0, t—> oo,
and W’ < 0 for t = 0. The assertion follows from
LIW]=@u— 0w+ DWW + Ah — 1) + (1 — W?)
S{WIW = D)+ Mh = DIW = 1) — A1 + WHW = 1),

(8.16),(8.19)and 1 + W < 3 + B,. Note that A(h — 1) < Oifa > 1.
PROPOSITION 8.8. Let C be a constant and u = w. Then (8.1) has at most one
solution y = y(t) satisfying

(8.40) yO) =8, I =C, ) —1=0¢"") ast— oo
for all N if
(8.41) u(l + Bo)2C £ A <0.

Proof. If there are two solutions y,, y,, then their difference, x = y, — y,,
satisfies

X" 4+ ux' — My, + y)x =0,
x(0)=0 and x(t)=0(t"M ast— o,

(8.42)

for all N. If the differential equation in (8.42) is compared with (8.11), it is seen, by
(A2.10) and Proposition A2.1, that (8.42) is disconjugate for ¢t = 0. Thus the
assertion follows from Corollary A2.1.

9. Proof of Theorem 7.1. Let ' be the space of functions u e C'[0, o0)
with the topology of C! convergence on compacts on ¢t = 0. Put

R(T) = max W%(t) forO0 <t < T,

In terms of the functions w, W and (9.1), define a compact convex subset %~
= A '[w, W] of ' consisting of functions u satisfying

u0)=o, vO)=p, w=u =W fort=0,
u'(t) —u'(s) EM(T)t—s| for0O<s,t T, T>0,

9.1) Cy(T) =1+ max (Iw(t)l,

o+ ft W(s)ds
0

C,(T) = max (1, a, R(T)).

9.2)

where M(T) = M(T; C,(T), Cx(T), R(T)) in (A3.9) in the Appendix.
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Note that if u e ', the solution h = h,(t) of (8.2), (8.3) satisfies
(9.3) K@) = M(T)= M(T;C(T),CyT),max(a,1)) for0<t =T, T>0.
Also, if y = y,(t) is a solution of (8.1) and

(9.4) y0)=p4 and w <y<W fort=0,
then
9.5) Y@ £ M(T) for0Zt<T, T>0.

Let A be the minimum of the quantities on the left of (8.33) if a < 1 or (8.36)
if a > 1, of (8.38), and of (8.41) with C = max (1 + ¢, f,). Let A < 4 < 0. Then,
by virtue of (8.34), (8.39) and w' < 1 < W, Proposition A3.1 implies that (8.1)
has a solution y = y,(t) satisfying (9.4). This solution is unique by Proposition
8.8.

Define a map t: 4 — A" by

t
ur— o + J yAs)dse A .

0

The definition of ¢, (9.3), (9.5) and the uniqueness of y = y,(t) show that 7 is
continuous. Hence, by Tikhonov’s theorem, t has a fixed point u and (u, h,) is the
desired solution of (IL.1)—(IL.5).

10. On Remark 1. Let u € 7. Then the function m in (8.25) satisfies
(10.1) w<m<W fort>0.
The second inequality is clear if f < 1,sothatm < 1 < W.If § > 1,(8.19) gives
(102) (h—Dia = 1) =(m—DAB - 1) <(W—=1/(W0O) - 1),

so that the last inequality of (10.1) follows from W) — 1=, — 1= — 1.
The first inequality is proved similarly. Thus, in § 9, we can use (8.28), instead of
(8.34), and replace (9.4) by

(10.3) W) =B, W<)m<y<W fort>D0.

11. On Remark 2. In the definition (9.1)—(9.2) of #" = #Tw, W], choose
Wtobe W= 1.Ifue#" = A[w, 1], then the first part of (10.2) and (8.19) give

(11.1) w < m< h'2,
If, in § 9, we use (8.32), instead of (8.39), we can replace (9.4) by
(11.2) y(0) = B, w<y<l1 fort>0.
Also, = B, implies that y(0) = w'(0) = f, hence y'(0) = w"(0) = 0. Thus
(I1.6), (I1.7) hold in this case; cf. Remark S.
Note that, in this argument, Proposition 8.7 and the function W of (8.13)-

(8.16) are not involved. Thus, in the definition of A, (8.38) need not be considered
and C can be taken to be 1 in (8.41).
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12. On Remark 3. This remark can be proved in the same way except that

we choose .# = A'[w, ,],1.e, W= f5; in (9.1)~9.2). As to the last part of (7.10),
cf. (8.19).

13. On Remark 4. Let .#° = #[w, 1]. Again we can use (8.32) instead of
(8.39) in the arguments of § 9 to replace (9.4) by

(13.1) y0) = B, w<y<l<h fort>0.

This would prove Remark 4 if condition (7.11) is strengthened to (7.9) with f; = 1.
In order to obtain Remark 4, as stated, we replace (8.1), (8.2) by a linear system
considered by Hastings [8],

(13.2) Lolyl = " + uy' + Ah'? —u)(h'? + y) = 0,
(13.3) W' + oul’ = 0.

Let " = #[w,1]. Then w < v’ £ 1 < h'/? and the arguments in the proof
of Proposition 8.6 show that

(13.4) Low]>0 fort>0

when (8.36) holds. We also have

(13.5) Lo[1] = Ah'? — u')(h'? + 1) < 0.
The homogeneous part of (13.2),

(13.6) X" 4 ux' + Ah'? —u)x =0,

is disconjugate for t = 0 since A(h'/? — ') < 0, so that, by Corollary A2.1, (13.2)
has at most one solution y satisfying (8.40). The proof of Remark 4 now follows
as in §9.

PART III. A MORE GENERAL PROBLEM

14. An existence theorem. Consider a system of differential equations for
an (n + 1)-vector (u, h) = (u, ht, -+, h") of the form

(141)  u” + G, (t,u,u' u" h, W + Ay (Hyy (G u, v’ u” b, 0 =0,

(14.2) W + Gt u, v, u", h, V)R + AL H(t,u,u',u” b, ) =0
for k = 1, - -+, n, and the boundary conditions

(14.3) u0) = o, u'(0)=p, h0)=a,

(14.4) w(w) =1 and h(w) =0.

(Note that condition (IL.4) in Theorem 7.1 reduces to (14.4) if the variable h there
is replaced by h + 1.)

Partition the set of integers {1, ---, n} = I U J, where I and J are disjoint,
possibly empty, sets. Theindex i will denoteanelement of I, jof J,whilek = 1, --- , n
ork=1,---,n+ 1. We make the following assumptions:

(H1) G\, H, are continuous for t =0, u' = 0, arbitrary (u,u”, h,h’) and
k=1,---,n+ 1.
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(H2) There are constants ¢, > 0 and ¢, = 0 such that
(14.5) Gy=ofu—cy fork=1,---,n+ 1
(H3) The functions H;, H,, , satisfy
(14.6) H;=0 ifh/=0; H,,.,=0 if@,h)=(@1,0).
(H4) H;and G,k =1, ---, n + 1, are subject to an estimate of the form
(14.7) Gy, H; = O(1) + o(|u"] + |]) as|u’| + || - o0,
uniformly on (¢, u, u’, h)-compacts.

(HS) H;, H,, , satisfy Lipschitz conditions of the form

(14.8,) |H? — H}| < B ) |hs — hil,
k=1

(14.8,.,) |Hiyy — Hyyol < Aluy —uy| + B Y [Hs — hil,
k=1

fort 2 0;0 < u,|hy,|h,y] = C;lul £ C(1 + t); and arbitrary (u”, h'), where C > 0
is arbitrary, A = A(C) and B = B(C) are constants, H = H(t,u,u’,u", h,, ---
B R o R" WYyand H™,, = H, . ((t,u,u,,,u", h,,h)form = 1,2.

(H6) Hjis a nonincreasing function of h/ when h’is on the interval 0 < b/ < o’
ifad =2 0ord < W <0ifdd 0.

THEOREM 14.1. Assume (H1)-(H6), 1; = 0O fixed for jeJ, that (ag, o) satisfy
either

(14.9) {0 < By < 1,04 arbitrary} or {f, = 0,00 > A(0,0)},
that either

)

(14.10) {o, = =0,.1) or {o,> Oarbitrary,o, = 0},
and o, 0,01, B, Bo, By, 6 a = (a', -+, a", a, satisfy
(1411) Oﬂo"‘COéO(éO(l, ﬂoéﬂéﬁla |ak|§al3 0<8§1

Then there exists a positive number Ay = A (ag,04, o, P1,84; for jelJ,
min (o, -+, 0,41), 1) with the property that if |A], | A, 1] < Ay, then (14.1)<(14.4)
has a solution (u, h) satisfying

(14.12) 0<Bo<u <max(l +¢,8,) fort>o0,
(14.13) W is monotone,
(14.14) —e<h<d if a>0 or d<hi<e if ad<0 fort>0.

Also, if H” = 0 when h™ = 0 for some i, €1, then
(14.15) 0 < |k < |a| fort> 0.

Except for the dependence of A; on a,, Theorem 14.1 contains Theorem 7.1.
The proof below also supplies (exponential) estimates for |h| and |v' — 1|. It will
be clear that, with slight modifications of the assumptions, with h*' playing the
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role of h*, some or all of the equations (14.2,) can be replaced by equations of the
form

hkm+ Gkhk// + }.ka = 0,
where the corresponding h; occurs in the arguments of the G’s and H’s, and the
boundary conditions for h* are of the type h¥(0) = o, h*(0) = a*, i*(0) = 0.
15. Proof of Theorem 14.1. Without loss of generality, we can suppose that
(15.1) a* >0, wherea=(al,---,a"),

for otherwise the variable h* is replaced by —h*. Define the number
0= O(Gla ) an+1aa0) by

(152) 6=0,=--- =0,4, ifay, <O, 0 =min(c,, -+, 0,44 ifag=0.

Assume (8.6) and introduce the functions w, W in (8.7)«8.16).
Let C be the constant

(15.3) C = max (1 + ¢&,|ag|,|oyl, B1,a;) > 1.
For T 2 2C, choose C%(T) = C%T, 4, for jeJ) = 1 so large that
|Gl 12;H,| < CUT) + (w'| + |W])/32C,

|H, 14l |H| < CAT),

where k =0, ---,n; jeJ;iel; 0t T,;0=u, |l £C;|u £C(1 +1t); and
(u", ') is arbitrary; cf. hypotheses (H4) and (H3), (HS). Finally, for T = 2C,
let

(15.4)

N(T) = 8CCYT) > 1
N,(T) = 2AC%T) + N(T)/16C)N(T) = 24C(C*(T))2.

Let €" be the space of functions of class C'[0, o0) with the topology of C”
convergence on compacts of t = 0. Let 2 be the compact convex subset of
@* x €' x -+ x €' = €% x (') consisting of (u, h) satisfying

u0) =a, v =6, w==u=W fort=20,

W' = N(T), |u'(t) —u'(s)l < No(T)t —s] for0O<s,t<T,
h(0) = a, |W)| < lda¥| fort =0,

IR0 = N(T), |h(t) = h¥(s) S Ny(T)lt — 5| for 0 < 5,6 < T,

and T = 2C. In particular,

(15.5)

(15.6)

uzZw+a—ay, sothatu —cy=w,
(15.7)
olu—co)=06w fork=1,--- n+1.
For fixed (u, h) € A, consider the system of differential equations
(15.8,) Ly = y"+ Giy" + LHF =0,

where k=1, -+, n+ 1, and the asterisk indicates that u = u(t), v’ = u'(t),
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u' =u"(t), h = h(t), K" = h'(t) except that, in G, and H,, (h', -, h*" ') and
(hY, ---, K*~ V) are replaced by (y*, ---, y*~ 1) and (y¥, ---, y*~1); in addition,
in H,, h* is replaced by y* and, in H, ,, u’ is replaced by y"*!. Thus a solution of
(15.8) is obtained by solving successively for y!, -+, y"*1.In (15.8,), the derivative
y* occurs only where it appears explicitly and y* occurs only in Hf. Thus, if
y!, ---, y*71 are known, G} becomes a known function of t alone and H¥ is a
function of (¢, y*) for k = 1, -, n + 1. The system (15.8) reduces to (14.1)-(14.2)
if(yl, N yn+l) — (hl, s h", u/)‘
The coefficients 0w, 0w — 1, GF¥ of (8.8), (8.13), (15.8,) satisfy

G¥rzofu—cy)z0w=0w—1 fork=1,---,n+ 1.
Thus, by (8.11) and (8.13),
(15.9) X' +GEX —ul + Pe)X =0 if X =1-—w,
(15.10) w” + (GF + h)W £ 0.

PROPOSITION 15.1. There exists a number 5, = 5,(%y, %1, Bo> B1,8 A
ay) > 0 with the property that if (u, h)e A and

Kl min(ak) s

(15.11) Al <9, foriel,

then (15.8,), k = 1, -+ -, n, has a unique solution satisfying

(15.12) YO0)=d, y' <0, 0=) <dX,,

(15.13) YO)=d, y'<0, 0y <aW,

(15.14) y'(0) = a', —eX, <y <dX, fort>0,
(15.15) y'(0) = d', —eXo <)y <adW, fort>0.

If, in addition, H®* = Q when h' = 0 for some i, € I, then ¢ = Qis permitted in(15.14),
(15.15) for i = iy. Furthermore,

(15.16,) W@ < N(T) for0<t<T, Tz=2C.

The functions X, W,, are defined in (8.12), (8.16).

Proof. Let m < n and suppose that there exists a positive J,,, depending on
the specified parameters, with the property that if |4] < §,, for I 3i < m, then
(yY, -+, y™ exist, are unique, and satisfy (15.12)(15.16).

Suppose first that m + 1 = je J. Then, by the hypotheses (14.6) and (H6),
the existence and uniqueness of a solution y"*! of (15.8,,, ;) satisfying (15.12) or
(15.13) follows from Proposition A3.2, where the roles of X,{[X] < 0 are played
by either X, (15.9) or W,, (15.10). Since uniqueness depends only on the con-
ditions y"*1(0) = a™*!, y"*1(c0) = 0, the same solution satisfies both (15.12),
(15.13).

Suppose that m + 1 = ie I. By virtue of hypothesis (14.8,) and the inequali-
ties in (15.12)—(15.16,) for i, j, k < m, we can deduce, from Corollary A3.1(ii) or
Corollary A3.2(ii), the existence of a §,, , ; > 0 with the property that if|A| < 6,4,
I5i <m + 1, then (15.8,,, ;) has a solution y™*! satisfying (15.14) and a solution
satisfying (15.15). If 6,,., > O is sufficiently small, uniqueness follows from
Corollary A3.1(iii).
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In order to verify (15.16,), for k = m + 1, note that, by (15.4) and (15.8,),
V¥ = (CT) + N(T)/16C)(1y¥] + 1) = BCAT)/2)(1y*] + 1)
for0 £t £ T, T = 2C. Hence, on this t-range, |y*(t)) £ M%T), where
MO(T) < M(T;3C%T)/2, 3C%T)/2, C) < 6CCY(T) + 1 < N(T);

cf. (A3.9), (A3.10) in the Appendix.
PROPOSITION 15.2. There exists a number A, = Ay(xg, 0y, o, 1,8 4;,
min(cy), a,), 0 < A, < 8,, with the property that if (u,h)e A ; |A], |Aps1l < AL

and (y', ---, y") is the solution of (15.8,), k = 1, ---, n, provided by Proposition
15.1, then (15.8,,, 1) has a unique solution y"* ! satisfying (15.16,, ,) and

(15.17) y"t10) = B, w <yt < W fort>0.

Proof. By the arguments in the proofs of Corollaries A3.1 and A3.2, we can
show the existence of a A; > 0 with the property that if |4,, ;| < A, then

L,,,w]>0 and L,,,[W]<0O.

In this argument, we use
Ly W] = (G — 0w + Ay [Hisy (Jynvizy — u(1 + w)(1 — w),

Ly [W]=(Gley — 0w+ DWW 4+ A4,y [HE Do
where, from (14.6) and (14.8,,, ,),

[H¥l = AlL— "1 + B Y Iy ),
k=1

and (0] < max (e,a")(1 — w)/(1 — Bo) and [y0)] < max (s, a*)(W — )/(W(0)
— 1) by Proposition 15.1.

Thus, if |4,.1] < A, the existence of y"*! follows from w' < 1 < W and
Proposition A3.1. In order to obtain uniqueness, note that the difference x of two
solutions satisfies the conditions

x(0) = 0, XxX=0W-w)=0(W—-1)+ (1 —w)) =01,
ast — oo, for all N, and a differential equation of the form
X"+ Gy X+ Ay 1q1(0)x =0,

where ¢,(t) is a bounded measurable function of ¢, |q,(t)] < A by (14.8,,,). Hence,
by the proof of Corollary A3.1(iii), uniqueness follows for small |4,,,| from
Corollary A2.1.

The proof of (15.16,) for k = n + 1 is the same as for k < n.

Completion of the proof. Let |A], |A,+1] < A, and for (u, h) e A, let (y*, ---,
y"*1) be the solution of the system (15.8) supplied by Propositions 15.1 and
15.2. Define amap t: 4 — A4 by

t
(u,h)v——»(oc + J y' i) ds, yt, oo,y
0
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It is easily verified that 7 is continuous and, therefore, has a fixed point (u, h).
Clearly, such a point (u, h) is a desired solution of (14.1)~(14.4).

APPENDIX

Al. On Weber’s equation. We record here, for easy reference, some facts
about the Weber differential equation

(A1.1) "+t — 24v = 0.
This equation has a pair of linearly independent solutions v = v, v,, satisfying

Vo, >0, vy, <0, vh, >0 forlarget,
(A12) 04 04 04 g

Voa/Vos ~ —t, Do, ~ 1t '"exp(—1*/2) ast— o,
v, 18 unique up to positive constant factors; and

vy > 0 for large t,
(A1.3) " £

v~ t** and vy, ~ 242470 ast - o0,

vy, 1s unique up to the addition of (const.) vy, ; cf. [6, Exercise 17.6, p. 320].
Let t = S(A) be the largest zero of vg,(t), so that

(A1.4) vp(t) = 0 according as t = S(4).

It is easy to see that S(0) = 0 and that S(A) is a continuous decreasing function of A.
Finally, note thatif 6, > Oand v = v(t) is a solution of (A1.1), then v = v(c}/?t)
is a solution of

(A1.5) V" + oott! — 24040 = 0.

A2. Linear second order equations. Let the coefficients of
(A2.1) (x]=x"+ pt)x’ + q(t)x =0

be real-valued and continuous on some t-interval I. Let X = X(t) be a positive
supersolution of class C*(I),

(A2.2) /[X}]<0 and X >0.

Then the variation of constants

(A2.3) r = x/X(t)

reduces (A2.1) to

(A2.4) "+ 2X'/X + plo)yr + (([X])/X)r = 0.

The implication of (A2.2) is the following proposition.

PRrOPOSITION A2.1. Assume (A2.2). Then (A2.1) is disconjugate on I (i.e., no
solution x(t) # 0 has two zeros on I). If, in addition, I = [a, w) is a half-open interval,
then (A2.1) has a solution x = x(t) satisfying

(A2.5) Xo(@) = X(2) and 0 < xy <X, Xo/xo < X/X onl;
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furthermore, any solution x = x(t) of (A2.1) satisfying
(A2.6) x =X, x/x = X/X

at t = a, satisfies these inequalities on I. The inequalities in (A2.5), (A2.6) are strict
foro <t < wunless{[X] = 0 fort near w.
See [5, pp. 357-358]. If X is a solution of

(A2.7) folX]1= X" + POX' + Q)X =0,
then we can write /[ X] either as

(A2.8) /[X]=(p - P)X +(q - QX

or as

(A29) /[X] =1 —p/P)X" + (¢ — Qp/P)X,

when the latter is meaningful. Thus, sufficient conditions for (A2.2) are any of the
following:

(A2.10) X>0, X’=0 and p=P, g0,
(A2.11) X>0, X’=20 and p<P, g0,
(A2.12) X>0, X"20 and 1—-p/P<0, g—Qp/P<0.

(As to (A2.10), cf. [7, Lemma 2A], and as to (A2.11), cf. [6, Exercise 7.2, p. 363].)

PROPOSITION A2.2. Let the coefficients of (A2.1) be continuous on o £t < @
(= o0) and let (A2.1) be disconjugate on o« <t < w. Let X(t) be a function of class
C? for t near w satisfying (A2.2). Let x = x,(t) be a solution of (A2.1) satisfying
Xo(to) = 0 for some ty, a0 < t, < w, and

(A2.13) Xo(t) = o(X(t)) ast—- .
Then x(t) = 0.

Proof. If x(t) # 0, then x = x,(t) is a principal solution of (A2.1); i.e., any
solution x = x(¢) linearly independent of x,(t) satisfies xq(t)/x(t) = 0 as t - w;
cf. (A2.6) in Proposition A2.1. But, since (A2.1) is disconjugate on [o, w), a principal
solution cannot vanish ; cf. [6, pp. 350-361].

COROLLARY A2.1. Let (A2.1) be disconjugate on [a, 00) and let its coefficients
satisfy

(A2.14) p(t) = oot and q(t) < co, for larget,
where oy > 0 and c are constants. If x = xy(t) is a solution of (A2.1) satisfying
(A2.15) xo(t) =0(t™) ast— oo,

then either xo(t) = 0 or xo(t) # 0 fort = 0.

Proof. If v = vy,(t) is the solution of the Weber equation (Al.1), where 24
= —¢, then one can choose X(f) = vy,(a8/%t) ~ (6§/*t)™¢ as t - o0; cf. (AL.5)
and (A2.10).
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A3. Existence theorems. Many of the existence theorems of this paper are
obtained from Proposition A3.1 which is a consequence of a result of Nagumo [16].
PROPOSITION A3.1. Let y = y,(t), y,(t) € C*[0, o0) and

(A3.1) y1(t) < y,(t) fort > 0.

Let F(t, y, ') be continuous for t = 0, y,(t) £ y < y,(t), y" arbitrary, and such that
solutions of

(A3.2) Liyl=y" - F(t,y,y)=0

are uniquely determined by initial conditions, that y,(t), y,(t) are sub- and super-
solutions,

(A3.3) Lly,]1 >0, L[y,] <0 fort>0,

and that for every T > 0, there exists a continuous positive function ¢(x) for x = 0
such that

(A34) [F(t,y, ) = ¢y for 0=t =T, Jw x dx/¢q(x) = 0.

If yo is a number satisfying

(A35) ¥1(0) = yo = »2(0),
then there exists at least one solution y = y(t) of (A3.2) on 0 < t < oo satisfying

(A3.6) yO0) =y, and y, <y <y, fort>0.
Furthermore, if |y,(t)l, |y2(t)) £ R = R(T) for0 <t < T and
M
(A3.7) J x dx/¢p(x) = 2R,
2R/T

then any solution y(t) of (A3.2) on 0 < t < T satisfies |y'(t)) S M for0 =t < T.

Actually, Nagumo’s result concerns a finite interval and the existence of a
solution y = y(t) of a two-point boundary value problem where, in place of (A3.6),
we require

YO0) =yo, WT)=yr and y,(t) < y(t) < y,(t) for0 <t <T,

and y,, y; are given satisfying (A3.5) and y,(T) < yr £ y,(T). It is clear that
Proposition A3.1 follows from a limit process, by letting yr = [y(T) + y,(T)]/2
and T— oo through a suitable sequence.

In applications above, we shall choose

(A3.8) ¢1(x) = Cylx| + Cs,

where C; = C{(T) > 0, C, = C,(T) = 0 are constants. Obviously, such linear
functions are admissible, and we write the corresponding M as

(A3.9) M(T) = M(T;C,,C,,R).
Thus, if C > 0 and T = 2R, (A3.7) shows that we can choose
(A3.10) M(T;C,C,R) = 4RC + 1.
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Remark. It is clear from Nagumo’s proof that Proposition A3.1 remains valid,
with a suitable modification of the inequalities in (A3.6), if either y = y,(t) or
y = y,(t) is a solution of (A3.2).

COROLLARY A.31. In (A2.1), let p(t), ¢(t) be continuous for t = 0; q, a constant,

(A3.11) qt)=2qo>0 fort=0;

X(t) e C*0, ) satisfies

(A3.12) X0=1, X>0, X'=0, /[X]=0 fort=0.
(i) Let H(t, y) be continuous fort = 0,y = 0 and

(A3.13) H(t,0)=0 and |H(t,a,X(1)| £ AX() fort =0,

where a,;, A > 0 are constants. Then, if

(A3.14) Al < goa/A and 0 <a £ ay,

the equation

(A3.15) Liy] = y" + p(t)y’ + AH(t,y) = 0
has a solution satisfying
(A3.16) y0)=a, O0<y<a; X for t>0.

Of course, a, can be chosen arbitrarily (with a suitable adjustment of A) if the second
condition of (A3.13) is replaced by |H(t, y)| < Ay; cf. also Proposition A3.2.

(i) Let A, B, a,, € be positive constants. Let H(t, y) be continuous for t = 0, y
arbitrary,

(A3.17) |H(t,y) < A|y| + BX(t) fort=0.

Then,if 0 < a < a, and

(A3.18) |4 < qo min (a,(4a, + B)~',&(Ae + B)™1),

the equation (A3.15) has a solution satisfying

(A3.19) y0)=a, —eX<y<aX fort>0.
(ii1) Let p(t) satisfy

(A3.20) p(t) = oot for larget and some oy > 0,

and X(t) = O(t™™), as t - oo, for all N. Let H(t,y) be continuous for t = 0, y
arbitrary, and

(A3.21) [H(t,y;) — H(t, y,)l = Aly, — y4l  and |4 < qo/A.
Then (A3.15) has at most one solution satisfying
(A3.22) y0)=a and y=0(X) ast— .

Proof. On (i). We apply Proposition A3.1, using the solution y =0 as a
subsolution and y = @;X as a supersolution, for

Lla,X] = a,(/[X] — qX) + AH(t,a,X) < X{—a,q0 + |14} < 0.
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On (ii). We apply Proposition A3.1, using y = a,X as a supersolution and
y = —e&X as a subsolution.

On (iii). The difference x = y, — y, of two solutions of (A3.15), (A3.22)
satisfies a differential equation of the form

(A3.23) X"+ pOx' + Aqy(t)x = 0,

where ¢,(t) is a bounded measurable function, ¢,(t) = 0 if y,(t) = y,(¢t) and,
otherwise,

q:(t) = [H(t, y;) — H(t, y)/(y2 — y1)»

so that |q,(t)] £ A. Thus, condition (A3.21) on 4 and Proposition A2.1 imply that
(A3.23) is disconjugate on t = 0, and (iii) follows from Corollary A2.1.

COROLLARY A3.2. In(A2.1), let p(t), q(t) be continuous fort = 0; p,, p, positive
constants;

(A3.24) qt) =20 fort=0;

X(t) e C*0, o0) satisfies (A3.12) and

(A3.25) X/X £ —-p, <0 fortz=0.

Let P(t), H(t, y) be continuous fort = 0,y = 0;

(A3.26) P(t) — p(t) =2 p, >0 fort=0.
(i) If H(t, y) satisfies (A3.13), and

(A3.27) Al < aypips/A and 0 <a < ay,

then the equation

(A3.28) Lolyl = y" + P(t)y' + AH(t,y) =0

has a solution satisfying (A3.16).
@) If A, B, ay, ¢, H are as in Corollary A3.1(ii),

(A3.29) |4l < pyp, min(a,(Aa, + B)"',e(de + B)™!) and 0 <a < ay,
then (A3.28) has a solution satisfying (A3.19).

Proof. On (i). This assertion follows from Proposition A3.1 if we verify that
= a,X is a supersolution. Note that

Lola, X] £ ay(P — p)X' — a,9X + 1H(t, a, X)
S (a0, X'/X + |A(A)X = (—arpipy + [HA)X.

Thus Lo[a,X] < 0 when A satisfies (A3.27).

On (ii). This is proved by verifying that y = a;X is a supersolution and u
= —e¢X is a subsolution if (A3.29) holds.

ProPOSITION A3.2. In (A2.1), let p(t), q(t) be continuous for t = 0 and X(t)
e C?[0, oo) satisfy (A3.12). Let H(t, y) be continuous for t = 0,y = 0 and such that

(A3.30) H(t,0) = 0, q(t)y — H(t, X(t)y) is nondecreasing in y
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(e.g., let q(t) = 0 and H(t, y) be nonincreasing in y or let q(t) = qo > 0 and |H(t, y,)
— H(t, y1)| = qoly, — y1l). Then, for any a > 0, the equation (A3.15) has a solution
y = y(t) satisfying

(A331) y0)=a, 0<y<aX and y <(X/X)y<aX #0 fort=0.

If H(t, y) is nonincreasing with respect to y and X(t) — 0, as t — oo, then the solution
y is unique.
Proof. Introduce the new dependent variable

= y/X(),
so that y = xX(t), and (A3.15) becomes

(A332) x"= —(p+2X'/X)x" — x/[X]/X + {q(t)x — H(t, Xx)}/X .

The right side vanishes for x = x’ = 0 and is nondecreasing in x. Hence, (A3.32)
has a solution satisfying

x0)=a, x=20 and x £0 fort=0;

see Hartman [4] or [6, Theorem 5.2 and Exercise 5.3, p. 434 and p. 575). The
corresponding solution y of (A3.15) satisfies (A3.31).

Since y(0) = a and y(o0) = 0, the uniqueness follows from the monotonicity
of H; cf. [6, Exercise 4.6(c), p. 472 and pp. 574-575] for the analogous situation
when [0, o0) is replaced by a compact t-interval.
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ON THE ASYMPTOTIC BEHAVIOR OF
VOLTERRA INTEGRAL EQUATIONS*

JAMES L. KAPLANY

Abstract. Suppose y(t) = f(t) — [, a(t, s)y(s) ds is a system of Volterra integral equations, and let
r(t, s) be the resolvent kernel corresponding to this system. If f(¢) is continuous and w-periodic, it is
shown that under suitable restrictions on r(t, s), the solution y(¢) is asymptotically w-periodic. These
conditions generalize a previous result of Miller, Nohel and Wong.

For the perturbed system x(t) = f(t) — [§ a(t, s) {x(s) + g(s, x(s))} ds, if the resolvent kernel is
“sufficiently close”” to an L*-function, then |x(f) — y(¢)] — Oas ¢ — oo for a suitable class of perturbation
terms g(t, x). If the resolvent is of convolution type, this generalizes a theorem of A. Strauss. Finally,
it is shown that if the resolvent kernel is of convolution type, and is in L'[0, 00), then the Cesaro integral
mean of |x(t) — y(t)| converges to zero, for perturbations which are bounded and diminishing.

1. Introduction. Consider the systems of Volterra integral equations

(L.1) ym=ﬂn—Lauwwa,
(12) X0 =10 = [ ale.s) (+(5) + gls. x5} ds
0

where x, y, f and g are vectors in R", a(t, s) is an n x n matrix, and R" is Euclidean
n-dimensional space. Let | - | denote any vector norm in R".
The resolvent system corresponding to system (1.1) is

t
(1.3) K, s) = a(t,s) — f a(t,uyr(u, s)du
and its solution r(t, s) is called the resolvent kernel. It is well known [3] that if

a(t, s) is locally L' in (t, s), and if r(¢, s) exists and is locally L" in (¢, s), then systems
(1.1) and (1.2) may be rewritten in the equivalent forms

(14) ﬂﬂ=ﬂ0—Lde®ﬁ,
(1.5) x(t) = y(t) — fo r(t, s)g(s, x(s)) ds.

Furthermore, we shall assume that f(¢), a(t, s), ¥(t, s) and g(t, x) are sufficiently
smooth to insure the local existence and uniqueness of solutions of (1.1) and
(1.2) and the continuability of solutions so long as they remain bounded. Sufficient
conditions for these hypotheses to be valid may be found in [3].

We are interested in providing sufficient conditions for the solution of (1.1)
to be asymptotically periodic. Theorem 2.4 shows that if f is continuous and
periodic, and if r(t, s) is “sufficiently close” to being an L!-function, then the solution
y(t) of (1.1) is asymptotically periodic.

* Received by the editors February 2, 1971.
1 Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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We also discuss a recent result of A. Strauss [S] comparing the solution of the
unperturbed system (1.1) with the perturbed system (1.2) when |g(t, x)|
< @(t)(1 + |x|), where ¢(¢) is small in some sense. Theorem 3.2 gives sufficient
conditions so that |x(t) — y(t)] - 0 as t — co. Finally, Theorem 3.5 compares the
solution of (1.1) with the solution of (1.2), provided that |g(t, x)| < A(t), where
) is bounded and diminishing.

2. On the unperturbed system. We require the following lemmas.

LEMMA 2.1. Let f(t) be continuous and g(t) be periodic. If | f(t) — g(t)] = 0 as
t — 00, then g is continuous.

Proof. Let t, be given and let ¢ > 0. Then there exists T > 0 such that
| f(t) — g(t)] < ¢/3forallt = T.If wis the period of g, let n be an integer chosen so
that nw e [T, T + w]. By the continuity of f at t, + nw, let 6 = d(¢/3) be chosen.
Now suppose that |t — to| < d. Then

g(t) — g(to)l = |g(t) — g(t + nw)| + [g(t + nw) — f(t + nw)|
+ [ f(t + nw) — f(ty + nw)| + | f(ty + nw) — gty + nw)
+ |g(ty + nw) — g(ty)l.

The first and last terms are zero by the periodicity of g. The second and fourth
terms are less than ¢/3 since | f(t) — g(¢t)) — 0 and nw = T. The middle term is
small by the continuity of f at t, + nw. Thus |g(t) — g(t,)| < ¢ and g is continuous
at t,.

DEFINITION 2.2. f(t) is asymptotically w-periodic if there exists a continuous
w-periodic function p(t) such that | f(¢) — p(t)] = 0 as t — co.

The following lemma gives a characterization of an asymptotically w-periodic
function in terms of its period. It is a corollary to a well-known similar result
due to M. Fréchet [2] for almost periodic functions.

LEMMA 2.3. The continuous function f(t) is asymptotically w-periodic if and
only if given ¢ > 0, there exists T = T/(¢) such that

| f(t +nw)— f@t) <e forallt =T, n=1,2,---

We are now prepared to state and prove a theorem about the asymptotic
behavior of the solutions of (1.1). This result generalizes Lemma 4.1 of Miller,
Nohel and Wong [4].

THEOREM 2.4. Let f(t) be continuous and w-periodic. Suppose that the resolvent
kernel r(t, s) corresponding to (1.1) satisfies r(t + w,s + w) = r(t, s),

0

(2.1 lim |r(t,s) ds =0,
=00 J_ o
t+h t
(2.2) liné |r(t + h,s)|ds + f [r(t + h,s) — r(t,s) ds = 0.
h— t 0

Then the solution y(t) of (1.1) is asymptotically w-periodic.
Proof. Let ¢ > 0 be given. Let T = T(¢) be chosen by (2.1) so large that

&

11

whenever t > T,

0
J [r(t, s)| ds <
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where || f| = sup|f(t) for t € R. Then using (1.4), we see that

0 0
Iyt + nw) — y(@) éf_ r(t, s) | f(s) ds = | f] f_ Ir(t, s)l ds < e.

Moreover, by (2.2), y(t) is continuous. By Lemma 2.3, y(t) is asymptotically w-
periodic.

The proofofthe corresponding results givenin [4]required stronger hypotheses
on r(t, s) in order to be able to construct a contraction mapping. In addition to
the hypotheses of Theorem 2.4, Miller, Nohel and Wong required that

t
f r(t,s)|ds < B forallt =0,
0

T
lim |r(t,s) ds = 0 for each fixed T > 0.
0

t— oo

3. On a result of A. Strauss. We now turn our attention to a comparison
of the solutions of (1.1) and (1.2). In order to do this, we first state a theorem due
to A. Strauss [5].

THEOREM 3.1. Let r(t,s) be the resolvent kernel corresponding to (1.1). Let
y(t), x(t) represent the solutions of (1.1) and (1.2), respectively. Suppose r(t, s) satisfies

t
3.1 supj [r(t,s) ds = B < o0,
t=20 Jo
T
(3.2) lim | |r(t,s)lds =0 foreach fixed T > 0.
t~ o Jo
Let g(t, x) satisfy
(3.3) lg(t, x)| = @(O)(1 + |x]) fort =0, |x| < oo,

where @(t) » 0 ast — co. If ||y| < oo, then |x(t) — y(t)) = Oast — 0.

It should be noted that if r(t, s) is of convolution type, that is, r(t, s) = r(t — s),
and r e L'[0, c0), then r satisfies (3.1) and (3.2). In fact, for resolvents of convolution
type, r € L! if and only if (3.1) holds. We may think of conditions (3.1) and (3.2)
as being, in some sense, the generalization of an L!-function to functions of two
variables. L!-functions, however, have an additional property which is not shared
by functions of two variables which satisfy (3.1) and (3.2). That property may be
described as the property of having a “small’’ integral over sets of “small’” measure.
Using this property we are able to state the following theorem.

THEOREM 3.2. Let x, y and r be as in Theorem 3.1. Suppose r satisfies (3.1) and
(3.2) and has the following additional property:

(1) Given ¢ > O there exists 6 > 0 such that if A is any set contained in [0, t]
with m(A) < 0, then

f [r(t, s) ds < e.
4
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Suppose that g(t, x) satisfies (3.3), where ¢(t) is such that || < oo and ¢ satisfies:
(i1) Given a, > 0, there exists T = T(a, ) such that

m{t:t = T,|o() 2 o} < f.

If |yl < oo, then |x(t) — y(t)) = oo ast — oo.

Remarks. Condition (ii) represents a relaxation of the condition ¢(t) — 0 as
t - oo to allow a broader class of perturbation terms. It holds, of course, when
@(t) » 0 as t —» oo, and will also hold if ¢(t) € L'[0, co) N L®[0, o). In this way,
if r(t,s) = r(t — s), re L', then Theorem 3.2 generalizes Theorem 3.1.

Example 3.3. Let f be asymptotically w-periodic. Let r(t, s) = r(t — s)e L'[0, 00).
Let |g(t, x)| < @(¢)(1 + |x|), where ¢ is the function described as follows:

1/t forO<t<ooandté¢[n— 1/2" 1 n+ 1/2"17],
o(t)=42 fort=n,
linear on [n — 1/2"*!, n] and [n,n + 1/2"*1)
for n =1,2,---. Then ¢(t) satisfies (ii) although ¢(t) » 0 and ¢(t) ¢ L'[0, o).
By combining Theorem 2.6 and Theorem 3.2 we see that x(¢), the solution of (1.2),
is asymptotically w-periodic, in spite of the fact that the perturbation term is

not periodic, nor is it small in either the L'-norm or the L*-norm.

Proof of Theorem 3.2. The proof follows the proof of Theorem 2 in [5]. It
proceeds in three stages.

PROPOSITION 1. Every solution of (1.2) exists on [0, c0).

The proof of Proposition 1 is identical to the proof of Proposition 1 in [5].

PROPOSITION 2. Let |y|| < co. Then ||x|| < co.

Proof. Let 6 be chosen by (i) so that A < [0, t] and m(4) < J implies

1
L [r(t, s) ds < m

Now let T be chosen by (ii) so that if we let
A = {t:t =2 T,|p(t) = 1/(3B)},

then m(A) < d.
Since x(t) exists on 0 < t < oo by Proposition 1, there exists M > 1 such that
|x(t)] £ M on [0, T]. Choose P so large that

Iyl + Blel(l + M) +2/3 < P/3.

We claim that |x(¢)] < P for t € [0, o). If not, then there exists ¢t > T such that
|x(s)] < Pfor 0 = s < tbut|x(t)) = P. Then

X0 < Iyl + f 1K, s)lg(s. X(9) ds
4 f In(t, 5) g(s. X(5)) ds
[T, 1—A

+ f 1Kt 5) (5. x(s)) ds
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= lyl + Bllel(1 + M) + B(1 + P)glb-

1
+ o)1 + P)—— < P.
loli( )3H<P ”
This contradiction shows that |x(t)] < P on [0, o). Thus ||x|| < P < c0.
PROPOSITION 3. Let ||x|| < oo. Then |x(t) — y(t)) = 0 as t — 0.
Proof. Let | x]l = M and let ¢ > 0. By (i), let 6 = d(¢/3|||l (1 + M)). By (ii),
let T= T(¢/3B(1 + M), ). Now let T > T be chosen so large that

&

L”“”“§wwu+m

fort = 7.

Let

¢
4= {t't 2 T, o) 2 m}

Then m(A) < 6. Now forall t = 7,

IM—M@MW+MLWM%

+ (1 + M) [r(t, s) [(s)| ds

[T,t]—A
+MW+Mﬂvmﬂ@g&
A

Thus [x(t) — y(t)] = 0 as t — o0, and the proof is completed.

It should be noted that the above proof represents only a slight modification
of the proof of Strauss [5].

This final example shows that Theorem 3.2 may not hold if we do not assume
that |y| < oo.

Example 3.4. Consider the following one-dimensional example. Let
oft) e C!(— oo, o0) satisfy

(1) aft) > O for all te R,
(it) o(t) > o0 ast — o0,
(iii) o'(t) = O for all te R.

Let r(t,s) = —o/(s)/alt), and suppose that r(t, s) is the resolvent kernel of some
function a(t, s). Then r(t, s) satisfies (3.1) and (3.2) since
t t a7
supf [r(t, s)| ds = sup «(s) ds
t20 Jo tz0 Jo O((
at) — o(0)
= - |
e T R
and
r
. . T) —
lim [ (e, ) ds = tlim 20— %0 _ ¢,

t= 0w Jo t— o0 a(t)
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Let y(t) be the solution of (1.1). Then y(t) may be represented using (1.4) as
t /(S)
(t)

It is obvious from this expression that f(t) may be chosen so that y(t) will satisfy
y(t) > Oforall t = 0, and y(t) > oo as t — co. Define

wn=ﬂo+f ) (s) ds.

8, x) = ——=|x|.

1
|y(2)]
Clearly,

8(t, x) = ——lx| = —(1 + [xl)

Iy(t)l = @)

and 1/y(t) » 0 as t - oo. Hence g(t, x) satisfies (3.3). Now x(t), the solution of
(1.2), may be written as

wwwm—fmwwmww

- (5) |x(5)
_ﬂﬂ+Lﬂﬂﬂ9s

Observe that

\_/

|X(s)]

@(s ——20 for0=s<t.

ot ()=

This implies that x(t) = y(t). Therefore,

\

=

|nn—ﬂm=ﬂﬂ—“”=ft8%gus

2 [2y 50
0

—_— > g .
o0 (S)s 20 1 ast— o
Thus Theorem 3.2 fails.

We remark that we may take oft) = ¢' in the previous example and obtain
the classic kernel r(t,s) = —e ™79,

Further remarks. We observe that the function ¢(t) of Example 3.3 is a dimin-
ishing function ; that s, [;*! ¢(s)ds — Oast — co. Further, the class of diminishing
functions is closed under addition, and ¢ can be written as the sum of an L'-
function and a function which converges to zero, both of which are diminishing.
This example, and others, lead to the belief that the class of diminishing functions
is related to the class of perturbation terms for which Theorem 3.2 is valid. This
belief is further enhanced by the fact that diminishing functions are known to
play an important role in perturbation theory for asymptotically stable ordinary
differential equations [6]. We remark that the class of bounded diminishing
functions is the same as the class of bounded distributions converging to zero.
Along these lines, we have the following theorem.
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THEOREM 3.5. Let x(t) and y(t) denote the solutions of (1.1) and (1.2), respectively.
Suppose r(t, s) = r(t — s), and r e L'[0, o0). Let g(t, x) satisfy

lg(t, x) = At) = K

for some constant K, where [;*' A(s)ds — 0 ast — oo. Then if ||y < oo,

T- o T

lim ir [x(t) — y(t)| dt = 0.
0

Before we can give the proof of this theorem we require some notation.
Denote by L(f) the Laplace transform of the function f’;

e = | : e dr.

Now let A(t) = 0 satisfy [;*' A(s)ds — 0 as t - oo (that is, A is diminishing), and
define A(t) = [i*"' A(s) ds. We shall write f(t) = 0,(g(1)) fort > 0if /(1) = — Mg(t)
for ¢ sufficiently large. We shall write f(t) ~ Ag(t) as t — t, if f(t)/g(t) > A as
t— 1.

We now state several lemmas.

LEMMA 3.6. L(A — A(0) = A(0).

Proof. Consider L(A)(s). Integrating by parts, and using the fact that A'(¢)
= At + 1) — A(t), we have

fwe—%undt=’“”e—“

0 —S

) + lfw e At + 1) — At)] dt

0 SJo
_ A0)

_;+§uwuwmg—MMMM-

Now L(A(t + 1))(s) = e’[L(A)(s) — [o e”*A(t) dt]. Therefore,

A() — €[5 e A() dt
e —1 '

LIN() 5 = L) +

Now, using the fact that
1

1
lim | e ®At)dt = f At) dt = A(0)
s20Jo 0
and applying L’Hospital’s rule, we obtain
L(A)(0) = L(2)(0) — A(0).

The following lemma is a Tauberian theorem for Laplace transforms. Its
proof may be found in [1].

LemMA 3.7. Let L(h)(s) converge for s > 0. If L(h)(s) ~ ¢/s” for s —» 0, with
y > 0, creal, and if h(t) = O, (t'~ ") fort > 0, then

1 ¢
t—le)h(T)dTN F(’))-l——lj fOVt—>OO,

where I is the usual gamma function.
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LemMA 3.8. If f(t) = g(¢t) for allt =2 M > 0, where | f| < oo and |g|| < oo,
and if y € L'[0, ),

g&bm—mum—amw=a

The proof of Lemma 3.8 is simple and is omitted. We may now proceed with
the proof of Theorem 3.5.
Proof. Define

- 0, 0O0=st=2,
A2) ={
M), t>2,

and let A(r) = [i*! A(s) ds. Now since re L'[0, o0), we know that L(r)(0) < oo.
Thus

LUO (¢ = 2)[(Als) — A(s)) dS) (0) = L(r)(0) - LA — 1)(0)
= L(n)(0)- A(0) = 0
by Lemma 3.6, and because A(0) = 0. Hence, by Lemma 3.7, with
o) = [ e = DIRG) - Zs) ds.
0

y =1, ¢ = 0, we have
1 (T — _
—f f [r(t — s)|(A(s) — A(s))ds dt ~ 0.
T 0 0

By Lemma 3.8, since A(t) — A(t) = A(t) — A(¢) for t > 2, we have

% LT JO It — )| (A(s) — A(s)) ds dt ~ 0.

But f§ [r(t — s)|A(s)ds — O as t — oo, by Theorem 3.1, because A(t) - O as t — .
Therefore,

1 T 1 T pt
0= ?L [x(¢) — y(o)| dt = ?JO L [r(t — s)|A(s)ds dt — O

as T — o0, and the theorem is proved.

Remarks. It is suspected that the stronger conclusion _ﬁ“ [x(s) — y(s)| ds - O
as t — oo holds. It is also not known whether a result such as Theorem 3.5 is
valid if we assume that |g(¢, x) < A(t)|x|, where A(¢) is bounded and diminishing.
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ON A NEW DISCRETE ANALOGUE
OF THE LEGENDRE POLYNOMIALS*

M. WAYNE WILSONY

Abstract. A new system of orthogonal polynomials has been introduced recently by the author.
These polynomials exhibit many of the “nice” properties of the Legendre polynomials. The evidence,
theoretical and computational, implies that, as a discrete analogue to the Legendre polynomials, these
polynomials are “superior” to the classical Hahn polynomials. In this paper, proofs of the announced
results are presented and further development and generalizations are indicated.

1. Introduction. Recently we have introduced a new set of polynomials
orthogonal on a finite point set (Wilson [19]). These polynomials, a striking
analogue of the Legendre polynomials, have many of the behavioral characteristics
of ultraspheric polynomials, yet they are not Fejér “generalized Legendre poly-
nomials” (Szegé [14, § 6.5]). In this paper, we provide proofs of the results previ-
ously announced.

The usual discrete analogue of the Legendre polynomials, well studied in the
literature (recently, Karlin and McGregor [10], Levit [11], Wilson [18]), is the
special case of the Hahn polynomials defined by equal weights. (These are some-
times called Gram or Chebyshev polynomials of least squares.) Numerical evidence
indicates that the polynomials discussed here are a superior analogue than the
Hahn polynomials. In numerical applications, where the ““closeness of the analogy”
is of importance, the new polynomials perform better. (See Wilson [20], although
the text has some minor errors.) The performance is expected, however, since the
new polynomials converge like 1/N? to the Legendre polynomials while the Hahn
polynomials converge like 1/N.

In contrast to the Hahn polynomials, the new polynomials do not have a
difference “‘Rodrigues formula,” nor do they have a known closed form recurrence
formula. Rather, they are obtained by the method of Forsythe [7]. The Hahn
polynomials are really a family of discrete analogues to the Jacobi polynomials
{P&P(x)} . The new polynomials are also a particular set belonging to a class of
analogues of the ultraspherics (and perhaps, of Jacobi polynomials). Other known
members of the set are {T,} and {U,}, the Chebyshev polynomials of first and
second kind. One may ask, what is the nature of other polynomials of this class?
Are they “good’ analogues? Section 7 discusses these questions.

Virtually all that is known about these new polynomials is the orthogonality
relationship. A number of recent papers have been concerned with obtaining
positive expansions of polynomial sets in terms of other polynomial sets (Askey
(11, (21, [31. [4], [5], Wilson [16]). This paper illustrates the use of, and the power
of, such results. By continually exploiting the positivity of expansion coefficients,
we are able to obtain qualitative properties, where quantitative results have not
(perhaps cannot) been obtained. It is somewhat surprising that so much can be
obtained from the inner product.

* Received by the editors November 3, 1970, and in revised form May 24, 1971.
+IBM Scientific Center, Houston, Texas 77025.
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2. The inner product. Let ¢ = n/(N + 1) and ¢ = ¢/2. (These two “angles”
will appear frequently.) Let t; = cosi¢ and w; = sini¢, i = 1,2,---, N. (Note
that the t; are the zeros of Uy(x), and extrema of Ty(x), a most propitious point set
in approximation theory!) Let [ -, ]y be the inner product defined by

[f.gly =2tany .Zl w; f(t)g(t;)

and (-, -) be the usual integral inner product associated with the Legendre poly-
nomials. For notational ease, we shall let

N
[fglk = ‘21 w f(t)g(t).

Although [ -, ]yand [ -, ]¥ are, strictly speaking, only inner products on the
space of polynomials of degree at most N — 1, and bilinear forms on C[—1, 1]and
L,[—1, 1], we shall let context be the guide, and speak only of inner products.

In reality, we should use ¢y, Yy, t&), wi™), but, except for a few minor occur-
rences, N will always be understood. However, note that the usual economization
of this point set is easily utilized. If M = 2N + 1, then ¢y, = ¢n/2, t5) = 1V,
wih = wi™, and tan /,, = (cos Yy)(tan yy)/(1 + cos yry).

Observe that the points are symmetric about the origin, and the weights at
symmetric points are equal, so that [1,f]y = 0, f an odd function, and [f, g]y
= [g’f]N = [17fg]N’f; g€ C[_ 17 1]

Further, the trigonometric identity (Ryshik and Gradstein [13, 1.344])

N cotpy, p=1,3,5,---,

2.1 kglsmkpgb—{o’ p=0.2.4. ..
shows that [1,1]y = 2 = (1, 1) for all N. This innocent identity is the keystone to
obtaining the results of this paper. Virtually every property of the polynomials
defined herein ultimately rests upon it.

Although Riemann sum considerations (Rice [12, §2-4]) show that
[t", "]y — (t",t") as N — o0, n fixed, we can show that this convergence is strictly
increasing with N, and of order N ™2,

LEMMA 2.1. For fixedn,N > n > 1,

@) [ ey S Uy < [ 0vey < (07 = 2/2n + 1),
(i) [¢" "]y = (", t") + O(N"*)as N - oo,

272" "(2n+1) 2n — 2k + 1

(2n + l)kgo k [tan(2n — 2k + 1)y

Proof. We show part (iii) first. Note first that [¢" t"]% = [1,*"]}
= YN, sin i¢) cos*"i¢. Applying the identity

(i) [ "]% =

(2.2) sin y cos x = 3{sin (x + y) — sin (x — )]
to the identity

n—1
cos?"x = 2‘2"{ Y 2(2:) cos2(n — k)x + (2:)} ,

k=0
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we obtain

sin i cos*"ip = 272" {sin (2n + Di¢

+ k;: [(kzrl) - (2:)] sin (2n — 2k — l)iqb}.

Application of (2.1) after substitution of sin i¢ cos*" i¢p into [¢", t"]¥, and use of
the identity
2n 2n\ 2n—2k—1(2n+1
k+1 k| 2n+1 \k+1)
yields (iii).

To show the monotonicity of (i), note that from (iii), [¢", t"] is a positive com-
bination of terms of the form tany/tanpy, p = 1,3,5, ---, 2n + 1. Elementary
calculus shows that g(x) = tan x/tan px is continuous and strictly decreasing on
[0, n/p), p = 2. Thus, since Y = n/2(N + 1)), for N = n, tan y/tan pys, p = 3,
5,-++,2n + 1, is strictly increasing with N, with limit 1/p. The positive combina-
tion implies that [t", t"] is strictly increasing with N, N = n.

Taking the limit as N — co (¥ — 0) in (iii) we obtain

2—2n+1 n 2n +1
lim [¢" "]y = —— :
Nl-I*Igo[’ ]N 2n+lk;0( k )

The summation is easily shown to be 22" so that the limit is 2/(2n + 1),
completing part (i).

To show the order of convergence, we note the series expansions

tan +X3+2xs+ 2<7T2
X =X —_— _— _
3715 X S
3
x
tx =——— — — — ... 2 2
cotx 3 a5 , x°<mno,
so that
tanx 1 pP-1, @*—-D@E*+6) ,
= - |— X X = ...
tanpx p 3p 45p

Since [t",t"]y is a positive combination of terms tany/tanpy, p = 1,3,
5,+-+,2n 4+ 1, and since limy, , [t", "]y = (", ") is obtained by letting y — 0,
the result follows, which completes the proof of the lemma.

Letting Z, = tan/tan py, the first few inner products are explicitly

(1, 1]y =2,

(t,tly = [1 + Z5]/2,

(12, %ly = [2 + 3Z5 + Z3)/8,
(2,83 =[5+9Z; + 5Z5 + Z,]/32.
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3. The polynomials. We let ¢, (¢;N), k =0,1,---, N — 1, be the monic
form of the orthogonal polynomials of [ -, - ]y. Taking account of the symmetry of
the inner product, the polynomials are given by the recurrence

qgo =1, 41 =1, Guiq = 1q, — ﬁn(N)qn—lv n=1,2,---,N -2,

where f,(N) = (44> 9u)n/9n-1>9n- 1]y The polynomials are even or odd with n.
Explicitly,

1+ Z,

N) = ,
Bl() 4

1+ Zy+ Zs — Z2

N) = R
BoN) A1+ Zs)
B(N)_l+Z3+ZS+Z7+Z3(1—25+Z7)—Z§
3(N) = )

A1+ Z)(1 + Zy + Zs — Z3)

Further, we have

(905 90ly = 2,

1+2
41,911y = ) 3,

1+ Zy+ Zs— 273
92,9218 = 2 > =

8

There does not appear to be a simple closed form for ,(N), so that, at the
moment, the Forsythe [7] technique appears to be the most efficient method of
calculating the polynomials.

Applying Wilson [17], which shows how the convergence of [, t*] affects
other quantities of a discrete system, we have B, (N) = n?/(4n* — 1) + O(N~?).
Computationally, it appears that the ,(N) are monotonic increasing with N for
fixed n, and monotonic decreasing in n for fixed N.

Letting k, be the leading coefficient of the Legendre polynomial P,(t), that is,
k, = 2%(1/2),/n!, and defining Q,(t; N) = k,q,(t; N), we have, by use of Wilson [17],
again, the following theorem.

THEOREM 3.1. Using the preceding notation,

(3.1 Q,(t;N) = P(t) + O(N~?).

4. Inner products of classical polynomials. Among the most remarkable
features of this new system of polynomials {Q,(t; N)}are their expansion properties.
Equally remarkable is that these properties are derivable from the behavior of the
inner products of the Chebyshev polynomials of the first and second kind,
T,(x) and U (x).

Observe that [-,-]y and the polynomials T, and U, are “made for one
another,” since

i 1
T,(cos y) = cos ny, U,(cosy) = W
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LEmMA 4.1. Forn + m even,n =2 m > 0,

(i) [T,, T,]y
= —tanzpsind)[ ! ! _J,

cos ¢ — cos(n + m)¢p + cos ¢ — cos(n — m)¢p

@) [T,, T, ]y is finite, strictly increasing with N,2N + 1 > n + m, with limit

1 1
_|:(n+m)2—1+(n—m)2—1 '

Note that [T,,, T,,]y is zero if n + mis odd, is negative if n + m is even, m # n,
and is positive for n = m (which is necessary from the inner product definition).

Proof. Recalling that T,(x)T,,(x) = 4[T,, .(x) + T,_,.(x)] for n = m, and that
[1,, T,y = [1.T,T,]y. it suffices to consider [1, T,]y, 2N = n. Now, for n even,
[1, T,)% = YN, sini¢ cos ing, which, by applying the identities (2.1) and (2.2),
evaluates to {cot(n + 1)y — cot(n — 1)y]. This can be rearranged to —sin ¢
(cos ¢ — cosnd)™'. Hence, for n even, [1,T,]y = —2tani sin¢@ - (cos ¢
—cos ng)~ !, thus showing (i).

To show the monotonic nature, we shall consider the reciprocal, observing
that

-2 cot i
.75~ sin¢-(cos¢ — cos no)
: 2
=“‘1+(Slflnl//) ) n:0a2’4a“'a
sin

using half-angle formulas (y = ¢/2). Forn = 2,4, --- ,thisis — 1 + [U,_ ,(cos ¥)]%
Now on [cos (n/n), 1], U, _ {(x) is increasing from zero to n. (cos (n/n) is the zero on
[—1,1] closest to 1.

Now sin nx/sin x = 1 if

-1 1
sinnx—sinx=2sin(n2 )xcos(n; )ng,

which is true for 0 < ((n + 1)/2)x < n/2,sincen = 2,4, --- . Thus, sin nx/sin x > 1
for 0 = ((n + 1)/2)x < m/2, so —2/[1,T,]y > 0, strictly increasing with N if
Y < m/(n + 1), thatis,if n < 2N + 1. Thus [1, T,]y is negative, strictly increasing
with N, with limit —2/(n* — 1), thus showing (ii).

LemMA 4.2. For n + m even,

@) [T,,U,]y = tanyfcot(n + m + 1)y + cot(n — m + 1],

(i) [T,, U,ly is finite, positive, and strictly increasing with NN > n = m > 0,

with limit 2(N + 1)/((n + 1)*> — m?).

Again, [T, U,y is zero if n + m is odd.

Proof. Since (sini¢)T, (cos i¢)U,(cos i) = cos im¢ -sini(n + 1)¢, part (i)
follows using identities (2.1) and (2.2) as in part (i) of Lemma 4.1. Part (ii) follows
identically to part (i) of Lemma 2.1.
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Although we already know [P,,P,]y =0, n+ m odd, and [P,,P,ly
- (P,,P,) = 26,,,/2n + 1), as N — oo, we need, for later use, the nature of this
convergence. The proof of the following lemma is an immediate consequence of
Lemma 4.1 and the two identities (Szegd [14, § 4.9 and exercise 84]).

[n/2]
4.1 P(t) = Z gk&n—k Tn—21(0),
k=0

where g, = 1, g, = (1/2),/k! > 0, and

m

(4.2) PP, (t) = ) w(n,mP, ., (1), nzm,
k=0
where o, (n, m) > 0.
LEMMA 43. Forn + meven, N Zn=m2= 1,
(i) [P,, P,]y < 0 and strictly increases with N to limit 0, if n > m,
(i) 0 < [P,, P ]y and strictly increases with N to limit 2/2n + 1).

5. Expansion properties. The ultraspherical polynomials {P>*(z)} for
ae[—1/2, 1/2] have a very characteristic set of sign properties, when expanding
one set in terms of another set. Writing

n

(5.1) PE0 = Y Dio PP,

k=0

it is trivially clear that D", 8) = [D(8,®)] ! > 0, and that D} = 0, n + k odd.
For1/2=z a> f = —1/2,and n + k even, Dj(«, f) > 0, and (except for o = 1/2,
B = —1/2)Di(B,a) <0,k > 0. The excepted case o = 1/2, f = —1/2 has the
expansion

(5:2) T,=3lU, - U,_,].

(Recall that for a = 1/2,0, —1/2, the ultraspherics are respectively the classical
polynomials U,, P,, T,.) Askey [1] gives an explicit formula for Dj(x, f).

For two given polynomial systems {p,(¢)}, {¢,(t)} (normalized to have positive
leading coefficients), if we expand polynomials of one system in terms of terms of
the other,

pn(t)z Z quk(t)’ n= 1727"'a
k=0

qn(t): Z dzpk(t)’ n= 1729”'3
k=0

then,if D} = 0,d} £0,k=0,1,---,n—1,n=1,2,--- , weshall say, by analogy
with (5.1) and succeeding discussion, that the system {p,(t)} is above the system
{q,(t)} and that the system {q,(t)} is below the system {p,(t)}. (For precision, if the
systems are finite, we assume they have the same number of elements.)

This section is primarily devoted to proving, via a sequence of lemmas, the
following.
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THEOREM 5.1. The system {Q,}, for fixed N, is below the system {U,}, and
above the systems {P,}, {T,}.

To establish notation, we write, suppressing t and N dependence,
U, =40, + 45 2Q,—2 + -,
Q=aU,+a, U, 5+,
Q, =P, + B, 2P+,
Po=0Q,+by 30, 2+,
Qn C$E+CZ—2T,.-2+~-,

T;u = C:Qn + c:—ZQn—Z + e
We show that A%, B}, C' are positive, the a,, c; are positive, and all df, b7, cj are
negative, j =n — 2,n — 4, --- . We shall also show a number of monotonicity
properties which are useful later.

LeMMA 5.1. For N > n, writing
Q,(t; N) = P(1) + B,_,(N)P,_,(t) + By_4(N)P,_4(t) + -,
we have By, _,; (N) strictly decreasing with increasing N to a limit of zero with order
ON~?,j=1,2---.

Proof. We use a refinement of the argument in Wilson [16], which with
Lemma 4.3 establishes the nonnegativity of the B;, _, (N). Note first that in express-
ing Q,(t; N)as above, we have utilized the fact that only polynomials P ;of the same
parity of n appear in the expansion. For the sake of simplicity, we assume n even.
The proof for n odd is the same except for notational changes. Let n = 2m.

Writing Q,,(t; N) as Z;.":O 5{N)P,;, where Bj(N) = 1, and imposing the
orthogonality conditions [Q,,,,P;ly =0,j=0,1,---,m — 1, and [Q,,, P,y
= K > 0, we observe that B"(N) = (B}(N), B%(N), ---, B%,,_,,1)" is propor-
tional to the solution B*(N) = (B§(N), B¥(N), -, B¥N))' of the system
A,B* = d, where 6 =(0,0,---,0,1), and A4, = 4,(N) has elements A;(N)
= [Py, Pyjly. )

Now A4,, is a Stieltjes matrix, having positive diagonal elements and negative
off-diagonal elements, and thus (see Varga [15, pp. 81-87]) it has a positive inverse.
(It is positive definite since it is a Gram matrix ; see Davis [6, p. 176].)

(5.3)

Partitioning
A = Am—l Vm
" Ve Anml’
where V, = (Ag Ay s s Ap-1.m) <0, we have, by a formula of Frazer,

Duncan and Collar [8, pp. 112-115],

A-l — (Mll MIZ)

" My M,,|°

where M,, = |4,,_,|/|4,|,and M, = —M,,A 1\ V,.
Therefore,

B*(N):(ﬁ”) and B"(N)=(—A';1_11V'").
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As stated earlier, 4,1, > 0, and —V,, > 0 by Lemma 4.3, so B(N) > 0.
Further, since A,,_ (N + 1) > A4,,_;(N),and — V(N + 1) < —V,(N), by Lemma
4.3, we have A, (N + 1) < 4,1,(N) (Varga [15, p. 87]) so that B"(N + 1)
< B"(N). The limiting value and order is a consequence of (3.1).

LemMA 5.2. For N > n, writing

Q.(t;N) = CiT(t) + Cp_, T, () + - -+,

we have that C, = 2g,g, and C,,_, (N) strictly decrease with increasing N, of order
O(N™?), to the limit g;g,_;, given by the identity (4.1).

Proof. The proof is immediate from the identity (4.1) and Lemma 5.1, or by
using a similar argument to Lemma 5.1.

LEMMA 5.3. In the expansions (5.3), for N > n, we have A,_,; > 0,b,_,; <0,
Cn-2;<0,j=1,2,3,---, while Ay > 0,b, > 0,c; > 0.

Proof. Ay_5; = [U,, Qu_2;In/[@n-2j> @n-»;ly and Lemmas 5.2 and 4.2 show
the numerator term positive, showing 4, _,; > 0. The bj _ ,; result follows similarly
from Lemmas 5.1 and 4.3, while the ¢, _,; result follows from Lemmas 5.1 and 4.1.

LEmMMA 5.4. For N > n, writing

Q,(t;N) = qQU (1) + dp_,U,_,() + - -+,

we have a, > 0,a,_,; <O0forj=1,2,---.
Proof. Because of the length, we shall only sketch the proof. The U,(x),

i=1,2,.---, N — 1, are orthonormal with respect to the inner product (-, >,
defined by

% sin? i¢ - f(cos i¢)g(cos i),

<f,g>=N+1i=1

so that, as a Fourier coefficient, we have
an_3(N) =<QY,U,_,>, pe{0,1,---,[n/2]}.

For p = 0, by examining the leading coefficients, it is clear that a; > 0. Assume
p=12,---,[n/2]. Since sini¢ = /1 — cos?i¢, we have

1
n — 1 _ 2 _ .
an—2p (N + l)tanlp[Q"’ vV X Un 211]

Now, for 0 < x < =,
. 2 4 & cos2kx
sinx = - g p

SO

2 4
(N + 1) tan lpa:—2p = ;[Qn’ Un—2p] - ;[Qn’K : Un—Zp]

4
= _;C‘[Qn’K ' Un—2p:|9
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where n = 2, and

_ v DTux)
K(x) = k; O

Since T,y + 1)+ f(€Os i) = T{cos i¢), we can show

M
K(cosip) = Y Sy ,;Tr(cosip) + SyTy . (cosig) + S¥,

j=1
where N = 2M or 2M + 1,
_ 1 + i ! + !
M -1 SN+ )+ =1 4[N+ 1) =P -1
0, N =2M,
Sy = i 1
12— 1N +1)> =1
* < 1

S* —
’ q; 4% (N +1)° — 1

N=2M +1,

By using the psi (digamma) function, the series may be summed, and it can
be shown that

Sn.;i > Snj+1s j=1,2,---, M —1,

and Sy > 259

Now, substituting, and using orthogonality of Q,, we have
—4
Ay_2p = m [;Zp [oy.U,- 202 jINSN, + 1@ U2, Ty s 1]51(\)1] .

Using known identities on U,T,, to obtain expressions involving U-functions
only, and using

Uswvs -+ 2)(cos ip) = — Uj(cos i¢), and [Q,,Uyly =0,

one can show (for each of the four cases obtained from letting N = 2M,
N =2M + 1, n=2r, n = 2r + 1) that the expression is negative (recall that

0, U y>0m=nn+1,---, N —1, by Lemma 5.3), which completes the
proof.

At this point, we have proved Theorem 5. 1 Let us remark here that what we
have shown is that the three matrices (a}~3%), (b5~ 3}, (c3=3}), withi,j = 0,1, -+, m

where n = 2morn = 2m + 1, are M-matrices (Varga [15,§ 3.5]), which have non-
negative inverses. The really difficult problem, illustrated by Lemma 5.4, involves
determining when a nonnegative matrix has as its inverse an M-matrix. We
conclude this section with the following lemma.

LEMMA 5.5. For N > n, the coefficients satisfy, for n even, Cy > Cy_, >
> C% > 2C{, and for n odd, Cp > Ch_, > --- > Cf.

Proof. Substituting T, = Z[Uk —U_,), T, = U, and T, = U, into the
expansion for Q, = ) Ci_,,T,_,; to obtain Q, = Y a,_,;U,_,;, the inequalities
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above hold if and only if the ay_,; satisfy a; > 0, a;_,; < 0,j = 1,2, ---, so the
inequalities follow directly from Lemma 5.4.

6. Properties of the Q-polynomials. We now prove a number of properties of
the {Q,(¢; N)} polynomials, and also state some properties which, from compu-
tational experiment, we suspect are valid.

THEOREM 6.1. Q,(t; N) takes its maximum absolute value on [—1,1] at the
endpoints. Further, Q,(1; N) is strictly decreasing, with order O(N ~?), to the limit
value 1, with increasing N.

Proof. The proof is an immediate consequence of Lemma 5.1.

By way of estimating Q,(1; N), we can obtain a rough estimate using the
monotonicity stated in Lemma 5.5 and the explicit formula C" = 2 - (2n)!/(4"(n!)?),
so that Q,(1;N) < [(n + 1)/2]- Ci, where [x] here means greatest integer con-
taining x. Using Stirling’s formula, we have, for n > 1, independently of N,

1 < Q,1;N) < (n + 2)/(mn)*2.

For n = 29, the right-hand value is 3.25, while Q,4(1;30) = 2.42. We have had
little success in attempting to find an explicit formula or a bound depending on
both n and N for Q,(1; N).

THEOREM 6.2. If the zeros of Q,(t ; N) are designated cos 0,j = 1,2, - - - , n, then

i —1/2  + 1/2
J_/_n<9§n><f__/n,
n+1 n+1

Proof. Writing (5.3) as
Q. (cosO;N)= Crcosnf + Ci_,cos(n —2)0 + ---

j=1,2-,n.

and letting n = 2m, and x = 26, we obtain
Q,(cos x/2) = Chcosmx + Cj_,cos(m — 1)x + --- + Cj,.

Lemmas 5.2 and 5.5 imply the result by direct application of Theorem 6.4 in
Szegd [14]. The proof for n = 2m + 1 follows similarly.

There are two additional properties of ultraspherics (Legendre polynomials in
particular) that the Q,(t; N) appear to satisfy from numerical evidence.

CONJECTURE 6.1. The sequence of successive relative maxima of |Q,(t; N)|
on [0, 1] is an increasing sequence.

CONJECTURE 6.2. For N > n + m, there is a positive product linearization
formula. That is, Q,(t; N)Q,.(t; N) appears to be expandable as a nonnegative
combination of Q(t;N),j=0,1,---, n + m. With respect to the second con-
jecture, we have verified computationally that the §,(N) do not satisfy the appro-
priate inequalities that would allow the use of the results in Askey [3], [4].

Because these polynomials share, or appear to share, many of the properties
of the ultraspheric polynomials, it is quite fair to ask, ‘“Could these polynomials in
essence be ultraspheric polynomials?”” That is to say, could Q,(t;N)
= h,(N)P*?(t), where « = a(N), such that «(N) — 0 as N — 0o0? Or perhaps they
are Fejér “‘generalized Legendre polynomials™ (Szegd [14, § 6.5])? We show the
latter question is answered in the negative (which implies a negative answer for the
first question also).
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LemMA 6.1. For N > 4, N finite, the sequence Q,,0,Q0,,05,Q, is not pro-
portional to a sequence of Fejér “‘generalized Legendre polynomials.”

Proof. The Fejér “‘Legendre polynomials” associated with a sequence
Oy, Oy, 0y, 0y, 0, - - - are defined by

F,(cos 0) = 2aq0, cos nf + 20,0,y cos(n — 2)0 + - -
200, — 120 s nodd,
+ { (n—1)/2%(n+1)/2

o, neven.

Without loss of generality, we take o, = 1, and write explicitly the first 5 poly-.
nomials as

1, 20,0080, 20,0820 + af, 205 cos30 + oy, cos b,
20, cOS 40 + 20,03 €08 20 + 3.

For the monic forms g,(t; N) of § 3, writing

[n/2]
4ucos 0;N) = 3 7, cos (n — 20,

j=0

we have
Yoo = 1,
Y11 =1,
V22 = 1/2, Y20 = (1 = B1)/2,
Va3 = 1/4, 7y =3 — 4B, + B2))/4,
Yaa = 1/8, va2 =1 = By — B, — B3)2,
Yao = 3 — 4By + B2 + By + 8B,82)/8.

If the two sets are proportional, that is, if there exists k; such that F,(cos )
= k,q,(cos 0;N),i =0,1,---,4, then, necessarily, 4y,0740 = Y3142 Writing
everything in terms of cos ¢, we were able to show, after some extremely painful
algebra, that 47,0740 — ¥31742, as a rational function in cos ¢, for 0 < ¢ < 7/5,
was one signed (never zero) so that the condition could not hold.

(The last step of the procedure involved the symbolic factoring of a 13th
degree polynomial using the REDUCE system on the IBM 360/91 at the Watson
Research Center.)

A few other comments are in order. First, because of the O(N ~2) convergence,
these polynomials are not Hahn polynomials. The work of Wynn [21] and Hahn [9]
then shows there is no difference analogue of ‘“Rodrigues’ formula’ for these
polynomials.

7. The general class of polynomials. Letting ) " represent summation with
first and last terms weighted by 1/2, consider the general inner product, for
o= —1/2,

N+1

[fglh = X" w)' "2 f(t)g(ty),

i=0
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where w; = sin i@, t; = cos i, and letting (0)° = 1. Let ¢(t; N) be the discrete
orthogonal polynomials defined analogously to those in § 3. Riemann sum con-
siderations (Rice [12, § 2-4]) show that these polynomials are discrete analogues
of the ultraspherics P®*(t). In fact, for « = +1/2, « = —1/2, the inner products
are well known and generate U, and T, exactly (up to a constant factor). Since U,
and T, (the latter requires the ¢, and ty,, points) are (up to a constant factor)
P®® for o = 1/2, —1/2 respectively, it is only natural to examine what happens
when a = 0 (the Legendre case). This motivated the current investigation.

This raises a whole host of questions. Do the g%t ; N), suitably normalized,
share similar properties to P*®? What is the convergence order of [ -,- 1%, for
general o? Do the ¢j(t; N) have similar interrelationships for different a as the
ultraspherics have? For a = 1/2, 0, —1/2 we have demonstrated some of these
interrelationships.

Another very general question of interest concerns the characteristic sign
configurations of expansions of § 5. We have shown in Theorem 5.1 that {Q,} is
above {P,}, and implicitly, {Q,} is above {P{»*} for a € [—1/2,0]. Here we state,
on very scanty numerical evidence, the following conjecture.

CONJECTURE 7.1. There exist numbers o,,a,, functions of N, satisfying
—1/2 < oy < o, £ 1/2, and such that the system {Q,} is above the system
{P*»} for we[—1/2, o] and below the system {P™} for o€ [«,, 1/2].

Clearly, if this is so, «; = 0 and tends to 0 with increasing N. On the other
hand, 1/2 = a,, and we would suspect also that a, — 0 with increasing N. How
large a gap is A,(N) = a,(N) — o;(N)?
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A GENERALIZED CAUSALITY OF LINEAR CONTINUOUS
OPERATORS DEFINED ON DISTRIBUTIONS*

VACLAV DOLEZALTY

Abstract. The paper deals with a qualitative property of linear continuous operators defined on
distributions, that is, with a property appearing as a generalization of the traditional causality. The
traditional causality of an operator 4 means that supp 4x < S whenever supp x< S, where S is any
interval [T, oo0). Here, causality is defined in the same way, but § is any member from a certain family of
subsets of R™, called a scale.

A theorem is proved which gives necessary and sufficient conditions for an operator to be causal
with respect to a given scale.

As an application there is considered a slightly generalized convolution-type operator; it is shown
that this operator is causal with respect to a scale which consists of all translations of a fixed cone.

In this paper an extension of the traditional causality concept is discussed.
First, the concept of a scale is introduced, that is, a scale % is defined as a family of
subsets of R™ which satisfies certain requirements. It is shown that, in particular,
we can take for a scale the collection of all sets which are translations of a fixed
cone in R™

If A is a linear operator defined on distributions which is continuous (with
respect to the convergence in 2'), then A is called causal with respect to a scale %,
if the support of Ax is contained in some S € ¥ whenever the support of x is con-
tained in S. We use this concept and a certain representation of linear continuous
operators given in [2] to prove a theorem which gives necessary and sufficient
conditions for a linear continuous operator to be causal with respect to a given
scale.

Based on this result, a theorem is then proved that describes a scale with
respect to which an operator A is causal, provided A4 is a slight generalization of a
convolution-type operator.

First, let us introduce several concepts and carry out some preliminary
considerations. Let R™ stand for the Euclidean m-space; if A = R™, let A, A° and
Int A denote the closure, complement and the interior of A4, respectively.

DEFINITION. Let S be a nonempty proper subset of R™; S will be called a normal
set if

(i) IntS = S,
(i) there exists an x, € R™ such that §¢ — Axy < S for every 2 > 0.

Furthermore, let & stand for the space of all smooth functions on R™ with compact
support, and let the convergence in £ be defined in the usual way ; let 2’ be the dual
of 9, that is, the space of all linear functionals on 2 which are continuous with
respect to the convergence in & (see [1]). Then we have the following lemma.

LEMMA 1. Let S be a normal set, and let f€ 9'; then f = 0 on S¢ if and only if
{fy9) = 0 for every ¢ € & with supp ¢ < S°.

* Received by the editors December 17, 1970.
t Department of Applied Mathematics and Statistics, State University of New York at Stony
Brook, Stony Brook, Long Island, New York 11790.
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Proof. Owing to (i), $¢ is an open set ; hence, sufficiency is trivial. Conversely,
let f=0 on S and let ¢ € 2 be such that supp ¢ < S If x, is the point with
property (i), define functions ¢,(t), n = 1,2,---, by ¢,(t) = ¢(t + xo/n); then
clearly ¢,€2 and supp ¢, = supp ¢ — xo/n, ie., supp ¢, = S° — x,/n. Hence,
by (i), supp ¢, = S¢, and consequently, { f, ¢,> = 0.

On the other hand, it can be easily verified that ¢, — ¢ in 2 thus, by con-
tinuity of f, {f, > = 0 as required.

LEMMA 2. Let S be a normal set and let fe 9'; then f = 0 on S¢ if and only if
{f, 0> =0 for every o € D with @ = 0on S.

Proof. In view of Lemma 1 it suffices to show that supp ¢ = S if and only if
¢ =0o0nS.

1. Let ¢ =0 on S; then 4 = {t:¢(t) # 0} = S, and consequently, supp ¢
=Ac S

2. Conversely, let supp ¢ < S¢; then A4 = supp ¢ < S°, so that A° = {t:o(t)
=0} > (S9¢ = Int S. Hence, ¢ = 0 on Int S, and since ¢ is continuous, we have
@ = 0onIntS = S by (i), which finishes the proof.

DEFINITION. The family 4 = {S,:S, = R™, ae R™} will be called a scale, if

(1)* each S, is a normal set,
(i)* ae S, for every a e R™,
(ii1)* b e S, implies that S, <= S,,.
As an example of a scale, let us consider the following situation: If t € R™ and

t=(ty,ty, -, t,), let el =, tHY2 Let u> 0 be fixed, and for every
a € R™ define

(1 So = {t:1t]? — 17 < ulty — a,) + llall® — az}.

Clearly, each S, is a paraboloid opening to the right of the t,,-axis, and satisfies the
condition (i); moreover, taking for x, any point of the positive part of the t,,-axis,
inclusion (ii) is satisfied. Hence, every S, is a normal set.

On the other hand, we have a € S,,, and it can be easily verified that implication
(iii)* holds too ; consequently, the family ¥ = {S,:a e R™} is a scale.

Let us now discuss a more sophisticated example of a scale.

DEFINITION. Let S be a proper subset of R™; the set S will be called a cone, if S
is closed, convex with nonempty interior and such that Axe S whenever xe S
and A = 0.

Then we have the following theorem.

THEOREM 1. Let S be a cone; then the family

2 % ={S+aaeR™}

is a scale.

Proof. First of all, we shall show that each S + a is a normal set. It is clear
that for proving this it suffices to show that § is normal.

Thus, choose x,eInt S and let us show that S¢ — x, = S¢ Actually, let
x € S; then, due to convexity of S, x + x,€ S, and we even have x + x, € Int S.
Indeed, by assumption there exists an ¢ > 0 such that ze R™, ||z — x,|| < ¢ implies
ze S. Consequently, if £ R™ and |& — (x + x¢)| <& we have & — x€eS,.
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Thus, x + (£ — x) = €8, ie, x + xo€Int S; hence, S = IntS — x4, and con-
sequently, (Int S)° — x, = S°. The relation (Int A)° = A° concludes the proof of
the above inclusion.

Next, observe that if xo € Int S, then also Axq e Int S for any 4 > 0; conse-
quently, we have S¢ — Ax, = S¢ and condition (ii) holds.

As for condition (i), we can reason as follows: we have Int S < S, and con-
sequently, Int S = S = §. Conversely, let x € S and show that x € Int S. Actually,
choose an x, € Int S and show that every point z, = Axy, + (1 — A)x with 0 < 4
=< 1 belongs to Int S. By assumption, there exists ¢ > 0 such that || — x,| < ¢
implies £ € S; choosing a fixed 4 with 0 < A < 1, let n be a point such that ||
— z,|l < A&, so that | — Axg — (1 — A)x|| < Ae. Then we have [[A” 'y — 47!
(1 — A)x — x0| <& and consequently, A"'y — A7'(1 — A)xeS. Since A7'(1
— A)xeS, wehave A~ 'neSand thusneS. Hence, z; eInt Sfor0 < A < 1.

On the other hand, ||x — z,|| = 4| x — x,l|, so that x € Int S; hence, S = Int S,
and requirement (i) is satisfied. Thus, S is normal.

Next, since 0 € S, we have ae S + a for any a € R™; consequently, (ii)* holds.

Finally, if be S + a, then b — aeS; if xe S + b, we have x = b + y with
y € S. Consequently, writing x = a + (b — a) + y, it follows that (b — a) + y€e S,
so that x € S + a. Hence, (iii)* is satisfied, and the theorem is proved.

Let us now turn to causality of operators. Let &, stand for the space of all
distributions in &’ which have a finite order, that is, fe &, exactly if there exists a
continuous function F(f) on R™ and a multi-index k such that {f, p> = (—1)
[ gm F(t)D¥@(1) dt for every ¢ € 9 (see [1]).

Next, let 2 be a linear subspace of 2’ such that 2, ¢ 2 < @'; a linear
operator A:%2 — 9’ is called continuous if x, x,e # n=1,2,---, and x, > x
in 2’ implies that Ax, —» Ax in 2. In [2] we have proved a representation theorem
for a linear continuous operator A: # — 9'; for the present purposes we shall
need only the following assertion.

Let A:? — &' be a linear continuous operator, and let f, = A, for every
ae R™; then, for any fixed p € 2,y (a) = {f,, ) € D and

(€) Ax, @) = {x, {fus @D
for every xe ? and ¢ € 9.
Note. In order to avoid misunderstanding, equation (3) should be interpreted

(Ax)(1), (1)) = {x(a), {LlD), @(t)) ),

where the “arguments” ¢ and a indicate the involved relations; having this in
mind, we shall use the shorter notation of (3) in the sequel.

DEFINITION. Let 4 = {S,:S, © R™, ae R™} be a scale, and let A:2 —> &' be
a linear continuous operator ; the operator A will be called causal with respect to
% if supp Ax = S, whenever x € 2 and supp x < S,,.

Observe that the traditional causality (m = 1) is obtained by setting S,
= [a, ).

Now, we are ready for stating the main result.

THEOREM 2. Let 4 = {S,:S, = R™, ae R™} be a scale, and let A: P — D' be a
linear continuous operator ; then A is causal with respect to % if and only if supp Ad,
< S, for every ae R™.

as
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Proof. 1. Assume first that supp 46, = S, for every ae R™, ie., f, = AJ,
= 0 on S, and let x € 2 be such that supp x < §,, i.e,, x = 0 on S;. Referring to
Lemma 1, let ¢ € Z be such that supp ¢ = Sj. Now, if ae S, then S, = S, by
property (iii)* of a scale, and consequently, S§ < S5. Thus, s